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Abstract
In supervised clustering, standard techniques for
learning a pairwise dissimilarity function often
suffer from a discrepancy between the training
and clustering objectives, leading to poor cluster
quality. Rectifying this discrepancy necessitates
matching the procedure for training the dissimi-
larity function to the clustering algorithm. In this
paper, we introduce a method for training the dis-
similarity function in a way that is tightly cou-
pled with hierarchical clustering, in particular sin-
gle linkage. However, the appropriate clustering
algorithm for a given dataset is often unknown.
Thus we introduce an approach to supervised hi-
erarchical clustering that smoothly interpolates
between single, average, and complete linkage,
and we give a training procedure that simulta-
neously learns a linkage function and a dissimi-
larity function. We accomplish this with a novel
Exponential Linkage function that has a learnable
parameter that controls the interpolation. In exper-
iments on four datasets, our joint training proce-
dure consistently matches or outperforms the next
best training procedure/linkage function pair and
gives up to 8 points improvement in dendrogram
purity over discrepant pairs.

1. Introduction
Clustering algorithms are pervasive in data analysis, pre-
processing, modeling and visualization (Brown et al., 1992;
Alon et al., 1999; Seo & Shneiderman, 2002). While of-
ten an unsuperivsed problem, in many cases, there exists
a small collection of data points that are labeled with their
ground-truth cluster assignments. This enables supervised
clustering, where a dissimilarity function is learned from the
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labeled data and then used by a clustering algorithm to parti-
tion unlabeled data (Finley & Joachims, 2005). Supervised
clustering is a common approach in many practical appli-
cation areas, such as record linkage (Bilenko & Mooney,
2002; Bilenko et al., 2006), coreference resolution (Ng &
Cardie, 2002b; Huang et al., 2006; Stoyanov et al., 2009)
and image segmentation (Liu et al., 2013).

In both supervised and unsupervised settings, the choice
of clustering algorithm bears a significant impact on the
quality of the resulting partition of the data. This is because
each clustering algorithm is designed with specific induc-
tive biases, for example: k-means performs best when the
data points in each cluster are close to that cluster’s mean,
DBSCAN (Ester et al., 1996) detects clusters composed of
contiguous, high-density regions, and hierarchical agglom-
erative clustering with average linkage discovers clusters
for which all within-cluster data points pairs are similar
on average. In addition to choosing a clustering algorithm,
supervised clustering demands that practitioners choose a
training procedure for learning the dissimilarity function
that will be used by the algorithm. Often in practice, the
training and clustering objectives are mismatched, leading
to poor cluster quality.

This is especially relevant for the family of hierarchical ag-
glomerative clustering (HAC) variants, which are widely
deployed (Culotta et al., 2007; Lee et al., 2012; Levin et al.,
2012; Kenyon-Dean et al., 2018) and are the subject of
significant theoretical study (Dasgupta, 2016; Moseley &
Wang, 2017). Variants in the HAC family iteratively merge
clusters greedily according to the dissimilarity between pairs
of clusters which is measured using a linkage function. HAC
variants are differentiated based on the linkage function.
Common linkages, such as single, average, and complete
linkage use pairwise data point dissimilarities to compute
dissimilarities between pairs of clusters. In the supervised
setting, learning is typically performed by training the pair-
wise dissimilarity function to predict dissimilarity for all
within- and across-cluster data points pairs, regardless of
the selected linkage function (Bilenko & Mooney, 2002;
Huang et al., 2006; Stoyanov et al., 2009; Guha et al., 2015).

However, naively training the dissimilarity function to pre-
dict whether all data point pairs belong to the same cluster
does not lead to robust generalization on unseen data. Espe-
cially when clustering is performed with the single linkage
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(SL) variant, which defines the dissimilarity between two
clusters to be their minimum inter-cluster pairwise dissim-
ilarity, the all-pairs training objective and SL constitute a
significant mismatch. We demonstrate this phenomenon em-
pirically and present an algorithm—specifically tailored to
HAC with SL—for learning dissimilarity functions that
empirically exhibit improved generalization.

Even if equipped with a training algorithm for each HAC
variant, it is often difficult to determine which variant is
most appropriate for a dataset at hand. Ideally, the choice
of the variant would be left to a learning algorithm, which
optimizes over a parameterized family of HAC variants that
includes single, average and complete linkage.

In this paper, we establish such a family by expressing each
of these three linkages as a weighted sum of across-cluster
dissimilarities. The weight of an across-cluster dissimilarity
is formed by scaling that dissimilarity by a real-value hyper-
parameter, exponentiating the result and normalizing, i.e.,
computing the softmax with respect to the all other pairwise
dissimilarities involved in the merge. We call this family of
HAC linkages the Exponential linkage (EXPLINK) family.

We present a training algorithm that jointly selects a linkage
from the EXPLINK family and learns a pairwise dissimilar-
ity function that is suited to that linkage. The algorithm uses
HAC in its inner loop, selecting specific training examples
that promote pure mergers and simultaneously optimizes
over the EXPLINK family via gradient descent. Crucially,
the algorithm obviates the practitioners’ need to choose an
appropriate linkage and a matching training procedure.

