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Abstract

Users have tremendous potential to aid in the construction and maintenance of knowl-
edges bases (KBs) through the contribution of feedback that identifies incorrect and missing
entity attributes and relations. However, as new data is added to the KB, the KB enti-
ties, which are constructed by running entity resolution (ER), can change, rendering the
intended targets of user feedback unknown–a problem stemming from identity uncertainty.
In this work, we present a framework for integrating user feedback into KBs in the presence
of identity uncertainty. Our approach is based on representing user feedback as mentions
and then reasoning jointly about feedback and mentions during ER. We propose a specific
representation of user feedback as feedback mentions and introduce a new online algorithm
for integrating these mentions into an existing KB. In experiments, we demonstrate that
our proposed approach outperforms the baselines in 70% of experimental conditions.

1. Introduction

Structured knowledge bases (KBs) of entities and relations are often incomplete and noisy,
whether constructed by hand or automatically. For example, it has been reported that
71% of people in Freebase are missing a place of birth attribute and 75% have no known
nationality [Dong et al., 2014a]. Similarly, while YAGO2 is estimated to be about 95%
accurate on facts extracted from Wikipedia, this translates to roughly 5.7 million incorrect
facts involving 2.6 million entities1 [Hoffart et al., 2013]. The vast research in cleaning
and correction of databases is further evidence of the permeation of errors throughout KB
construction in multiple domains [Dong et al., 2014a,b, Wang et al., 2015, Li et al., 2017].

As the primary consumers of KBs, human users have significant potential to aid in KB
construction and maintenance. From a user’s standpoint, a KB contains a set of entities,
each entity possessing attributes and optionally participating in relationships with other
entities. Thus, KB errors manifest as spurious and missing attributes and relationships.
However, the data that gives rise to a KB is a collection of raw evidence, which can be
understood as mentions that require clustering by entity resolution (ER) into a set of
inferred entities. The attributes and relations of the inferred KB entities with which the
user interacts are drawn from this underlying clustering of the mentions. Therefore, the

1. Calculated from Table 5 of Hoffart et al. [2013]: 124,333,521 facts with 95.4% weighted average accuracy
across relations.
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Figure 1: Example of identity uncertainty inherent in user feedback. The figure
represents the state of the KB for the entity, Rajarshi Das, before and after two pieces of
feedback are given. User Feedback #1, which provides the homepage attribute, could refer
to either Rajarshi Das-1 or -2, neither of which existed at the time the feedback was given.

spurious and missing attributes and relationships, may stem from a variety of sources,
including: noisy mentions produced by information extraction, mistakes in ER, missing
data, etc.

In light of new data that is continually being added to a KB, inferred KB entities may
change. Specifically, the arrival of new mentions and user feedback can trigger modifications
of the underlying mention clustering, resulting in the creation of new inferred entities, re-
moval of previously inferred entities or alteration of the existing inferred entities’ attributes
and relations. The volatility of the underlying mention clustering poses a formidable chal-
lenge to the task of integrating user feedback with KB content, especially when the precise
targets of feedback are unknown, a phenomenon known as identity uncertainty [McCallum
and Wellner, 2003, Pasula et al., 2003].

As an example, consider Figure 1, which displays an entity in a KB of researchers and
user feedback provided about that entity. First, a user notices the entity Rajarshi Das is
missing a homepage and so provides rajarshd.github.io. Later, a user provides feedback
that the paper, which was published in 1991 and titled Genetic Reinforcement Learning with
Multilayer Neural Networks, was not written by the Rajarshi Das affiliated with University
of Massachusetts Amherst. This feedback causes the Rajarshi Das entity to be split into
two entities. After the split, it cannot be determined which of the two newly created entities
should have the homepage provided by the first piece of user feedback. The uncertainty
arises from the ambiguity of which true identity of Rajarshi Das is referred to in the user
feedback providing the homepage.

In this paper, we present a new framework for reasoning about user feedback amidst
identity uncertainty (§3, §4). Our approach is founded on the idea that user feedback should
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participate in ER alongside standard mentions. That is, when an inferred entity that was
previously the target of user feedback is split–as in the example above–the decision about
the new target of the feedback should be made by the ER algorithm. Including feedback in
ER, rather than applying feedback to the inferred entities as a post-hoc step, is powerful:
the feedback provides additional evidence for mergers and splits, making ER more robust
and effective.

A direct way to enable this type of reasoning about user feedback is to encode the feedback
as mentions and run ER on the union of feedback and standard mentions. However, this
approach may result in additional ER errors. To see why, consider the second piece of
feedback in the example above. Before the feedback is integrated, it is incompatible with
Rajarshi Das, since the KB entity exhibits a publication record (the paper from 1991) that
the feedback explicitly does not. Ideally, ER would associate the feedback with Rajarshi

Das, despite the inconsistency, and use the conflicting publications (and other information
such as affiliation) as evidence in support of splitting of the KB entity’s underlying mention
cluster. To enable this, we advocate for the representation of user feedback as feedback
mentions (FMs), which include two components: a packaging (§3.1) and a payload (§3.4).
The packaging contains attributes used by ER to initially determine a set of mentions similar
to the feedback. After this initial set is discovered, attributes contained in the payload are
applied, introducing missing attributes, correcting spurious attribute and influencing future
ER decisions. In the example above, a FM with packaging that includes an affiliation with
University of Massachusetts Amherst helps to guide ER toward associating the feedback
with the mentions that constitute KB entity Rajarshi Das. Afterward, the FM’s payload,
which includes the incompatibility with published paper from 1991, helps ER to correctly
split the mentions into two inferred entities.

