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Abstract

Psycholinguists frequently use linear models
to study time series data generated by human
subjects. However, time series may violate the
assumptions of these models through tempo-
ral diffusion, where stimulus presentation has
a lingering influence on the response as the
rest of the experiment unfolds. This paper
proposes a new statistical model that borrows
from digital signal processing by recasting the
predictors and response as convolutionally-
related signals, using recent advances in ma-
chine learning to fit latent impulse response
functions (IRFs) of arbitrary shape. A syn-
thetic experiment shows successful recovery
of true latent IRFs, and psycholinguistic exper-
iments reveal plausible, replicable, and fine-
grained estimates of latent temporal dynamics,
with comparable or improved prediction qual-
ity to widely-used alternatives.

1 Introduction

Much of the data available to psycholinguistics is
generated by processes that unfold in time. Ex-
amples include behavioral measures such as eye-
movement records and self-paced reading laten-
cies as well as neural measures like electroen-
cephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging
(fMRI), and electrocorticography (ECoG). If left
uncontrolled, temporal confounds in psycholin-
guistic data can be problematic for interpretation
and testing of statistical models used to analyze
them (Baayen et al., 2017, 2018).

This paper addresses one possible temporal
confound which I will refer to as temporal diffu-
sion. Temporal diffusion exists when the response
of a dependent variable to some inputs evolves
slowly as a function of time, with the result that a
particular input observed at a particular time con-
tinues to exert an influence on the response as

the rest of the process unfolds. Temporal diffu-
sion has been carefully studied in some psycho-
logical subfields. For example, a sizeable liter-
ature on fMRI has investigated the structure of
the hemodynamic response function (HRF), which
is known to govern the relatively slow response
of blood oxygenation to neural activity (Boyn-
ton et al., 1996; Friston et al., 1998; H. Glover,
1999; Ward, 2006; Lindquist and Wager, 2007;
Lindquist et al., 2009). The HRF is an instan-
tiation of the more general notion of impulse re-
sponse function (IRF) from the field of signal pro-
cessing (Madisetti, 1997), where the response g∗h
of a dynamical system as a function of time is de-
scribed as a convolution over time of an impulse g
with an IRF h:

(g ∗ h)(t) =
∫ t

0
g(τ)h(t− τ)dτ

The process of deconvolution seeks to infer the
structure of h (the IRF) given that the impulses
g (stimuli) and responses g ∗ h (psycholinguistic
response) are known.

Although particular attention has been paid to
the importance of impulse responses in fMRI,
there are other kinds of psycholinguistic measures
in which temporal diffusion might reasonably play
a role. This paper focuses on one such example:
measures of reading time, specifically fixation du-
rations in eye-tracking and response times in self-
paced reading. It has been known for decades that
the response to properties of words in human sub-
jects’ reading behavior may not be fully instan-
taneous, but may "spill over" into the reading of
subsequent words (Erlich and Rayner, 1983). A
standard approach for handling the possibility of
temporally diffuse relationships between the word
properties and reading response is to use spillover
or lag regressors, where a word’s properties are
used to predict subsequent observations of the re-
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Figure 1: Effects in a linear time series model
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Figure 2: Linear time series model with spillover

sponse. But this strategy has several undesirable
properties. First, the choice of spillover position(s)
for a given predictor is difficult to motivate empir-
ically. Second, since word fixations are variably
long, the use of relative event indices obscures po-
tentially important details about the actual amount
of time that passed between events. Third, in-
cluding multiple spillover positions per predictor
quickly leads to parametric explosion on realisti-
cally complex models over realistically sized data
sets, especially if random effects structures are in-
cluded. And fourth, if the predictors are autocorre-
lated, the spillover variants of each predictor will
exhibit colinearities.

Deconvolutional modeling provides a way for-
ward by supporting discovery from data of tem-
poral diffusion in the reading response. However,
major existing deconvolutional frameworks such
as finite impulse response (FIR) models (Dayal
and MacGregor, 1996) and vector autoregressive
(VAR) models (Sims, 1980)1 are not applicable
to variably-spaced reading data because they dis-
cretize the time series, leading either (1) to severe
sparsity if variable event durations are retained
(few events are spaced exactly 207ms apart) or
(2) distortion if they are removed (all events are
treated as equally spaced).

