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Abstract 

 
This study develops a multi-objective optimization model that considers the preferences of stakeholders in a vehicle-
to-grid system. The optimization problem is formulated using a mixed integer linear programming (MILP) model with 
objectives to meet the requirements of the aggregator and electric vehicle owners.  The first objective aims to minimize 
the customer’s charging cost while also maximizing the earnings of the customer from discharging to the grid during 
periods of peak demand while the second objective ensures that the aggregator’s profit is maximized. Simulations 
using time series over a 48-hour period show the results of the two objectives solved together as a multi-objective 
problem. Pareto front is used to show the relationship between the two conflicting objectives and for selecting a 
solution depending on the decision maker’s preferences. 
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1. Introduction 
The adoption of electric vehicles (EV) has been on the rise for reasons such as their environmental friendliness and 
lower fuel costs compared to conventional fuel vehicles. Although these factors are attractive and have led to the 
increasing popularity of EVs as shown by market studies [1], an issue arises because of the effect the large-scale 
integration of EVs might have on the power grid. Power grid generation and transmission is constrained due to limit 
in production capacity of generators, transmission lines and transformers. The increase in demand to the power grid 
by electric vehicles charging can lead to system overload and voltage fluctuations if not properly managed. 
Fortunately, one of the benefits of electric vehicles is that their batteries can be used as movable energy storage systems 
in a smart grid and can provide ancillary services such as frequency and voltage regulation. This is known as the 
vehicle-to-grid (V2G). In a V2G system, electric vehicles can support the grid either by unidirectional charging or 
bidirectional charging. In the case of frequency regulation and unidirectional charging, the vehicle adjusts it’s charging 
power to provide frequency regulation depending on if the system is in a regulation up or regulation down mode. For 
bidirectional system, the vehicle can provide power to the grid during periods of peak demand by discharging its 
battery. A variant to V2G is the vehicle-to-home technology where energy stored in car batteries could be used to 
power the home during periods of peak demand and can also be utilized as backup power supply in the case of an 
emergency [2].  
 
The unpredictable availability of electric vehicles in a V2G system requires coordination if the potential of car batteries 
supporting the grid is to be maximized. The main purpose of this study is to optimize the scheduling of electric vehicle 
charging and discharging to satisfy the aggregator and EV owners participating in the system. The aggregator in this 
study serves as the interface between the power grid and the EVs and oversees V2G activities including charging and 
discharging of vehicles. The main objective of the aggregator is to maximize its profit. The aggregator will also ensure 
that the EVs are charged to the customer’s desired state of charge (SOC) to avoid being penalized for failing to meet 
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the customer’s satisfaction. The objective of the EV owner is to minimize the cost of charging its battery to the desired 
SOC.  
 
The rest of this paper is organized as follows. Section 2 presents previous work related to this study, section 3 describes 
the methodology to solve the multi-objective problem, section 4 shows the results of simulations using case studies 
and finally the conclusion and future scope of the present work is presented in Section 5. 
 
2. Related Work 
This section reviews previous studies related to the research in this paper, particularly studies that examine how EV 
owners’ preferences affect their charging decision. In [3], the authors carried out a mixed-objective optimization that 
considers the customer charging cost and valley filling to address grid-operator and customer requirements. This study 
paid attention to the concerns and satisfaction of customers by considering factors such as battery degradation and 
customer satisfaction. The first objective function was minimizing the total charging cost for the customer and the 
second objective to improve the load factor by shifting peak load to times of light load. Weights were applied to the 
two functions and normalization was also applied to level them and the mixed objective function was solved for 
different scenarios by varying the weights of each objective function. The authors in [4] studied the optimal scheduling 
of electricity in an intelligent parking lot considering some characteristics of the consumers such as the EV’s battery 
life, initial SOC, charging period and the desired charging/discharging price limits. The charging/discharging price 
limits were used to determine when the car battery charges or discharges. This decision is static and does not change 
with an increase in the SOC of the vehicle or other factors such as range anxiety. In the real world, these preferences 
or tolerance vary from one individual to the other. A stated preference experiment conducted by [5] was used to 
determine the charging choices of drivers. The authors conducted a survey with respondents being members of the 
Electric Auto Association (EAA). The study considered factors such as dwell time, price, range charged, charger 
power, distance to next charging opportunity, cost at the charging station, electric range remaining in battery and how 
they influenced charging choice. 
 