We experiment with a cross-product of HAC variants and a
variety of training procedures on four datasets. First, we find
that our specially designed training algorithm for HAC with
SL leads to improved clustering results over all-pairs train-
ing on all datasets. Furthermore, we find that matching the
training algorithm and HAC variant leads to improved per-
formance over linkage-agnostic training procedures, such
as all-pairs, by up to 8 points of dendrogram purity. Fi-
nally, the results reveal that our joint training procedure
outperforms or matches the performance of the next best
training-procedure/linkage function combination on four
datasets. We highlight this result as being useful, especially
in practice, because it renders selection of the linkage func-
tion before training unnecessary.

2. Supervised Clustering
Clustering is the problem of partitioning a dataset into dis-
joint subsets. Let X = {xi}mi=1,X ⊂ X , be a dataset of m
points. A clustering of X is a collection of disjoint subsets
(i.e., clusters) of X, C = {Ci}K

′

i=1, such that
⋃K′

i=1 Ci = X.
The clustering of X is computed by a clustering algo-
rithm, A. Often the algorithm makes use of a function,
fθ : X × X → R, which computes the dissimilarity of

data point pairs in X . We assume that there exists a ground-
truth clustering, C? = {C?i }Ki=1 of X.

In supervised clustering, the input dataset has associated
labels, which are used to produce an algorithm to accurately
cluster unseen data.

Definition 1. (Supervised Clustering) Let S =
{(X1,Y1) . . . (Xn,Yn)} ⊂ 2X × Y be a training
set, where each Xi = {xj}mij=1 ⊂ X is a collection of mi

points and Yi ∈ Y encodes the ground-truth partition of
Xi. The goal is to learn an algorithm A : 2X → Y that
accurately clusters a new dataset X, where ∀ 1 ≤ i ≤ n,
X ∩Xi = ∅ (Finley & Joachims, 2005).

In practice and in previous work, rather than learning A
directly, a dissimilarity function fθ is learned instead and
used to constructA (Finley & Joachims, 2005; Culotta et al.,
2007; Lee et al., 2012; Levin et al., 2012; Kim et al., 2016;
Kenyon-Dean et al., 2018).

This work focuses on supervised hierarchical clustering, be-
cause of its wide usage in practice. A hierarchical clustering
algorithm is one that returns a tree structure for which each
leaf corresponds to a unique data point and each internal
node corresponds to the cluster of its descendant leaves.
Apart from facilitating data exploration and analysis (Seo &
Shneiderman, 2002), the primary advantage of hierarchical
clustering over flat clustering is that the tree simultaneously
represents multiple alternative flat clusterings of a dataset,
known as tree consistent partitions (Heller & Ghahramani,
2005). This alleviates the requirement of specifying the
number of clusters a priori. In supervised hierarchical clus-
tering, data labels correspond to a flat clustering, as in the
non-hierarchical setting, and provide signal to discover trees
that encode high quality tree consistent partitions.

2.1. Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC) is an iterative
algorithm that builds a tree, T , over a dataset one node at
a time, according to a linkage function. A linkage function
l : 2X × 2X → R scores the merger of two nodes, where
each node corresponds to a cluster containing data points
stored at its descendant leaves. The algorithm is initialized
by creating one node for each data point. The algorithm
proceeds in a series of rounds. In each round of HAC, the
two nodes that minimize the linkage function are merged,
by making them siblings of one another and creating a new
node to serve as their parent. The algorithm terminates after
the final merge, which creates the root of the tree. HAC has
enjoyed significant study in the theoretical community and
usage by practitioners (Eisen et al., 1998; Diez et al., 2015;
Yim & Ramdeen, 2015; Gan et al., 2015; Xu et al., 2016;
Moseley & Wang, 2017; Ieva et al., 2018; Tie et al., 2018).
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3. Illustrative Example
The clustering constructed via HAC depends on the choice
of both the linkage function and the pairwise dissimilarity
function that powers the linkage function. Given the op-
portunity to learn the dissimilarity function, the training
objective optimized during learning should, in some sense,
“match” the chosen linkage. In this section, we empirically
show that mismatch between training and clustering objec-
tive can result in poor clustering performance. Our example
centers on HAC with single linkage (SL).

3.1. Single Linkage

SL computes the dissimilarity between two nodes in T as
the minimum dissimilarity among their corresponding data
points. Let v, v′ ∈ T be nodes in the tree and let C,C ′

be the sets of data points corresponding to the descendant
leaves of v and v′, respectively. SL is computed as follows:
lSL(v, v′; θ) = min(xi,xj)∈C×C′ fθ(xi, xj). SL is closely
related to X’s minimum spanning tree (MST). Consider a
clique-structured graph with the data points as nodes and
the weight of each edge equal to the dissimilarity of its
endpoints, the edges in the MST of X correspond to the
sequence of mergers performed during an invocation of SL
(ignoring ties) (Gower & Ross, 1969). SL clustering does
not require that all pairs of points within a cluster be similar;
rather, for each pair of points in a cluster there must exist a
low dissimilarity path. This characteristic of SL facilitates
discovery of clusters with arbitrary structure, but also causes
its sensitivity to outliers.