As a solution to the problem of temporal dif-

1See Section 2 for discussion.
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Figure 3: Effects of predictors in DTSR

fusion, this paper proposes deconvolutional time
series regression (DTSR), a continuous-time de-
convolutional method that directly models diffu-
sion by learning parametric IRFs of the predictors
that mediate their relationship to the response vari-
able over time. The implementation of DTSR pro-
posed here takes advantage of the recent advent of
the machine learning libraries Tensorflow (Abadi
et al., 2015) — which uses auto-differentiation
to support optimization of arbitrary computation
graphs — and Edward (Tran et al., 2016) — which
enables black box variational inference (BBVI)
on Tensorflow graphs. While these libraries are
typically used to build and train deep networks,
DTSR uses them to overcome an important dif-
ficulty that otherwise holds of parametric decon-
volution: the likelihood surface depends on the
choice of IRF kernel, requiring re-derivation of es-
timators for each unique model structure. Auto-
differentiation and Bayesian inference eliminate
the need for hand-derivation of estimators and
sampling distributions for each model.

The IRFs learned by DTSR are interpretable as
estimates of the temporal shape of predictors’ in-
fluence on the response variable. By convolving
predictors with their IRFs, DTSR is able to con-
sider arbitrarily long histories of independent vari-
able observations in generating a given prediction,
and (in contrast to spillover) model complexity
is constant on the length of the history window.
DTSR is thus a parsimonious technique for di-
rectly measuring temporal diffusion. DTSR mod-



els are continuous-time and can therefore be op-
timized on naturalistic time series with variably-
spaced events, including reading time data.

Figures 1–3 illustrate the present proposal and
how it differs from linear time series models. As
shown in Figure 1, a standard linear model as-
sumes conditional independence of the response
from all preceding observations of the predictor.
This independence assumption can be weakened
by including additional spillover predictors (Fig-
ure 2), at a cost of requiring additional parameters.
In both cases, only the relative order of events is
considered, not their actual distance in time. By
contrast, DTSR recasts the predictor and response
vectors as streams of impulses and responses (re-
spectively) localized in time. It then fits latent
IRFs that govern the influence of each predictor
on the response as a function of time (Figure 3).

This paper presents evidence that DTSR can
(1) recover known underlying IRFs from synthetic
data, (2) discover previously unknown temporal
structure in human data (psycholinguistic reading
time experiments), (3) provide support for the ab-
sence of temporal diffusion in settings where it
might exist in principle, and (4) provide compara-
ble (or in some cases improved) prediction quality
to standard linear mixed-effects (LME) and gener-
alized additive (GAM) models.

2 Related work

2.1 Non-deconvolutional time series modeling

The two most widely used tools for analyzing psy-
cholinguistic time series are linear mixed effects
regression (LME) (Bates et al., 2015) and gener-
alized additive models (GAM) (Hastie and Tib-
shirani, 1986; Wood, 2006). LME learns a lin-
ear combination of the predictors that generates
a given response variable. GAM generalizes lin-
ear models by allowing the response variable to be
computed as the sum of smooth functions of one
or more predictors.

In both approaches, responses are modeled
as conditionally independent of preceding obser-
vations of predictors unless spillover terms are
added, with the attendant drawbacks discussed in
Section 1. To make this point more forcefully, take
for example Shain et al. (2016), who found signif-
icant effects of constituent wrap-up (p = 2.33e-
14) and dependency locality (p = 4.87e-10) in the
Natural Stories self-paced reading corpus (Futrell
et al., 2018). They argued that their result consti-

tuted the first strong evidence of memory effects
in broad-coverage sentence processing. However,
it turns out that when one baseline predictor —
probabilistic context free grammar (PCFG) sur-
prisal — is spilled over one position, the reported
effects disappear: p = 0.816 for constituent wrap-
up and p = 0.370 for dependency locality. Thus,
a reasonable but ultimately inaccurate assumption
about baseline effect timecourses — in this case,
that the PCFG effect did not spill over — can have
a dramatic impact on the conclusions supported by
the statistical model. DTSR offers a way forward
by building the possibility of temporal diffusion
directly into the estimates, thereby avoiding the
need to choose spillover positions as hyperparam-
eters.