User feedback and new mentions naturally arrive over time, rather than all at once,
thereby demanding an online integration scheme. In this work, we also present a new
incremental ER algorithm for integrating new mentions and FMs with an existing KB (§4).
Our algorithm builds a hierarchical clustering of the data, one data point at a time. The
crux of the algorithm is a graft subroutine, which allows new data to trigger cascading
mergers of disparate parts of the tree to produce new and split existing inferred entities.

Previous work studies user feedback for ER, but is focused on user supplied, mention-
level pairwise constraints, which are insufficient for providing feedback about KB entities,
their attributes and relations. For example, using pairwise constraints alone, it is impossible
to supply missing attributes and relations or correct for noise in the underlying mentions.
Similarly, many types of desirable user feedback–as in the example above–are inexpressible in
the language of pairwise constraints. Because the number of possible pairwise constraints is
large, collecting pairwise feedback introduces an additional challenge of designing specialized
strategies for selecting which pairs to label and in what order [Wang et al., 2012, 2013,
Firmani et al., 2016].

Although user feedback can be used to correct arbitrary KB errors, in this paper we focus
on leveraging user feedback for correcting mistakes in ER. We conduct two experiments (§6)
in the context of author disambiguation–an instance of ER commonly studied for building
KBs of researchers. In the first, we automatically generate user feedback that includes
the areas of expertise, represented as a set of keywords, for various authors (§6.4). In
the second experiment, we generate user feedback that identifies missing and incorrectly
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attributed publications with respect to a set of currently inferred KB entities (§6.5). We
propose three baseline approaches for integrating user feedback and two feedback simulation
schemes and measure the number of pieces of feedback required to recover the ground-truth
entities under each experimental setting. Our results show that our proposed approach
based on FMs outperform the baselines in 70% of experimental conditions. Our work
initiates the investigation of user feedback integration amidst identity uncertainty in KBs,
an under-explored and important problem whose solution would dramatically improve the
effectiveness of users in the process of KB construction and maintenance.

2. Entity Resolution for KB Construction

Our goal is to construct a framework for automatically reasoning about the integration of
user feedback and KBs under identity uncertainty. In this section, we define formal models
for mentions and entities, which serve as building blocks for the remainder of our discussion.

2.1 Mentions, Entities and Attributes

A KB is comprised of a set of mentions M = {x0, · · · , xn} which refer to a set of ground
truth entities E? = {e?0, · · · , e?k}. Each mention, xi, refers to exactly one ground-truth entity,

denoted e?(xi). The goal in ER is to construct a partition of the mentions, Ê = {ê0, · · · , êl}
as similar to E? as possible. Each ê ∈ Ê is known as an inferred entity.

Mentions are comprised of attributes, which serve as evidence of inferred entity attributes
and relations. Each mention, xi ∈ M, has a corresponding set of attributes, A(xi) =
{a0, · · · , am}, which is a subset of the entire set of attributes A, i.e., A(xi) ⊂ A. Any subset
of mentions, e, also has a corresponding set of attributes, A(e) ⊂ A, that is derived from
its underlying mentions in a process called canonicalization. We focus on a simple method
of canonicalization, which derives the attributes of a set of mentions, e, as the union of
attributes of the corresponding mentions. Our model of mentions, entities and attributes
is reminiscent of previously proposed Bayesian models used for ER [Steorts et al., 2016].

2.2 Hierarchical ER

Like many instances of previous work, we choose to model inferred entities hierarchi-
cally [Culotta et al., 2007, Singh et al., 2011, Wick et al., 2012b, Levin et al., 2012, Liu
et al., 2014, Zhang et al., 2018]. Hierarchical modeling allows for the usage of a learned
entity-level linkage function during inference, i.e., a function g : 2M × 2M → R, which
scores the compatibility of two sets of mentions (rather than pairs of mentions). Learned
linkage functions have been shown to improve entity resolution systems by helping to iden-
tify set-level inconsistencies and similarities with respect to attributes like: gender, animacy
and number (singular/plural) [Raghunathan et al., 2010, Durrett et al., 2013, Clark and
Manning, 2016]. Additionally, hierarchical models promote efficiency in inference and fa-
cilitate the representation of uncertainty by encoding multiple partitions of the underlying
mentions simultaneously [Zhang et al., 1996, Heller and Ghahramani, 2005, Fichtenberger
et al., 2013, Kobren et al., 2017].

We model the set of inferred entities using a binary tree T . Each leaf, l ∈ T , stores
a unique mention, e.g., l.x = xi, and each internal node, v ∈ T represents that set of
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mentions stored at its descendant leaves, lvs(v). Each node v ∈ T stores an attribute
map, m : A → R, that maps attributes to their corresponding weights. The attribute map
at each leaf, l.m, maps all attributes in l.x to 1 as its weight2. The attribute map of an
internal node, v.m, is constructed via canonicalization. For now, consider a canonicalization
procedure that constructs that attribute maps of internal nodes as follows:

v.m[a] =
∑

c∈ch(v)

c.m[a],

where ch(·) returns the children of its arguments, a is an attribute, and m[a] is the weight
of a in the map m. In words, the weight of an attribute in v.m is the sum of that attribute’s
weight in v’s children’s maps. A subset of mentions exhibits an attribute a if the weight of
a in the corresponding attribute map is greater than 0. Attributes that do not appear in
A(v) have weight 0 in v.m.