3.2. All-pairs Training

A commonly used objective for training dissimilarity func-
tions for supervised (hierarchical) clustering is classifi-
cation loss on all within- and across-cluster data point
pairs (Bilenko & Mooney, 2002; Huang et al., 2006; Stoy-
anov et al., 2009; Guha et al., 2015), which we will call
all-pairs (AP). Let X = {xi}mi=1 be a set of points with
ground-truth clusters, C? = {C?i }Ki=1. Let xi,j = (xi, xj)
be a pair of points and letWC? ,AC? be set of within- and
across-cluster pairs of points w.r.t C?, respectively . Define
all pairs (AP) loss as

JAP(θ; C?) =
∑

xi,j∈WC?
fθ(xi,j) −

∑
xk,l∈AC?

fθ(xk,l) (1)

However, this objective has a mismatch with SL. Under this
training objective, misclassifying within- and across-cluster
pairs is equally penalized. Yet, misclassified across-cluster
pairs are precisely the outliers that lead to the demise of
SL. Moreover, when clustering with SL, it is possible to
recover the ground-truth partition of a dataset even if the
dissimilarity function outputs high dissimilarity for some
within-cluster pairs.

We present an example showing that AP training leads to an
ineffective dissimilarity function for SL clustering. Fig. 1a
shows a dataset in R2 with two ground-truth clusters, differ-
entiated by color. We use AP to train a linear dissimilarity
function fθ(x, x′) = θT1:2|x − x′| + θ0, and then use fθ to
cluster via HAC with SL.

Figure 1b contains the result, which shows that the learned
function leads to an imperfect clustering. We plot the learned
decision boundary, the decision boundary after tuning the
bias to minimize clustering errors, the optimal decision
boundary, and the vectors |x− x′|,∀x, x′ ∈ X (Figure 1c).
The figure shows that the decision boundary learned by AP
is significantly different from the optimal decision boundary.
Visual inspection anecdotally confirms that AP training
gives rise to a decision boundary that minimizes overall
classification error while the optimal decision boundary does
not tolerate any misclassifications of across-cluster pairs,
while allowing many within-cluster pairs to be misclassified.
Note that it may be possible to use AP with a more complex
model to avoid some clustering errors, but employing such
a model is more prone to overfit the training set, which is a
primary concern in the supervised clustering regime.

3.3. An MST-based Training Algorithm

In training a dissimilarity function for SL, the goal should
be to minimize misclassifications of across-cluster pairs
while retaining the ability to recognize a sufficient num-
ber of within-cluster pairs. With these considerations in
mind, we propose an MST-based loss function for learning
a dissimilarity function that is well-matched with SL. At a
high-level, minimizing the loss amounts to learning a low
cost MST for each ground-truth cluster while maximizing
dissimilarity of across-cluster edges. Note that, like SL, the
loss only requires that a handful of within-cluster data point
pairs be similar.

Let X = {xi}mi=1,X ⊂ X , be a dataset with ground-truth
clustering, C? = {C?i }Ki=1. Let fθ : X × X → R be a
function, parameterized by θ, that computes the dissimilarity
of a pair of points in X . Let MSTθ(C) return pairs of points
that correspond to the endpoints of the edges in the MST
of ground-truth cluster C, with respect to the dissimilarity
function fθ. Then, define the following loss:

JSL(θ; C?)=
∑
C∈C?

( ∑
xi,j∈MSTθ(C)

fθ(xi,j)−
∑
xk∈C

min
xl 6∈C

fθ(xk,l)

)
(2)

This loss can be minimized iteratively. During iteration t,
construct an MST for each ground-truth cluster with re-
spect to fθ(t) and take gradient steps to minimize the cor-
responding dissimilarities. For each ground-truth cluster
C ∈ C?,∀x ∈ C, find the point x′ ∈ X \ C that is least
dissimilar to x, and take a gradient step to increase the corre-
sponding dissimilarity. Pseudocode appears in Algorithm 1.
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(a) Two clusters in R2 (b) Imperfect clustering (c) Decison Boundaries

Figure 1. SL discrepancy with AP. Figure 1a and 1b depict a dataset and the clustering achieved by training the dissimilarity function
with AP followed by clustering with SL and extraction of flat clustering that minimizes errors. Figure 1c shows the absolute difference of
within-(green) and across-cluster(red) data points pairs along with decision boundary learned by AP, the decision boundary after tuning
bias to minimize clustering errors, and the optimal decision boundary. The learned boundary minimizes classification error of within- and
across-cluster pairs, while the optimal boundary does not misclassify any across-cluster pairs but misclassifies many within-cluster pairs.