2.2 Deconvolutional time series modeling

Deconvolutional modeling has long been used in
a variety of scientific fields, including economics
(Ramey, 2016), epidemiology (Goldstein et al.,
2011), and neuroimaging (Friston et al., 1998).
One widely-used approach to IRF discovery is fi-
nite impulse response modeling (FIR) (H. Glover,
1999; Ward, 2006). IRF models quantize the time
series and use linear regression to fit estimates
for each time point within some window, simi-
larly to the spillover approach discussed above.
These estimates can be unconstrained or smoothed
with some form of regularization (Nikolaou and
Vuthandam, 1998; Goutte et al., 2000; Pedregosa
et al., 2014). Another major approach to decon-
volution is vector autoregression (VAR), which
discovers pairwise temporal relationships between
all variables in the data (predictors and response)
over some finite number of lags. VAR fits can
be used to extract IRFs between pairs of vari-
ables. For both FIR and VAR models, addi-
tional post-hoc interpolation is necessary in order
to obtain closed-form continuous-time IRFs. Non-
parametric deconvolutional approaches like these
are prone to parametric explosion and overfitting
(Nikolaou and Vuthandam, 1998). Furthermore,
as discussed above, their requirement of time dis-
cretization gives rise to sparsity or distortion when
applied to time series with variable event dura-
tion. Finally, many psycholinguistic datasets con-
tain data from many subjects and/or conditions,
motivating the use of mixed-effects models. How-
ever, although mixed effects non-parametric de-
convolutional models have been proposed (Gor-



rostieta et al., 2012), modeling random variation in
the deconvolutional estimates severely increases
model complexity by adding random covariates
for each predictor/timepoint pair in the model.

Continuous-time mixed-effects IRF estimation
for arbitrary impulse response kernels would over-
come these difficulties and greatly extend the
range of time series data to which deconvolu-
tional modeling can be applied. To my knowledge,
DTSR is the first mathematical formulation and
software implementation of such an approach. By
including a parametric impulse response as part
of model design, DTSR avoids time discretization
and the attendant problems with model complex-
ity discussed above. DTSR thus expands the range
of possible applications of deconvolutional model-
ing to include settings with variable event duration
and heterogeneous sources of data.

3 Model definition

This section presents the mathematical definition
of DTSR. For readability, only a fixed effects
model is presented below, since mixed modeling
substantially complicates the equations. The full
model definition is provided in Appendix A. Note
that the full definition is used to construct all read-
ing time models reported in subsequent sections,
since they contain random effects.

Let X ∈ RM×K be a design matrix of M ob-
servations for K predictor variables and y ∈ RN

be a vector of N responses, both of which contain
contiguous temporally-sorted time series. DTSR
models the relationship between X and y using
parameters consisting of:

• a scalar intercept µ ∈ R

• a vector u ∈ RK of K coefficients2

• a matrix A ∈ RR×K of R IRF kernel param-
eters for K fixed impulse vectors

• a scalar variance σ ∈ R of the response

A fixed-effects DTSR model therefore contains
2+K +K ·R parameters: one intercept, K coef-
ficients (one for each impulse), K ·R IRF parame-
ters (R parameters for each impulse, and one vari-

2Throughout this paper I use the term coefficients to refer
to what are often called slopes in linear models. This is to
avoid falsely implying that the coefficients represent straight-
line functions of the predictors, when in fact they are applied
non-linearly to the predictors via the impulse response. Al-
ternatively, the coefficients can be construed as slopes on the
convolved predictors X′, as shown in eq. 4.

ance of the response. Mixed-effects DTSR mod-
els can also include random variation in the in-
tercept, coefficients, and/or IRF parameters. This
yields at most 1 + Z(1 +K +KR) estimates for
a mixed effects model with Z total random group-
ing factor levels, although sub-maximal numbers
of estimates can arise from restricting randomness
to substructures of the model (e.g. to the inter-
cept only). For fuller discussion of mixed-effects
DTSR models, see the Appendix.