The compatibility of any two nodes in the tree can be scored via the linkage function,
g. Each node, v, stores its linkage score, v.σ, where the linkage score of a node is computed
by evaluating g on the attribute maps of its two children, ch(v). The linkage score of each
leaf is positive infinity. Once the linkage score of all nodes in a tree, T , are computed, the
set of inferred entities, Ê , can be extracted from T using a threshold, τ . In particular, the
inferred entities correspond to the tallest nodes in T whose descendants all possess linkage
scores greater than or equal to the threshold.

3. User Feedback

Despite significant research effort, ER models are inevitably imperfect and lead to partitions
in which mentions from different ground-truth entities are clustered together, or mentions
from the same ground-truth entity are split apart. As previously discussed, KB users are
well-situated to identify these errors so that the underlying partition of the mentions can be
adjusted. However, as with KB mentions, identity uncertainty may permeate user feedback,
which must be resolved. In this section, we present a formal model of user feedback that
enables joint resolution of identity uncertainty with respect to both mentions and feedback
simultaneously.

3.1 Feedback Mentions

Recall the example of identity uncertainty shown in Figure 1. The example shows how
there can be ambiguity about the entity to which a piece of feedback refers. In the figure’s
example, the homepage of Rajarshi Das is given in User Feedback #1. The entity about
which the feedback is given is later split, resulting in uncertainty regarding the identity to
which it refers.

At a high-level, we propose to represent user feedback as mentions. In this way, ER
may reason about user feedback and standard mentions jointly. More precisely, each piece
of user feedback is represented as a feedback mention (FM). Like standard mentions, each
FM, f , possesses an attribute map, called packaging, f.mpack : A → R that defines its

2. Mapping attributes to weights allows for modeling the strength of various attributes. For example,
attributes extracted from a data source that is known to be noisy may have lower weight.
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Figure 2: Example feedback mention (§3.1) added to the KB using the OG algorithm (§4).

compatibility with mentions and other FMs alike via the linkage function. In the context of
hierarchical ER (§2.2), this translates to each piece of user feedback being stored at a leaf
in the tree, just like standard mentions. ER is run over all mentions and feedback together,
which allows the feedback to impact ER. An example FM and its integration in ER, using
the OG algorithm (§4), is shown in Figure 2.

3.2 Negatively Weighted Attributes

One key difference between FMs and standard mentions is that an FM may be initialized
with attributes that map to negative weights. Negatively weighted attributes allow feed-
back to express incompatibility with other mentions and FMs. Thus, negatively weighted
attributes are used to encourage splits in the underlying partition of the mentions. For ex-
ample, in the scientific KB discussed above (Section 1), the user supplies feedback claiming
that Rajarshi Das from UMass Amherst did not author the paper Genetic Reinforcement
Learning with Multilayer Neural Networks from 1991. This feedback can be represented as a
mention with name (attribute) “Rajarshi Das” and institution “UMass Amherst” mapped
to positive weights and the paper attribute of 1991 paper mapped to a negative weight.
The addition of such feedback encourages a split of the inferred KB entity Rajarshi Das,
which is built from mentions of two, distinct, ground-truth entities as shown in Figure 1.

3.3 Correcting Errors from Noisy Mentions

Negatively weighted attributes also allow for the correction of spurious inferred entity at-
tributes that stem from noisy mentions (i.e., mentions with incorrectly extracted attributes).
Consider an instance of hierarchal ER in which there exist a node, v, with spurious attribute
a which stems from a noisy mention, and let v.fpack[a] = 1. Since the error stems from noise,
the underlying partition of the mentions may not require adjustment; v simply requires the
removal of attribute a. This can be accomplished with negatively weighted attributes and
canonicalization (§2.2). Specifically, consider an FM, f , with f.mpack[a] = −1. If f were
made a descendant of v, through canonicalization, the negative weight would be propagated
up the tree and v.mpack[a] = 0, effectively removing the spurious attribute.
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Figure 2: Example feedback mention (§3.1) added to the KB using the OG algorithm (§4).

compatibility with mentions and other FMs alike via the linkage function. In the context of
hierarchical ER (§2.2), this translates to each piece of user feedback being stored at a leaf
in the tree, just like standard mentions. ER is run over all mentions and feedback together,
which allows the feedback to impact ER. An example FM and its integration in ER, using
the OG algorithm (§4), is shown in Figure 2.

3.2 Negatively Weighted Attributes

One key difference between FMs and standard mentions is that an FM may be initialized
with attributes that map to negative weights. Negatively weighted attributes allow feed-
back to express incompatibility with other mentions and FMs. Thus, negatively weighted
attributes are used to encourage splits in the underlying partition of the mentions. For ex-
ample, in the scientific KB discussed above (Section 1), the user supplies feedback claiming
that Rajarshi Das from UMass Amherst did not author the paper Genetic Reinforcement
Learning with Multilayer Neural Networks from 1991. This feedback can be represented as a
mention with name (attribute) “Rajarshi Das” and institution “UMass Amherst” mapped
to positive weights and the paper attribute of 1991 paper mapped to a negative weight.
The addition of such feedback encourages a split of the inferred KB entity Rajarshi Das,
which is built from mentions of two, distinct, ground-truth entities as shown in Figure 1.