This study considers the heterogeneity of EV owner’s charging decisions based on their travel patterns, dwell time at 
the charging station, and state of charge of their batteries on arrival at the charging station. Charging decision will be 
determined not only by the price of electricity at the charging period or the objective of the aggregator but also the 
willingness of the EV owner to meet its minimum required charge.  
 
3. Methodology 
 
3.1 Problem formulation 
For this study, MATLAB and GAMS are used for the simulation and optimization of the scheduling problem. A total 
of 48 intervals of 1 hour each is used for the simulation of 2 days. The second day was added to ensure that the 
departure time of vehicles that arrived late the first day and couldn’t complete charging at the end of the day could 
still be determined the next day. 
 
Data on drivers’ travel pattern was obtained from the 2017 National Household Travel Survey (NHTS) [6]. The 
aggregator in this study is assumed to be a smart parking lot that serves EV owners that are at work, going for leisure 
activity, shopping etc. The arrival time distribution of vehicles is modeled after NHTS arrival time data for customers 
engaging in the activities listed above. The dwell time which is the time the vehicle spends at the parking lot was 
randomly generated between 1 and 12 hours and the departure time was estimated as the sum of the arrival time and 
the dwell time. 
 
The time of use (TOU) electricity price pattern was obtained from ComEd [7], a power balancing authority operation 
under PJM, a regional transmission organization. This was adjusted to match the US average price of energy for 
commercial use which is $0.1071 per kWh [8]. The cost of charging at public stations vary significantly depending 
on the location of the parking lot. For this study, the total cost of customers using the parking lot was assumed to be 
the sum of the price of electricity and $0.40/hr. assumed to be the amount the parking lot charges customers for use 
of its facility.  The types of vehicles used in the study were generated based on the sales distribution of plug-in electric 
vehicles in the market obtained from [9] and [10]. 
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3.2 Mathematical formulation 
The first objective function shown in Equation 1 below is formulated to minimize the amount EV owners spend on 
charging their cars. This is achieved by charging the EV batteries in periods when the price for charging is less 
expensive. The earnings that the customers make from discharging their vehicle batteries in a bidirectional charging 
system are also accounted for in the objective function. The customers aim to minimize cost by discharging during 
periods when the electricity price is high and charging their vehicle when the electricity price is low.  
 

min ∑ ∑ 𝐶𝑐𝑜𝑠𝑡
𝑡 ∗ 𝐶𝑐ℎ𝑔

𝑖,𝑡  𝐼
𝑖=1

𝑇
𝑡=1 − ∑ ∑ 𝐷𝑐𝑜𝑠𝑡

𝑡 ∗ 𝐶𝑑𝑐ℎ
𝑖,𝑡𝐼

𝑖=1
𝑇
𝑡=1     (1) 

 
The first part of Equation 1 is the total cost of charging, where 𝐶𝑐𝑜𝑠𝑡

𝑡  is the cost of charging at time t and 𝐶𝑐ℎ𝑔
𝑖,𝑡  is the 

charging power of the ith vehicle during period t. The charging power is assumed to be a level 2 charger which varies 
between 0 and 6.6kW. The second part is the total amount the EV owner gains from discharging his/her vehicle where 
𝐷𝑐𝑜𝑠𝑡

𝑡  is the cost of discharging at time t, and 𝐶𝑑𝑐ℎ
𝑖,𝑡  is the discharging power which also varies between 0 and 6.6kW. 