Algorithm 1 train SL(X, C?, T, γ)

Init: θ
for t = 1, . . . , T do
J ← 0
for C ∈ C? do

for (xi, xj) ∈ MSTθ(C) do
J ← J + fθ(xi, xj)

for x ∈ C do
J ← J −minx′∈X\C fθ(x, x

′)

θ ← θ − γ ∂J∂θ
A variant of the loss function in Equation 2 can be obtained
by using a threshold τ ∈ R, and margin µ ∈ R. In this case,
loss is only incurred when pairs of within-cluster data points
in the MST have dissimilarity greater than τ − µ or when
across-cluster pairs have dissimilarity less than τ + µ.

As anecdotal evidence of this training paradigm, we note
that the optimal decision boundary depicted in Figure 1c
was, in fact, learned using this training procedure.

4. Exponential Linkage Clustering
While we provided a specialized training procedure for SL
that leads to better generalization, in general, the most suit-
able linkage function for a dataset is, a priori, unknown.

In this section, we introduce EXPONENTIAL linkage
(EXPLINK), a parametric family of linkage functions for
HAC that smoothly interpolates between single, average
and complete linkage–three widely used linkage functions.
We begin by formally defining EXPLINK (§4.1). We present
an example illustrating the advantage of a linkage from
EXPLINK over standard linkages (§4.2). Then, we present
a training procedure for jointly learning the interpolation
parameter of EXPLINK and the dissimilarity function (§4.3).

4.1. Exponential Linkage Function

Let Cu, Cv ⊂ X , and let Cu,v = (Cu, Cv). We define
EXPONENTIAL linkage (EXPLINK) as:

Ψα(Cu,v) =

∑
xi,j∈Cu×Cv

eαf(xi,j)f(xi,j)∑
xi,j∈Cu×Cv

eαf(xi,j)
(3)

where α ∈ R is a hyperparameter that interpolates between
members of the EXPLINK family.

EXPLINK computes the dissimilarity between two clusters
via a weighted average of all inter-cluster pairwise dissim-
ilarities. Note that as α → −∞, Ψα approaches the mini-
mum pairwise dissimilarity among its arguments, i.e., SL.
Similarly, when α→∞, Ψα approaches complete linkage
and when α = 0, Ψα is average linkage.

Different members of the EXPLINK family encode different
inductive biases with respect to which pairwise dissimi-
larities are most important when calculating dissimilarity
between two groups of data points.

4.2. Illustrative Synthetic Example

In this section, we demonstrate the flexibility of EXPLINK
family. Figure 2 shows a synthetic dataset in R2 containing
three ground-truth clusters. HAC is run with single, aver-
age, complete linkage, and EXPLINK with α=−1 with the
dissimilarity function set to Euclidean distance. Flat clusters
are obtained by cutting the resultant trees to obtain three
clusters. The dataset is interesting because it contains both
spherical clusters with noisy boundaries and non-spherical
cluster composed of a contiguous, high-density region. Each
of the standard linkage functions fail to recover ground-
truth clusters for different reasons. SL fails because of the
chaining effect (Janowitz, 1978) on noisy cluster boundaries.
Average and complete linkages fail because they tend to dis-
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(a) Ground-Truth Clusters (b) Single Linkage (c) Average Linkage (d) Complete Linkage (e) EXPLINKwith α = −1

Figure 2. Fig. 2a shows three clusters differentiated by color. Fig. 2b, 2c, 2d, 2e shows three flat clusters obtained with HAC using single,
average, complete linkage, and EXPLINK with α = −1 respectively. All of the standard linkages fail to recover the ground-truth clusters
while EXPLINK with α = −1, which corresponds to a linkage function that assigns higher weight to lower dissimilarity edges, is able to
recover the desired clustering.

cover spherical clusters. However, EXPLINK with α=−1,
which assigns higher weight to less dissimilar data point
pairs, recovers the ground-truth clusters. This anecdotal
evidence suggests that various members of the EXPLINK
family are capable of recovering clusters of complex shapes.

4.3. Training EXPLINK

As above, let X = {xi}mi=1 be a set of data points with
ground-truth clusters C? = {C?i }Ki=1. Let {T (i)

k }
li
k=0 be the

set of trees constructed before round i of HAC. Denote the
cluster comprised of the leaves of tree T (i)

k by C(i)
k , and let

C(i) = {C(i)
k }

li
k=0. Finally, let P(i) be the set of cluster pairs

before round i, P(i)
+ be the set of pair of clusters in P(i)

which are subsets of the same ground-truth cluster, and P(i)
−

be the set of pair of clusters in P(i) which are subsets of
different ground-truth clusters. Then, define the EXPLINK
loss function as follows:

J(θ, α) =

n′∑
i=1

∑
Cu,v∈P(i)

−

max
{

0,Ψα(Cu′,v′)−Ψα(Cu,v)
}

(4)

where, Cu′,v′ = argmin
Cu,v∈P(i)