3.3 Correcting Errors from Noisy Mentions

Negatively weighted attributes also allow for the correction of spurious inferred entity at-
tributes that stem from noisy mentions (i.e., mentions with incorrectly extracted attributes).
Consider an instance of hierarchal ER in which there exist a node, v, with spurious attribute
a which stems from a noisy mention, and let v.fpack[a] = 1. Since the error stems from noise,
the underlying partition of the mentions may not require adjustment; v simply requires the
removal of attribute a. This can be accomplished with negatively weighted attributes and
canonicalization (§2.2). Specifically, consider an FM, f , with f.mpack[a] = −1. If f were
made a descendant of v, through canonicalization, the negative weight would be propagated
up the tree and v.mpack[a] = 0, effectively removing the spurious attribute.
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3.4 Feedback Mention Payloads

In some cases, like the one described above, a FM may be incompatible with its intended
target according to the linkage function (especially when attempting to correct a spurious
attribute). Therefore, each FM, f , is endowed with a second attribute map, called its
payload, f.mpay. The attributes in a FM’s payload are not used by the linkage function
to assess its compatibility with other nodes in T . However, payload attributes do affect
canonicalization. Specifically, for a parent p and children v and v′, the packaging at p is
computed by summing the weights in the packaging and payload maps of both v and v′.
This allows attributes in the payloads of v and v′ to remain “hidden” from one another until
the nodes are merged, at which point these attributes are propagated to their parent and
used in subsequent compatibility computations. Using the aforementioned canonicalization
notation, the attribute map for the parent node p is:

p.m[a] =
∑

c∈ch(v),
c is not a FM

c.m[a] +
∑

c∈ch(v),
c is a FM

(
c.mpack[a] + c.mpay[a]

)
Intuitively, the packaging can be thought of as a set of attributes used to guide initial

placement of a FM, while the payload contains missing and incompatible attributes that
may negatively affect the FM’s placement.

4. The Online Grafting Algorithm

Our proposed representation of feedback as mentions is compatible with any hierarchical
inference algorithm for ER. In real-world settings, new data and feedback are created and
integrated with the KB continuously over time. Thus, we focus on online KB construction,
where data points (i.e., mentions and user feedback) are integrated with the KB one at a
time.

In this section, we present the online grafting (OG) algorithm for online, hierarchical
ER. At all times, the algorithms maintains a tree-consistent partition corresponding to
the set of inferred KB entities. This partition is computed via a threshold, τ (which can
be learned at training time). The algorithm is comprised of two recursive subprocedures:
swap (swap l) and graft, which promote local and global optimality, respectively. The OG
algorithm proceeds as follows. When a new data point, x, arrives, it is added as a sibling of
its nearest neighbor leaf, v. Note that adding x as a sibling of v makes v’s previous sibling,
a, into the aunt of both x and v. Next, we invoke the swap l subroutine, recursively. During
a swap l, consider x, v and a and check whether

g(v, x) < g(v, a),

i.e., whether the v and it’s previous sibling, a, are more compatible than v and x. If so,
swap the positions of the two subtrees rooted at x and a (the result of which has a and v
as siblings and x as their aunt). Repeat this procedure until x’s sibling is more compatible
with x than with its previous sibling, or until x’s sibling is the root of an inferred entity.
See Algorithms 1 and 2 for pseudocode.

After swapping terminates, the graft subroutine is invoked recursively from the parent
of x, par(x) = p. A graft invoked from a node whose linkage score is below the threshold,



Kobren, Monath, McCallum

Algorithm 1 Insert(x, T , g)

v =nearestNeighbor(x, g, T )
split down(v, x)
a = aunt(v)
while swap l(T , g, x, v, a) & v.σ > τ) do
v = sibling(x)
a = aunt(v)

graft(T , g, par(x))

Algorithm 2 swap l(T , g, x, v, a)

if g(v, x) < g(v, a) then
Swap x and a in T
return true

else
return false

Algorithm 3 graft(T , g, p)
while p.σ > τ do
v′ = argmax`∈lvs(T )\lvs(p) g(p, `)
if g(p, v′) >max{g(p, sib(p)),g(v′, sib(v′)),τ}
then

Move v′ to be the sibling of p
p = par(p)

else
break

Figure 3: Online Grafting Algorithm.

τ , terminates immediately and no further grafts are attempted. If p.σ > τ , search the leaves
of T for, v′, the most compatible leaf with p that is not a descendant of p. Test whether,

g(p, v′) > max{g(p, sib(p)), g(v′, sib(v′)), τ}

i.e., p and v′ are more compatible with each other than with their respective siblings, and
their linkage score is higher than the threshold τ . If the test succeeds, make v′ the sibling
of p and re-invoke the graft subroutine from par(p). If the test fails, consider 3 cases:

1. if g(p, v′) ≤ τ then re-invoke the graft subroutine from par(p);

2. if g(p, sib(p)) > g(p, v′) then repeat the test between par(p) and v′;

3. if g(v′, sib(v′)) > g(p, v′), then repeat the test between p and par(v′).