The second objective function, which is to maximize the aggregator’s profit is given in Equation 2 below: 
 

 max ∑ 𝑃𝑡𝑜𝑡𝑎𝑙
𝑡𝑇

𝑡=1 ∗ ( 𝐶𝑐𝑜𝑠𝑡
𝑡 − 𝐶𝑏𝑢𝑦

𝑡 ) − ∑ (𝑇𝑠𝑜𝑐𝑖 − 𝐹𝑠𝑜𝑐𝑖,𝑡) ∗ 𝑃𝐶𝑡𝐼
𝑖=1    (2) 

 
The first part of Equation 2 is the total profit that the aggregator makes from providing power to EV owners where 
𝑃𝑡𝑜𝑡𝑎𝑙

𝑡  is the total power provided every period t, 𝐶𝑐𝑜𝑠𝑡
𝑡  is the cost of charging at time period t and  𝐶𝑏𝑢𝑦

𝑡  is the cost 
power the aggregator purchased from the regional transmission organization (RTO). To ensure that the cars are 
charged to meet the EV owner’s targeted level, a penalty cost is introduced. According to [11] the penalty cost is 
defined as the cost of not meeting the customer’s desired SOC. In this study, the penalty cost was assumed to be the 
peak cost of electricity. Failure of customers to meet this is charged as a loss to the aggregator. The second part of the 
equation is the amount of unfulfilled charge at the end of charging. 𝑇𝑠𝑜𝑐𝑖  is the target or customer’s desired SOC and 
𝐹𝑠𝑜𝑐𝑖,𝑡 is the customer’s final SOC at departure, 𝑃𝐶𝑡is the penalty cost factor.  The objective functions are subject to 
the following constraints: 
 

1.) Charging or discharging only takes place when the vehicle is available in the parking lot. 

𝐶𝑐ℎ𝑔
𝑖,𝑡 +  𝐶𝑑𝑐ℎ

𝑖,𝑡  = 0 ∀  , | 𝑎𝑟𝑟𝑡𝑖𝑚𝑒
𝑖  ≤ t ≤ 𝑑𝑒𝑝𝑡𝑖𝑚𝑒

𝑖     (3) 
Where 𝑎𝑟𝑟𝑡𝑖𝑚𝑒

𝑖  and 𝑑𝑒𝑝𝑡𝑖𝑚𝑒
𝑖  are the arrival and departure time of EV i respectively. 

 
2.) Charging and discharging cannot take place at the same time. 

𝐼𝑐ℎ𝑔
𝑖,𝑡 + 𝐼𝑑𝑐ℎ

𝑖,𝑡  ≤ 1 ∀ 𝑖 ,𝑡        (4) 
Where 𝐼𝑐ℎ𝑔

𝑖,𝑡  and 𝐼𝑑𝑐ℎ
𝑖,𝑡  are binary variables indicating charging and discharging respectively. 

 
3.) The maximum level of the SOC is set to 90% of the battery capacity to protect the battery from degradation 

due to overcharging. 

𝑠𝑜𝑐𝑖,𝑡 ≤ 0.9 * 𝐵𝑎𝑡𝑐𝑎𝑝
𝑖  ∀ 𝑖 ,𝑡    (5) 

 Where 𝐵𝑎𝑡𝑐𝑎𝑝
𝑖  is the battery capacity for the specific vehicle. 

 
4.) The vehicle cannot discharge if the SOC is below the minimum required SOC. 

𝐼𝑑𝑐ℎ
𝑖,𝑡 = 0 ∀ 𝑖 ,𝑡 | 𝑀𝑠𝑜𝑐𝑖 ≥  𝑠𝑜𝑐𝑖,𝑡    (6) 

 Where 𝑀𝑠𝑜𝑐𝑖  is the minimum desired SOC. 
 