+
Ψα(Cu,v) and n′ is

the round of HAC after which no pure merger exists (i.e.,
∀n > n′, P(n)

+ = ∅). In words, a loss is incurred when two
clusters which are subset of different ground-truth clusters
would be merged when a pure merger i.e. a pair of clus-
ters which both belong to the same ground-truth cluster
also exists. The training procedure starts with initializing
EXPLINK with a particular linkage by randomly picking
a value of α. In round i of HAC, find Cu′,v′ ∈ P(i)

+ , the
closest pair of clusters with respect to Ψα such that Cu′ and
Cv′ are subsets of the same ground-truth cluster. Then, if a
pair of clusters Cu,v ∈ P(i)

− , whose data points belong to
different ground-truth clusters, has smaller linkage cost than
Cu′,v′ , then compute gradients to increase the linkage cost
of Cu,v and to decrease the linkage cost of Cu′,v′ . Then,
merge Cu′ and Cv′ and repeat this procedure in round i+ 1
if P(i+1) 6= ∅. Note that Cu′,v′ need not be the least dis-
similar pair of clusters to merge as per Ψα as long as both
Cu′ and Cv′ belong to the same ground-truth cluster and

Algorithm 2 train ExpLink(X, C?, T, γ1, γ2)

Init: θ, α
for t = 1, . . . , T do
J ← 0
T (0)
j ← {xj} ∀ xj ∈ X

for round i = 1, . . . , n′ do
{T (i)
k }

li
k ← HAC-Round({T (i−1)

k }li−1

k )

{C(i)}lik ← {lvs(T (i)
k )}lik

C(i) ← {C(i)}lik
P(i) ← {Cu,v ∈ C(i) × C(i) : Cu 6= Cv}
P(i)
+ ← {Cu,v ∈ P(i) : ∃C?j s.t. Cu, Cv ⊂ C?j }
P(i)
− ← P(i) \ P(i)

+

Cu′,v′ ← argmin
Cu,v∈P(i)

+
Ψα(Cu,v)

for Cu,v ∈ P(i)
− do

J ← J + max
{

0,Ψα(Cu′,v′)−Ψα(Cu,v)
}

θ ← θ − γ1 ∂J∂θ
α← α− γ2 ∂J∂α

we never perform an impure merger during training. HAC
rounds terminate when no pure mergers remain after which
parameters are updated w.r.t the loss in Eq. 4 in order to
make pure mergers more preferable than competing impure
mergers. Pseudocode appears in Algorithm 2.

Empirically, we find that training is more robust when the
loss function is augmented with a fixed threshold τ ∈ R, and
margin µ ∈ R. That is, a pure merger incurs a loss only if
the two clusters participating in the merge have dissimilarity
greater than τ − µ; an impure merger incurs a loss only if
the two clusters have dissimilarity less than τ + µ.

In order to train the dissimilarity function for a particular
member of EXPLINK family, gradient updates to θ, parame-
ters of the dissimilarity function, are performed to minimize
loss in Eq. 4 while keeping α fixed. Similarly, the most suit-
able member of EXPLINK family for a given dissimilarity
function is chosen by training α to minimize loss in Eq. 4
while keeping the dissimilarity function parameters fixed.

As anecdotal evidence, we note that the linkage function
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from EXPLINK family used to cluster the data in Figure 2e
was learned using this training procedure while by minimiz-
ing the loss on the same data.

5. Experiments
We experiment with the cross-product of four linkage
functions–single (SL), average (AVG), complete (COMP)
and EXPLINK (EXP)–and the following eight algorithms
for learning pairwise dissimilarity function (fθ):

• ALLPAIRS (AP): uses all within- and across-cluster data
point pairs to train fθ.

• TRIPLET (TRP): sample a point xi ∈ X. Then, sample
points x+i and x−i to form within- and across-cluster pairs
respectively. We generate N = 100 · |X| such samples.
• BESTEDGES (BST): for each x ∈ X, generate within-

and across cluster pairs by finding the most and least
similar data points to it respectively, according to fθ.

• MST: proposed training method for SL (§3.3).
• EXP-, EXP0, EXP+ proposed training procedure for

EXPLINK with fixed α (§4.3). EXP- refers to α = −∞,
EXP0 to α = 0, and EXP+ to α =∞.

• EXPα: proposed training procedure for EXPLINK with
joint learning of α and fθ (§4.3).

Our experiment is designed to determine if the best clus-
tering algorithm depends on the dataset or if there is a uni-
versally top performing algorithm. Additionally, our exper-
iment tests whether the performance of a linkage function
depends on the training algorithm. We randomly divide each
dataset into 50 train/dev/test splits. For each linkage and
training algorithm pair, for each split, we learn a dissimi-
larity function on the training set, tune on the development
set and cluster the test set. We record the performance on
each split. To compare two training algorithms for the same
linkage, we compute their mean performance over all splits.
When using EXP as the clustering algorithm with the dissim-
ilarity function trained using a training method other than
EXPα, the most appropriate linkage from EXPLINK is cho-
sen after learning the dissimilarity function by minimizing
loss in Equation 4 on training data with respect to α.