Intuitively, the graft subroutine iteratively attempts mergers between ancestors of x and
nodes compatible with those ancestors in T . Notice that a merger between two nodes in
T can only occur if: 1) both nodes are more compatible with each other than with their
siblings and 2) their resultant parent has a linkage score higher than the threshold, i.e.,
the two nodes belong to the same inferred entity. The graft subroutine promotes global
optimality and helps to make ER more robust to data point arrival order. See Algorithm 3
for pseudocode and Figure 4 for an illustration of the algorithm’s tree operations.

5. Training

Recall that the linkage function, g, takes two nodes, v, v′ ∈ T and returns their compatibil-
ity. Define the precision of a node pair (v, v′) to be

pre(v, v′) =
|{(l, l′) : l ∈ lvs(v), l′ ∈ lvs(v′), e?(l) = e?(l′)}|

|lvs(v)| × |lvs(v′)|
.
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v = nearestNeighbor(x,g,T) swap_l(T,g,x,v,a) graft(T,g,p)

a

v x

split_down(v,x)

v
x

x

v a

x

v a

p

Operation:

Resulting  
Tree Structure

Order of 
operations 

Figure 4: Online Grafting (OG) Algorithm’s tree re-arrangement operations applied se-
quentially with the additional of a new mention, labeled x.

In words, the precision of a pair is the fraction of leaf-pairs, where one leaf is a descendent
of v and the other a descendent of v′, where both leaves belong to the same ground-truth
entity. Note that FMs have no ground-truth label and are not included in this calculation.
We train g to regress to the precision of its input node pair. Our training procedure is
inspired by work in entity and event coreference that trains a linkage function to regress to
precision of mergers in the context of bottom up agglomerative clustering [Lee et al., 2012].

We select nodes for training in the context of running the OG algorithm. When a
new mention, x, arrives, we generate training examples between it and all other leaves
(mimicking the nearest neighbor search). Next, we generate training examples between
x and ancestors of its nearest neighbor (according to model score) resembling the swap l

subroutine. Finally, we insert x into the tree and generate training examples between the
parent of x (from which the graft subroutine is initiated) and all nodes that can be viably
grafted. The same procedure is repeated for each incoming mention.

The linkage function, g, also needs to be trained to appropriately handle user feedback.
After a batch ofN training mentions have been added to a tree, we generate up toN pieces of
user feedback (generated via the Detailed scheme, discussed in Section 6). The generated
feedback is either positive and intended to encourage a graft, or negative and intended
to encourage a split of some inferred entity. The training feedback are also inserted into
the tree, one at a time, using the OG algorithm. For each piece of feedback, we generate
a training example between the feedback and its intended sibling in the tree (designated
at feedback generation time), and set the precision of the example to be 1.0. Next, a
merge between the feedback and its intended sibling is hallucinated and a training example
is generated between the resulting parent node and the feedback’s target. For positive
feedback, the target is the root of a subtree that belongs near the feedback’s sibling in the
tree, and for negative feedback, the target is a node with which the feedback and its sibling
are incompatible. These two types of examples help to train the model to use positive
feedback to encourage grafting and negative feedback to encourage splitting.

We tune the threshold, τ , on a development set. In particular, at regular intervals
throughout training, a hierarchical clustering of a set of development mentions is constructed
using the OG algorithm and the current linkage function model parameters. A search is
performed measuring the pairwise F1 score3 for the selection of entities determined by each

3. Precision/Recall/F1 are computed on the pairs of mentions that clustered together by the algorithm
compared to the ground truth. For more information, we refer the reader to Menestrina et al. [2010]
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value of τ . At test time, the parameters and threshold that resulted in the best partition
of the hierarchy on the dev set are used.

6. Experiments

We perform experiments testing various styles feedback representation in the context of
online author disambiguation—a particular instantiation of ER in which the ground-truth
entities are real-world authors. We use the Rexa author disambiguation dataset, which
includes 8 author canopies; each canopy contains ambiguous mentions of authors with the
same first initial and last name [Culotta et al., 2007]. The mentions are derived from
publications and contain: coauthors, titles, publishing venue, and year of publication. The
goal is to partition the mentions by real-world author.

6.1 Setup

Our experimental setup is composed of two phases. In the first phase, the set of mentions
arrive online and are incrementally added to a hierarchical clustering, T , using the OG
algorithm (§4). The second phase proceeds in rounds. At the start of round t, a set
of inferred entities, Êt, is constructed using a threshold, τ , tuned at training time on a
development set (§5). If Êt = E?, then the episode terminates. Otherwise, we simulate user
interaction by generating feedback, ft, made with respect to a randomly selected inferred
entity, ê ∈ Êt. Then, ft is added to T using the OG algorithm, potentially triggering a
repartitioning of the mentions. No more than 400 rounds are permitted. Although rare, if
after 400 rounds, the ground-truth entities have not been discovered, the method is recorded
as having taken 400 + d rounds, where d is the number of mentions that would need to be
swapped to discover E?. We measure the mean number of rounds required to discover E?
for each method, repeated over 25 trials, and report a paired-t statistic (and corresponding
significance level) between each baseline feedback representation style and our proposed FM
representation.