To define the convolution step, let gk for k ∈
{1, 2, . . . ,K} be a set of parametric IRF kernels,
one for each predictor; let a ∈ RM and b ∈ RN be
vectors of timestamps associated with each obser-
vation in X and y, respectively; and let c ∈ NM

and d ∈ NN be vectors of series ID’s associated
with each observation in X and y, respectively. A
filter F ∈ RN×M admits only those observations
in X that precede y[n] in the same time series:

F[n,m]
def
=

{
1 c[m] = d[n] ∧ a[m] ≤ b[n]

0 otherwise
(1)

The inputs X can be convolved with each IRF
gk by premultiplication with sparse matrix k ∈
RN×M for k ∈ {1, 2, ...,K} as defined below:

k = gk

(
b1⊤ − 1a⊤;A[∗,k]

)
⊙ F (2)

The convolution that yields the design matrix of
convolved predictors X′ ∈ RN×K is then defined
using products of the convolution matrices and the
design matrix X:3

X′
[∗,k]

def
= k X[∗,k] (3)

The full model mean is the sum of (1) the inter-
cept µ and (2) the product of the convolved pre-
dictor matrix X′ and the coefficient vector u:

y ∼ N
(
µ+X′u, σ2

)
(4)

4 A note on multicolinearity

Note that the formulation in eq. 4 is simply a linear
model on the convolved design matrix X′. There-
fore, the primary difference between linear and

3This implementation of convolution is only exact when
the predictors fully describe a discrete impulse signal. Exact
convolution of samples from continuous signals is generally
not possible because the signal is generally not analytically
integrable. For continuous signals, DTSR can approximate
the convolution as long as the predictor is interpolated be-
tween sample points at a fixed frequency prior to fitting.



DTSR models is that DTSR additionally infers the
parameters that generate X′ jointly with the model
intercept and coefficients.

Since DTSR depends internally on linear com-
bination to generate its outputs, it is vulnerable to
confounds from multicolinearity (correlated pre-
dictors) in much the same way that linear models
are. In linear models, multicolinearity increases
uncertainty about how to allocate covariation be-
tween predictors and response, since the predictors
themselves covary. In the extreme case of perfect
multicolinearity (i.e. one or more predictors are an
exact linear combination of one or more other pre-
dictors), the model has no solution (Neter et al.,
1989).

Multicolinearity in DTSR works in much the
same way, with the added complexity that DTSR
models also have a temporal dimension which
may allow the fitting procedure to discover real
characteristics of the global impulse response
structure while struggling proportionally to the de-
gree of multicolinearity to decompose that struc-
ture into predictor-wise IRFs. To understand this,
note that the expected response t seconds after
stimulus presentation is a weighted sum of the
IRFs at t, with weights provided by the predictor
values of the stimulus. When multicolinearity is
low, the expected overall response can vary widely
from one stimulus to another, since the IRFs are
reweighted at each stimulus by roughly orthogonal
predictor values. This variation in expected over-
all response provides clues to the system as to the
magnitude, direction, and temporal shape of the
individual response to each predictor. As multico-
linearity increases, the expected overall response
increasingly converges to a single shape which is
shared across all stimuli (albeit scaled by the stim-
ulus magnitude). In this setting, the model should
still be able to correctly recover the global re-
sponse characteristics, but may decompose it into
predictor-wise responses that increasingly deviate
from the true data generating model. In the ex-
treme case that each predictor is identical, the ex-
pected response is identical for each stimulus, and
the model will construct IRFs whose summation
approximates the true global response profile but
whose attribution of IRF components to predictors
is random.

The above predictions are born out empirically
by results presented in Section 6. While those re-
sults indicate that DTSR models are surprisingly

robust to multicolinearity, models fitted to highly
colinear data should be interpreted with caution,
and perfectly colinear data should be avoided al-
together. As in linear models, multicolinearity
can be avoided by orthogonalizing predictors in
advance (e.g. via principal components analysis).
Empirical assessment of orthogonalization proce-
dures in the DTSR setting is left to future work.

5 Implementation

The present implementation defines the equations
from Section 3 as a Bayesian computation graph
in Tensorflow and Edward and trains it with black
box variation inference (BBVI) using the Nadam
optimizer (Dozat, 2016)4 with a constant learning
rate of 0.01 and minibatches of size 1024.5 For
computational efficiency, histories are truncated at
128 timesteps. Prediction from the network uses
an exponential moving average of parameter iter-
ates with a decay rate of 0.998. Convergence was
visually diagnosed.