We conduct experiments with the following four datasets:

• UMIST Face Data (Faces) (Graham & Allinson, 1998) :
564 gray-scale images with 20 ground-truth clusters. The
pre-cropped images are downsampled to 56× 46. We use
PCA to reduce the data to 20 dimensions. 7 clusters are
used for training, 6 for dev, and 7 for test set.

• Noun Phrase Coreference (NP Coref) (Hasler et al.,
2006): 104 documents, each contains clusters of corefer-
ent noun phrases (NPs). Each pair of NPs is a described
by 102-dim vector (Stoyanov et al., 2009). We use 62
documents for training, 10 for dev, and 32 for test.

• Rexa (Culotta et al., 2007): 1459 bibliographic records
of authors divided into 8 blocks w.r.t. unique first initial

and last name. Each pair of records within a block is
represented using 14-dim vector. We use 3 blocks for
training, 2 for dev and 3 for test.

• AMINER (Wang et al., 2011): 6730 publication records
of authors divided into 100 blocks. Each pair of pub-
lications within a block is represented by a 8-dim vec-
tor (Wang et al., 2011). We use 60 blocks for training, 10
for dev, and 30 for test.

For Faces, we learn Mahalanobis distance matrixM � 0. To
do so, we learn a matrixA s.t.M = ATA. We use threshold,
τ = 100, and margin, µ = 10, when computing the loss. For
other datasets, we use feature vectors representing data point
pairs and train an average perceptron for the dissimilarity
function with threshold, τ = 0, and margin, µ = 2. Code
for experiments is available at: https://github.com/
iesl/expLinkage.

5.1. Hierarchical Clustering Evaluation

Dendrogram Purity The output of hierarchical cluster-
ing algorithms is a cluster tree, rather than a flat clustering.
Following approach used in Heller & Ghahramani (2005),
we evaluate cluster trees using dendrogram purity, which is
a holistic measure of the tree quality. Given T , a hierarchi-
cal clustering of X = {xi}mi=1, with ground-truth clusters
C?, the dendrogram purity of T is:

DP(T ) =
1

|W?|
∑

xi,xj∈W?

pur(lvs(LCA(xi, xj)), C?(xi))

where C?(xi) gives the ground-truth cluster of the point xi,
W? is the set of unordered pairs of points belonging to
the same ground-truth cluster, LCA(xi, xj) is the lowest
common ancestor of xi and xj in T , lvs(z) ⊂ X is the set
of leaves for any internal node z in T , and pur(S1, S2) =
|S1 ∩ S2|/|S1|.

In words, to compute dendrogram purity of a tree T with
respect to ground-truth clusters C?, iterate over all pairs
of points (xi, xj) which belong to the same ground-truth
cluster, find the smallest subtree containing xi and xj , and
measure fraction of leaves in that subtree which are in the
same ground-truth cluster as xi and xj .

Table 3a shows mean dendrogram purity of hierarchical
clustering for each training method/linkage function pair
on four datasets, averaged over the 50 randomly generated
train/dev/test splits. In the table, each row represents a train-
ing algorithm, and each column a linkage function and
dataset. Bold values in each column indicates the best train-
ing method for linkage function and dataset corresponding
to the column. Values with a single underline indicates that
the difference in performance w.r.t the best training method
in the column is statistically significant with p-value < 0.05.
A double underline is used to indicate statistical signifi-
cance with p-value < 0.01, where statistical significance is
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Obj Rexa AMINER NP Coref Faces
SL AVG COMP EXP SL AVG COMP EXP SL AVG COMP EXP SL AVG COMP EXP

BST 86.9 84.0 75.5 87.8 93.2 93.6 82.0 93.5 60.5 57.5 46.8 52.8 93.7 77.4 70.9 93.7
MST 87.3 85.1 75.5 88.4 92.7 93.1 81.5 93.2 59.1 54.9 47.6 53.6 95.3 81.7 76.2 95.4
EXP- 87.3 85.6 76.2 88.6 87.6 84.9 77.8 85.3 63.3 62.0 55.8 64.3 94.5 79.9 74.9 94.6
AP 81.7 84.6 80.1 82.3 92.8 93.4 81.8 93.4 58.7 58.1 50.9 55.3 91.3 85.6 81.7 86.3
TRP 85.6 88.1 82.4 89.1 92.0 93.2 81.1 92.9 59.3 61.6 56.6 62.2 91.0 85.8 82.2 85.8

EXP0 85.5 88.9 79.1 89.5 93.4 93.9 81.7 94.1 61.0 62.8 57.4 63.5 91.0 84.8 80.6 90.6
EXP+ 83.9 87.3 81.8 88.1 92.4 92.7 81.0 90.7 61.9 62.8 56.6 62.5 90.4 84.1 80.5 83.4
EXPα 87.1 86.9 76.4 89.1 93.4 93.9 81.7 94.1 61.2 62.8 57.3 63.4 94.2 79.2 73.9 94.5