6.2 Simulating Feedback

We simulate positive and negative feedback using node purity and completeness. A node
v ∈ T is pure if:

∃i s.t. ∀l ∈ lvs(v), e?(l) = e?i ,

i.e., all of mentions stored at the leaves of v correspond to the same ground-truth entity,
e?i . A node v ∈ T is complete if:

∃i s.t. {l ∈ lvs(T ) : e?(l) = e?i } ⊆ lvs(v′),

i.e., that v’s leaves contain all mentions of some ground-truth entity e?i .

To generate both positive and negative feedback, we sample an intended destination and
an intended target. The destination is a particular node in the tree to which the feedback
is intended to be similar. The target of the feedback is a different node that the feedback
is intended to be merged with or separated from upon insertion. Note that even with full
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(b) Negative feedback generation.

Figure 5: Detailed and Concise feedback. To generate either positive or negative
feedback, begin by randomly sampling an inferred entity. Then, sample a destination–the
root of a pure subtree that is also a descendant of the sampled entity. The packaging of
the feedback contains the attributes at the destination. Finally, sample a target, which is
used to construct the feedback’s payload. The target is a sampled mention in the Concise
setting, or the largest, pure ancestor of a sampled mention in the Detailed setting.

knowledge of the destination and the target (and the ER algorithm), it is difficult to design
feedback that will cause the intended tree rearrangements exactly because other nodes in
T may interfere during nearest neighbor search by being very compatible with either the
feedback, target, or destination.

6.2.1 Detailed and Concise Positive Feedback

Positive feedback is constructed with the intention of merging two nodes in the tree via
a graft. To generate positive feedback, sample a node that is the root of a pure and
incomplete subtree and whose parent is impure, r; this node is the destination of the
feedback. Then, randomly select a mention, x, that is of the same ground-truth entity as
the leaves of r, but is not a descendant of r. If constructing concise feedback, x is the
target of the feedback; if constructing detailed feedback, traverse the ancestors of x until
s, the first ancestor of x whose parent is impure. The node s becomes the target of the
feedback. See Figure 5a for a visual illustration.

6.2.2 Detailed and Concise Negative Feedback

Negative feedback is constructed with the intention of splitting an inferred entity. We
simulate negative feedback by randomly sampling an impure inferred entity (i.e., subtree)
and finding its root, r′. We construct the destination of the feedback by randomly sampling
a mention x′ ∈ lvs(r′) and finding s′, the ancestor of x′ closest to the root of T that is pure.
If constructing concise feedback, sample a mention x′′ ∈ lvs(r′) \lvs(s′) to be the target;
if constructing detailed feedback, traverse the ancestors of x′′ until s′′, the ancestor of x′′

closest to the root of T that is pure. In both cases, s′′ becomes the target of the feedback.
See Figure 5b for a visual illustration.
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6.3 Baseline Methods

Integrating user feedback under identity uncertainty has not been the subject of significant
study. Therefore, we propose and compare the following baseline feedback representations:

1. Feedback Mentions (FM) - the approach advocated in this work. Feedback is
constructed with packaging and payload attribute maps and is integrated with existing
mentions via the OG algorithm.

2. Packaging Mentions (pack) - similar to our approach, but the feedback mentions
have no payloads. All attributes that would have been included in a payload are
instead added to the corresponding packaging.

3. Hard Assignment (assign) - generate feedback with both packaging and payload.
But then, find the node v ∈ T to which it would have been made a sibling by the OG
algorithm and permanently assign the feedback to v. If v is an internal node and any of
its leaves are ever moved (e.g., by a graft) such that they are no longer descendents of
v, remove and delete all feedback assigned to v, since, because of identity uncertainty,
it is unclear whether the feedback was intended to apply to the moved mentions.

4. Hard Mention Assignment (assign-m) - similar to the assign approach but the
feedback must be assigned to a leaf in T . Since mentions are atomic (rather than
ephemeral, like inferred entities), the assigned feedback is never deleted.

6.4 User Feedback about Author Expertise

Our first experiment resembles a scenario in which users interact with a KB of scientists
and provide feedback with respect to the KB’s belief about a scientist’s expertise. The
expertise of an inferred entity is represented as a bag of key phrases drawn from the titles of
its underlying mentions. Users supply missing keywords and identify incorrect keywords. In
this experiment, packaging contains the set of attributes at the sampled destination and the
payload contains the keywords at the target (generated from mention titles). Importantly,
expertise key phrases are a shared attribute, that is, multiple ground-truth entities exhibit
some of the same expertise. Example Rexa data and simulated user feedback is shown in 6

6.5 Authorship Feedback

Our second experiment resembles the scenario in which a user browses a KB of scientist
profiles, similar to Google Scholar4, and identifies incorrectly assigned and missing pub-
lications. Similar to the first experiment, the packaging contains attributes mapping to
positive weights in the sampled destination. However, here, payloads contain titles stored
in the sampled targets. Note that publication authorship is not a shared attribute, i.e., no
two ground-truth entities in the same canopy have collaborated on any publication.