5.) The SOC can increase, decrease or remain the same after the change of every period 

𝑠𝑜𝑐𝑖,𝑡 = 𝑠𝑜𝑐𝑖,(𝑡−1) +( 𝐶𝑐ℎ𝑔
𝑖,𝑡 ∗  𝜂𝑐ℎ𝑔) + ( 𝐶𝑑𝑐ℎ

𝑖,𝑡 ∗  𝜂𝑑𝑐ℎ)     (7) 
 Where 𝜂𝑐ℎ𝑔 and 𝜂𝑑𝑐ℎ are the charging and discharging efficiencies respectively. 
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6.) The total power charged during each period is given by  
𝑃𝑡𝑜𝑡𝑎𝑙

𝑡 = ∑ 𝐶𝑐ℎ𝑔
𝑖,𝑡𝐼

𝑖=1      (8)  
 

4. Results 
A Pareto optimal front was determined by solving both objective 1 and objective 2 together [12]. The result of the 
Pareto front shows the conflicting nature of the different objectives. As shown below in Figure 1, an increase in 
aggregator’s profit leads to an increase in the customer’s charging cost.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Pareto Front 

 
Results for 3 cases are shown involving 100 simulated vehicles.  

● Case 1: The lowest point in the generated Pareto front. 
● Case 2: A selected point between the highest and lowest points on the Pareto front. 
● Case 3: The highest point on the Pareto front. 

 
Figure 2 shows the results for the final, minimum and target state of charge for 25 random vehicles at the Pareto point 
in case 1. As shown in the figure, even though all the vehicles met their required minimum SOC, most did not meet 
the target SOC. This is because minimization of the customers’ charging cost and maximization of earnings rather 
than charging to the target state of charge is of greater priority at this point on the Pareto front. In Figure 3, it is shown 
that discharging takes place at periods where the cost of energy is relatively high.  
 
 
 
 
 
 
 
 

 

 
 

 
Figure 2: SOC levels for 25 random vehicles in case 1 

 
Figure 4 shows simulation results at the Pareto point in case 2. As illustrated by the figure, more EVs compared to 
case 1 reached their target SOC. This is because there is an increased consideration for the aggregator’s objective 
which is to maximize profit at this Pareto point compared to case 1. 
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Figure 3: Charging and discharging pattern in case 1 
 
 

  
 
 
 
 
 
 
 
 

 
 

Figure 4: SOC levels for 25 random vehicles in case 2 
 
 

Furthermore, Figure 5 below shows that more charging and discharging takes place in case 2 compared to case 1. The 
increase in charging is due to the fact that at this point on the Pareto front, there is increased consideration of  the 
aggregator’s objective of maximizing its profit compared to case 1. Another goal of the aggregator is to ensure that 
cars meet their target SOC before departure. This results in another observable pattern seen in Figure 5. A lot of 
charging tends to take place prior to departure of the vehicles. 
 
 

 
 
 
 
 
 
 
 
 

Figure 5: Charging and discharging pattern in case 2 
 
The third case occurs at the highest point on the Pareto front. At this point, the goal of objective 2 or the aggregator’s 
objective is given the greatest priority. As shown in Figure 6 below, the target SOC was achieved for most of the EVs. 
  
 
 
 

 
 
 
 
 
 
 
 

Figure 6: SOC levels for 25 random vehicles in case 3 
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Figure 7 shows similar charging levels to case 2. The increased charging enables the aggregator to maximize its profit. 
The discharging rate in case 3 is reduced compared to case 2. This is because customers’ earnings which is a goal of 
Objective 1 is of lesser priority at this point on the Pareto front.   
 
 
  
 

 
 
 

  
 

Figure 7: Charging and discharging pattern in case 3 
 

5. Conclusion 
This study presents a multi-objective model for scheduling the charging and discharging of electric vehicles in a 
vehicle-to-grid system. A mixed integer linear model consisting of two separate objective functions was formulated 
and Pareto optimal solutions for the different objectives were obtained. Simulation was performed using 3 test cases 
and the results show how charging and discharging behavior vary from one objective to the other. This is useful for 
decision-making depending on the priority of the power system manager. In the future, the scope of this work can be 
extended by determining an optimal solution from the Pareto front using fuzzy set theory. In addition, a more detailed 
objective regarding the power grid such as power emission control and power transmission loss will be considered in 
future work.  
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