(a) Dendrogram Purity for all training methods

Obj Rexa AMINER NP Coref Faces
SL AVG COMP EXP SL AVG COMP EXP SL AVG COMP EXP SL AVG COMP EXP

BST 75.0 55.4 38.9 74.2 79.3 78.7 43.2 81.0 50.0 44.3 37.1 39.9 77.6 60.2 54.6 78.8
MST 75.9 56.9 41.0 73.4 79.1 77.9 42.1 81.0 48.2 43.3 37.5 42.6 76.9 63.9 59.2 77.7
EXP- 74.0 60.8 43.4 76.7 75.1 66.9 43.1 68.3 50.2 44.5 38.0 47.6 73.1 60.8 58.9 74.5
AP 59.8 58.0 49.4 56.9 75.9 76.4 42.9 75.3 46.4 46.7 41.1 43.9 70.2 68.6 65.9 69.4
TRP 66.9 61.2 56.5 71.7 73.9 75.3 41.8 77.2 39.7 45.9 38.9 46.0 70.6 68.8 66.2 69.4

EXP0 70.5 69.8 47.0 72.3 76.3 69.8 42.6 74.8 45.8 47.8 41.9 48.1 69.1 68.1 64.6 74.5
EXP+ 67.5 65.0 50.0 69.5 74.2 69.3 43.2 59.7 50.8 47.7 41.2 47.3 67.7 66.4 63.9 68.0
EXPα 74.7 63.5 42.8 78.1 75.7 69.5 42.6 75.4 46.0 47.6 41.5 47.9 75.0 62.1 57.6 75.5

(b) Pairwise F1 Score for all training methods

Figure 3. Performance of each training method-linkage pair. Each row corresponds to a training algorithm and each column corresponds
to a linkage function and dataset. Each value represents the mean performance of a training algorithm for a linkage over 50 train/dev/test
splits. Bold numbers indicate the best performing training method for a particular linkage. Single underline indicates that the value is
statistically significantly worse than the best performing method with p < 0.05 and double underline indicate p < 0.01.

measured using resampled paired-t test (Dietterich, 1998).

Top Performers. For SL, we find that training with a cor-
responding method like MST, BST or EXP- is best on three
out of four datasets1 2. For AVG, training with EXP0 is best
except on the Faces dataset, where training with TRP does
marginally better than training with EXP0. For COMP, we
find no recurring pattern except that it achieves much lower
dendrogram purity than any of the other linkages. Finally,
for EXP, joint training with EXPα outperforms other train-
ing methods and standard linkages on AMINER, NP Coref
and joint training with EXPα is only marginally outper-
formed on Rexa and Faces when choosing a linkage func-
tion from EXPLINK after training the dissimilarity function.
Overall, these results suggest matching the training algo-
rithm and linkage function to achieve the best performance.

All Pairs. Table 3a also reveals that the training method
most commonly used in practice, AP, is rarely a good
choice. For SL and EXP, AP is always worse than the top
performer by a statistically significant margin–on Rexa, NP
Coref and Faces, AP causes a 4-8% drop in dendrogram
purity for SL and EXP. Despite AVG being the closest match

1 MST and BST have minor differences: every positive ex-
ample generated by BST is also generated by MST, but MST
may also include examples to guarantee that the positive training
examples are the edges in an minimum spanning tree over the data.

2EXP- differs from MST in that MST considers only the best
across cluster edge for every point, while EXP- might consider
more than one across cluster for every point.

for AP among the standard linkages, AP is always worse
than the top performer for AVG.

Joint Training. A particularly notable result is that jointly
learning a linkage from the EXPLINK family and a corre-
sponding dissimilarity function is best or closely tracks the
best performer on all datasets. Again, on Faces, training
with a method that matches with SL gives best results. Joint
training does not require the practitioner to choose a linkage
function a priori, which is the desired setting for real-world
data. Our results suggest that joint training is at least as
effective as choosing the best of the standard linkage func-
tion/training algorithm pairs. Additionally, joint training is
as effective or competitive with choosing a linkage from the
EXPLINK family after training the dissimilarity function.

5.2. Flat Clustering Evaluation

Pairwise F1. We evaluate flat clusterings using pairwise
F-Measure (F1) (Manning et al., 2010). LetW? be pairs of
points that belong to the same ground-truth cluster, and Ŵ
be pairs of points in that belong the same predicted cluster. A
true positive is defined as a pair of points that belong to both
W? and Ŵ , a true negative belongs to W? but not to Ŵ .
Similarly, define false positive, and false negatives. Then,
compute pairwise F1 as the harmonic mean of pairwise
precision and recall.

Selecting a flat clustering with a threshold. To extract
a flat clustering from a tree T given a threshold value ξ, we
select the clusters represented by the roots of subtrees for
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which all linkages between siblings in the subtree are less
than ξ and the linkage of the subtree root with its sibling is
greater than ξ. We select a threshold value that leads to the
clustering with maximum pairwise F1 score on dev set. Note
that choosing a single partition adds another opportunity to
introduce error for all methods (i.e. if the threshold returns
a poor partition from a tree with high dendrogram purity).