The present experiments use a ShiftedGamma
IRF kernel:

f(x;α, β, δ) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)
(5)

This is simply the probability density function of
the Gamma distribution augmented with a shift pa-
rameter δ allowing the lower bound of the sup-
port of the distribution to deviate from 0. The fol-
lowing additional constraints are imposed: (1) δ
is strictly negative, thereby allowing the model to
find a non-zero instantaneous response, and (2) k
is strictly greater than 1, deconfounding the shape
and shift parameters. All bounded variables are
constrained using the softplus bijection:

softplus(x) = log(ex + 1)

The ShiftedGamma kernel is used here because
it can fit a wide range of response shapes and
has precedent in the fMRI literature, where HRF
kernels are often assumed to be Gamma-shaped
(Lindquist et al., 2009).6

4The Adam optimizer (Kingma and Ba, 2014) with Nes-
terov momentum (Nesterov, 1983)

5As noted above, for expository purposes the definition in
Section 3 only supports fixed-effects models. The full def-
inition for mixed-effects DTSR models is provided in Ap-
pendix A. Mixed models are used throughout the experiments
reported below.

6Other IRF kernels, including spline functions and com-
position of convolutions, are supported by the current imple-
mentation of DTSR but are not explored in these experiments.
More details are provided in the software documentation.



All parameters are given normal priors with unit
variance. Prior means for the fixed IRF kernel
parameters are domain-specific and discussed in
the experiments sections below. To center the
prior at an intercept-only model,7 prior means for
the intercept µ and variance σ are set (respec-
tively) to the empirical mean and variance of the
response, and prior means for both fixed coeffi-
cients and random effects8 are set to 0. Although
the Bayesian implementation of DTSR is used for
this study because it provides quantification of un-
certainty, placing priors on the IRF kernel param-
eters is not crucial to the success of the system. In
all experiments reported below, the MLE imple-
mentation arrives at similar solutions and achieves
slightly better error.

In the interests of enabling the use of DTSR
by the scientific community, the implementation
of DTSR used here is offered as a documented
open-source Python package with support for (1)
Bayesian, variational Bayesian, and MLE infer-
ences and (2) a variety model structures and im-
pulse response kernels. The Tensorflow back-
end also enables GPU acceleration where avail-
able. Source code and links to documenta-
tion are available at https://github.com/
coryshain/dtsr.

6 Experiment 1: Synthetic data

An initial experiment fits DTSR estimates to syn-
thetic datasets. This experiment has two purposes:
(1) to determine whether the model can recover
known ground truth IRFs and (2) to assess the im-
pact of multicolinearity in the predictors. Syn-
thetic data were created by convolving sets of
random covariates with known impulse responses
in order to generate simulated response variables.
Each simulation contained 20 covariates, and pre-
dictor and response streams each contained 10,000
observations spaced 100ms apart. A single set of
impulse responses was randomly drawn at the out-
side of the experiment and shared across all syn-
thetic datasets. To produce the impulse responses,
ground truth coefficients were drawn from a uni-
form distribution U(−50, 50), and ground truth
IRF parameters were drawn from the following
distributions: α ∼ U(1, 6), β ∼ U(0, 5), δ ∼

7A model in which the response is insensitive to the model
structure.

8See Appendix A for the definition of the mixed-effects
DTSR model, which includes random effects.

U(−1, 0).9 The prior means for the corresponding
IRF kernel parameters were placed at the centers
of these ranges.

To manipulate multicolinearity in the predic-
tors, predictor streams were drawn from multi-
variate normal distributions in which the variance-
covariance matrix had a diagonal of 1 and all off-
diagonal elements were set to the desired level of
correlation. For example, predictors with correla-
tion level ρ = 0.5 were drawn using the following
variance-covariance matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0.5 . . . 0.5 0.5 0.5
0.5 1 0.5 . . . 0.5 0.5 0.5
0.5 0.5 1 . . . 0.5 0.5 0.5

...
...

...
. . .

...
...

...
0.5 0.5 0.5 . . . 1 0.5 0.5
0.5 0.5 0.5 . . . 0.5 1 0.5
0.5 0.5 0.5 . . . 0.5 0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Four sets of predictors were generated in this way,
one for each of ρ = 0 (uncorrelated predictors),
ρ = 0.25, ρ = 0.5, ρ = 0.75, ρ = 1. Note that
ρ = 1 is a degenerate case in which all 20 covari-
ates are identical. As such, it is undecidable and
therefore not a valid use case for DTSR. It is in-
cluded in this experiment to assess the prediction
outlined in Section 4 that in such a setting DTSR
will faithfully recover the global response profile
while decomposing and distributing it to predic-
tors at random.