6.6 Results and Discussion

Tables 1a and 1b contain the results of the expertise and title experiments, respectively.
Each table reports the paired t-statistic between each baseline method and our proposed

4. https://scholar.google.com/
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mention#10715018.txt
gt: “DaleAllen"

Title: North American Spring 
Tropospheric Ozone Maximum 
Using a Stretched-Grid 
Chemistry and Transport Model 
(SG-CTM) 

Name: D. Allen 

Year: null

Venue: null

Coauthors: null

mention#10715018.txt
gt: “DAllen-andrew-corp"

Title: A Low Cost Fiber Optic 
Gyro for Land Navigation

Name: D. Allen 

Year: 1994

Venue: Presented at the SPIE 
Annual Meeting

Coauthors: null

Author Expertise Feedback (Negative) 

The D. Allen who works on SG-CTM  
does not work on Fiber Optics. 

Sampled Entity

Target

Example Packaging: {SG-CTM: 1} 
Example Payload: {Fiber Optics: -1}

Inferred Entity Destination

mention#10715018.txt
gt: “DAllen-andrew-corp"

Title: Fiber Optic Rate Gyros as 
Replacements for Mechanical 
Gyros

Name: D. Allen 

Coauthors: R. Dyott, R. Miller, 
R. Kidwell, J. Brunner.

Year: 1998

Venue: American Inst. of 
Aeronautics Astronautics

Figure 6: Example Mentions from the Rexa dataset as three leaves in a tree created by OG.
Example feedback is shown for a concise target. The packaging and payload for authorship
FM would contain the two titles mentioned with positive and negative weights respectively.

approach (FM), under detailed and concise feedback generation schemes, with respect
to the number of pieces of feedback required to discover the ground-truth partition of the
mentions. Each row represents a canopy in which the experiment is performed, and each
column corresponds to a baseline method and feedback generation setting. Each cell con-
tains the difference between the mean number of rounds required by the FM approach and
a baseline approach to discover the ground-truth partition (higher is better). Positive num-
bers are bolded; asterisks (*) indicate statistical significance (p < 0.05) and two asterisks
(**) indicate statistical significance (p < 0.01). Rows are omitted if the initial partition of
the mentions, constructed by the OG algorithm and subject to no user feedback, is correct.

The paired-t statistics compare our proposed feedback representation (FM) to the three
baseline feedback representations. We find that FM outperforms pack in both the de-
tailed and concise settings of Experiment I on all but two of the canopies. In 7 out of 14
canopies, the results are statistically significant. These results underscore the importance
of using only certain attributes (stored in the packaging) during the initial nearest neighbor
search. We hypothesize that storing shared attributes in the payload is especially impor-
tant because otherwise they can interfere with initial routing. When feedback is made with
respect to attributes that are not shared, as in Experiment II, separating packaging and
payload is less important. This is evidenced by the pack approach slightly outperforming
FMs in the detailed setting, but never significantly. FMs generally outperform pack in
the concise setting. We hypothesize that this is a result of better initial placement of the
feedback in the tree by the OG algorithm.

In comparing, FM and assign we find that our proposed approach typically performs
better in Experiment II while the baseline performs better in Experiment I. We note that
the feedback in Experiment I is more ambiguous than Experiment II (because expertise is
a shared attribute). We hypothesize that assign’s better performance in Experiment I is
due to the baseline’s approach of deleting feedback to mitigate errors caused by identity
uncertainty with respect to user feedback. We note that this agrees with the observation
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Detailed Concise
Canopy vs. assign vs. assign-m vs. pack vs. assign vs. assign-m vs. pack

allen d −2.07∗ 4.03∗∗ 3.41∗∗ 1.88 2.20∗ 0.75
blum a −1.18 1.59 1.27 −0.85 0.20 0.61
jones s 1.37 7.74∗∗ 6.67∗∗ 1.11 0.65 4.04∗∗

lee l −1.53 1.02 4.04∗∗ −0.22 −0.28 0.95
moore a 0.90 3.25∗∗ 3.66∗∗ −0.30 −0.71 −0.49

robinson h −0.99 −3.60∗∗ −0.81 −0.76 −0.61 0.27
young s −0.71 1.09 4.87∗∗ 0.76 0.45 2.17∗

(a) Experiment I: keyword feedback.

Detailed Concise
Canopy vs. assign vs. assign-m vs. pack vs. assign vs. assign-m vs. pack

allen d 4.82∗∗ 2.67∗ −1.96 5.86∗∗ 2.01 1.98
blum a 0.11 −0.66 −0.98 0.98 1.03 5.70∗∗

jones s 1.49 1.99 0.85 1.00 1.02 3.03∗∗

lee l 0.64 1.06 −1.03 −1.44 0.47 −0.58
moore a 1.30 1.97 −0.90 1.94 1.09 1.05
young s −1.87 0.76 −1.88 0.93 0.91 0.97

(b) Experiment II: title feedback.

Table 1: Paired-t statistic. Each cell represents that difference in mean number of
feedback-rounds required to discover the ground-truth entities over 25 runs between a base-
line, denoted by the column heading, and our proposed approach (FM). Positive numbers
indicate that FM requires fewer rounds of feedback than its competitor (larger numbers are
better). Two asterisks (**) indicates that the statistic is significant at a 0.01 significance
level; one asterisk indicates statistical significance at the 0.05 level. The mcguire j canopy
is excluded from Tables 1a and 1b and the robinson h canopy is excluded from Table 1b
since in these canopies, either: 0 or 1 edits are required to discover the ground-truth entities
across baselines.

that FM generally outperforms assign-m in both experiments, in that assign-m is similar
to the assign strategy but never deletes feedback.