Table 3b shows mean pairwise-F1 scores for flat cluster-
ings extracted from the trees for 50 random train/dev/test
splits (similar to Table 3a). Some trends exists that are sim-
ilar to those observed with respect to dendrogram purity,
albeit with more exceptions. Generally, a linkage function
achieves best performance when dissimilarity is learned us-
ing a matching training algorithm. SL is dominant on Faces,
as is the case with dendrogram purity. The magnitude of
relative differences between the methods are larger, for ex-
ample: on Rexa, when clustering with EXP, joint training
leads to more than 20 points higher F1 than AP training,
and on AMINER, best performing method is better than
EXP+ by 20 points F1. While these results are informative,
they depend largely on the method for selecting the tree con-
sistent partition. Methods that select better tree-consistent
partitions (than the threshold method) are likely to exist.

6. Related Work
Several approaches have been proposed to learn a distance
metric to optimize performance of classification methods
such as k-NN and clustering methods such as k-means (Xing
et al., 2003; Goldberger et al., 2005; Globerson & Roweis,
2006; Kunapuli & Shavlik, 2012; Weinberger & Saul, 2009;
Ashtiani & Ben-David, 2015). These approaches operate un-
der the semi-supervised setting where the metric is learned
using a small fraction of within- and across-cluster pairs, or
using clustering of a small fraction of data points and the
learned distance metric is used on the same set of clusters.
Balcan & Blum (2008); Awasthi & Zadeh (2010) operate
in the setting where the goal is to learn the desired clus-
tering with help of an oracle with the goal of minimizing
total number of queries to the oracle. Hierarchical clustering
algorithms have also received much attention in trying to
incorporate constraints/labels on a small fraction of points
(Zheng & Li, 2011; Li et al., 2011; Xiao et al., 2016; Chatzi-
afratis et al., 2018). Our work differs from these in that we
operate in the supervised setting where we use all labels
in the training dataset to learn a pairwise dissimilarity and
linkage function for HAC, that generalizes to different test
set of clusters.

For the task of noun-phrase coreference, several heuristic
approaches for generating training examples have been pro-
posed (Soon et al., 2001; Ng & Cardie, 2002a;b). Recent
approaches for coreference resolution use latent tree models,
where each noun-phrase is linked to its closest/best pro-
ceeding noun-phrase (Lassalle & Denis, 2015; Chang et al.,

2013; Durrett & Klein, 2013). Our training procedure for
SL differs from these approaches in that we do not make use
of the word order when constructing an MST over ground-
truth clusters, and since these approaches rely on the word
order in raw text, they are not applicable to other supervised
clustering tasks such as author coreference. The most related
to our training procedure for SL is Yu & Joachims (2009),
in which the authors learn a latent tree model using SVMs
for noun-phrase coreference. Whereas their loss function
penalizes the merger of two different ground-truth clusters,
ours also penalizes of splitting ground-truth clusters. Unlike
our work, they only use SL while our training procedure
optimizes over the EXPLINK family.

Culotta et al. (2007) present an approach for generating
training examples using errors produced during HAC. Cu-
lotta et al. (2007) use a loss that only considers the impure
agglomeration that appears in the earliest round of HAC
whereas our work uses a loss function based on multiple
rounds of a modified version of HAC that considers pure
agglomerations. Also, Culotta et al. (2007) learn a function
that scores sets and while we learn pairwise dissimilarities.

There is also related work on unsupervised hierarchical
clustering objectives which describes the quality of a tree
structured clustering of the data and, unlike the supervised
objectives described in this paper, assume that a similarity
or dissimilarity function is given (Dasgupta, 2016; Roy &
Pokutta, 2016; Cohen-Addad et al., 2017; Moseley & Wang,
2017; Charikar & Chatziafratis, 2017; Cohen-Addad et al.,
2018; Charikar et al., 2019).

7. Conclusion
In this paper, we examine the dependence between train-
ing methods and HAC variants in the supervised cluster-
ing setting. Using the popular HAC with SL algorithm as
an example, we show that mismatch between training and
clustering objectives leads to poor performance. Then, we
present a training algorithm suited specifically for HAC
with SL that yields improved results. We introduce a new
family of HAC linkage functions that smoothly interpolates
between single, average and complete linkage—called the
Exponential Linkage (EXPLINK) family—and provide a
joint training algorithm that simultaneously learns an appro-
priate linkage in the EXPLINK family and a corresponding
pairwise dissimilarity function. In experiments, we demon-
strate that EXPLINK, coupled with our training algorithm,
outperforms or is competitive with the best HAC variant–an
important result for practitioners since the best HAC variant
for a problem at hand is often unknown. Our experiments
also underscore the notion that matching training and clus-
tering objectives leads to superior test time performance in
the supervised clustering setting.
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