7. Related Work

Effective utilization of user feedback has been the subject of significant study in the context
of KB construction. Early work, like NELL, primarily enlists humans for labeling data,
which are used to train downstream models [Carlson et al., 2010]. Other work has used active
learning in training relation extraction models [Angeli et al., 2014b]. Another approach
employed by the DeepDive system asks humans to identify relevant features by writing
feature extraction rules in support of KB construction [Ré et al., 2014, Angeli et al., 2014a].

The study of leveraging user feedback in ER has primarily focused on the solicitation of
pairwise feedback. For example, given a set of mention pairs, the CrowdER system automat-
ically prunes the set of pairs that are highly unlikely to be coreferent, and then constructs
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crowdsourcing HITs to collect binary labels for the remaining pairs [Wang et al., 2012].
In other similar work, human are asked to identify matching mentions across databases in
data integration [Li, 2017]. Recent work studies online ER with an oracle, in which the
goal is to design efficient strategies for soliciting humans for pairwise constraints among
mentions [Vesdapunt et al., 2014, Mazumdar and Saha, 2016, 2017].

Recent work in author coreference also involves humans-in-the-loop [Zhang et al., 2018].
This work discusses both pairwise constraints as well as identity constraints. Unlike our
work, their identity-level feedback is treated as a collection of pairwise constraints. As we
point out, feedback that can be reduced to a set of pairwise constraints is insufficient for
general KB feedback as pairwise feedback is only designed for correcting errors in ER (and
not general KB errors). Similarly, many examples of user feedback are inexpressible using
pairwise constraints.

The OG algorithm is closely related to the recently proposed clustering algorithm,
GRINCH [Monath et al., 2019], which also uses a graft procedure in an incrementally
built hierarchical clustering. Unlike GRINCH, OG uses a threshold τ to determine when
tree re-arrangements are made and to maintain the current set of inferred entities.

The most closely related work to ours is a preliminary study of incorporating user
feedback in the context of data integration [Wick et al., 2013, 2012a]. In this work, users
supply pairs of mention-like records that posses either should-link or should-not-link factors,
which either softly repel the pair or encourages their merger.

8. Conclusion

This work presents a framework for reasoning about user feedback under identity uncertainty
during KB construction. We advocate representing user feedback as feedback mentions
that participate in ER alongside standard mentions. Our feedback mentions are endowed
with a packaging–used to identify similar mentions during ER–and a payload–that is used
to add missing attributes to inferred entities, correct mistakes and influence future ER
decision. We give a hierarchical model of inferred entities and present the OG algorithm
for performing online ER amongst standard and feedback mentions. In experiments, we
show that our approach often outperforms baseline approaches in terms of efficiency with
respect to recovering the ground-truth partition in ER. Our work is a foundational step in
addressing a significant and under-explored problem in automatic KB construction whose
solution could improve the accuracy and efficacy of integrating expressive user feedback
with KB content.
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Figure 4: Online Grafting (OG) Algorithm’s tree re-arrangement operations applied se-
quentially with the additional of a new mention, labeled x.

In words, the precision of a pair is the fraction of leaf-pairs, where one leaf is a descendent
of v and the other a descendent of v′, where both leaves belong to the same ground-truth
entity. Note that FMs have no ground-truth label and are not included in this calculation.
We train g to regress to the precision of its input node pair. Our training procedure is
inspired by work in entity and event coreference that trains a linkage function to regress to
precision of mergers in the context of bottom up agglomerative clustering [Lee et al., 2012].

We select nodes for training in the context of running the OG algorithm. When a
new mention, x, arrives, we generate training examples between it and all other leaves
(mimicking the nearest neighbor search). Next, we generate training examples between
x and ancestors of its nearest neighbor (according to model score) resembling the swap l

subroutine. Finally, we insert x into the tree and generate training examples between the
parent of x (from which the graft subroutine is initiated) and all nodes that can be viably
grafted. The same procedure is repeated for each incoming mention.

The linkage function, g, also needs to be trained to appropriately handle user feedback.
After a batch ofN training mentions have been added to a tree, we generate up toN pieces of
user feedback (generated via the Detailed scheme, discussed in Section 6). The generated
feedback is either positive and intended to encourage a graft, or negative and intended
to encourage a split of some inferred entity. The training feedback are also inserted into
the tree, one at a time, using the OG algorithm. For each piece of feedback, we generate
a training example between the feedback and its intended sibling in the tree (designated
at feedback generation time), and set the precision of the example to be 1.0. Next, a
merge between the feedback and its intended sibling is hallucinated and a training example
is generated between the resulting parent node and the feedback’s target. For positive
feedback, the target is the root of a subtree that belongs near the feedback’s sibling in the
tree, and for negative feedback, the target is a node with which the feedback and its sibling
are incompatible. These two types of examples help to train the model to use positive
feedback to encourage grafting and negative feedback to encourage splitting.

We tune the threshold, τ , on a development set. In particular, at regular intervals
throughout training, a hierarchical clustering of a set of development mentions is constructed
using the OG algorithm and the current linkage function model parameters. A search is
performed measuring the pairwise F1 score3 for the selection of entities determined by each

3. Precision/Recall/F1 are computed on the pairs of mentions that clustered together by the algorithm
compared to the ground truth. For more information, we refer the reader to Menestrina et al. [2010]
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