For each set of predictors, the stream of re-
sponses was generated by convolving the covari-
ates with their corresponding IRFs and multiply-
ing them by their coefficients. For each response
vector, Gaussian noise with standard deviation 20
was drawn and added to the responses following
generation.

As shown in the left column of Figure 4, the
DTSR estimates for the synthetic data with ρ ≤
0.75 are very similar to the ground truth, confirm-
ing that when the data-generating model matches
the assumptions of DTSR, DTSR can recover
its latent structure with high fidelity even in the
presence of strong multicolinearity. Nonetheless,
there are small degradations in model fidelity with
increasing colinearity, supporting the hypothesis
that the difficulty of model identification increases

9These ranges generally yield IRF with peak dynamics
within the system’s visibility window of 12.8s. Visibility is
curtailed by history truncation (128 timesteps, see above),
leading to a maximum visibility of 12.8s since each trial is
0.1s long (128× 0.1 = 12.8).

https://github.com/coryshain/dtsr
https://github.com/coryshain/dtsr


(a) Ground truth (b) Ground truth, summed

(c) ρ = 0 (d) ρ = 0, summed
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(g) ρ = 0.5 (h) ρ = 0.5, summed

(i) ρ = 0.75 (j) ρ = 0.75, summed

(k) ρ = 1 (l) ρ = 1, summed

Time (s)

Figure 4: Synthetic data. Predictor-wise (left) and summed IRFs in the true (top) and estimated models
at varying levels of impulse multicolinearity ρ. Estimates are shown with 95% credible intervals.



with colinearity and motivating the avoidance of
strongly colinear data when possible.

The right column of Figure 4 shows a sum of
all the IRFs in the system. This corresponds to
the expected response to a stimulus containing
a unit impulse for each predictor. Since this is
a deterministic function of the component IRFs,
summed estimated responses should closely ap-
proximate summed true responses, which Figure 4
shows to be the case in all models. The reason
the summed response is of interest here is that,
as argued in Section 4, with increasing multico-
linearity the synthetic response at each stimulus
increasingly resembles (a multiple of) a single re-
sponse profile. In these experiments where pre-
dictors have identical means and variances and
are positively correlated, this response profile ap-
proaches the summed response in actual fact, and
in such a setting DTSR is expected to find com-
ponent IRFs that sum to the global response, even
if their allocation to particular predictors is largely
arbitrary. The ρ = 1 example (bottom row) clearly
shows this to be the case. Although the model has
discovered component IRFs and assigned them to
predictors in ways that do not resemble the true
model at all, the sum of these IRFs nonetheless
captures the true summed response with very high
fidelity. The summed response profile is the only
characteristic of the true model that DTSR could
have learned in this setting, and DTSR does suc-
cessfully recover it.

7 Experiment 2: Human reading times

7.1 Background and experimental design

The main interest of DTSR is the potential to bet-
ter understand real-world dynamical systems like
the human sentence processing response. There-
fore, Experiment 2 applies DTSR to three exist-
ing datasets of naturalistic reading: Natural Sto-
ries (Futrell et al., 2018), Dundee (Kennedy et al.,
2003), and UCL (Frank et al., 2013).

Natural Stories is a self-paced reading (SPR)
corpus consisting of context-rich narratives that
resemble fluent storytelling while nonetheless
containing many grammatical constructions that
rarely occur naturally in texts. The public release
of the corpus contains data collected from 181
subjects who paged through the stories on a com-
puter screen, pressing a button to reveal the next
word. The amount of time spent on each word
was recorded as the response variable. The stimu-

lus set contains 10 stories with a total of 485 sen-
tences and 10,245 word tokens, for a total 848,768
fixation events (where one event is a single subject
viewing a single word token).

Dundee is an eye-tracking corpus containing
newspaper editorials read by 10 subjects, with in-
cremental eye fixation data recorded during read-
ing. The stimulus set contains 20 editorials with a
total of 2,368 sentences and 51,502 word tokens,
for a total of 260,065 fixation events (where one
event is a single subject fixating a single word to-
ken for the first time from the left).

UCL is a reading corpus containing individual
sentences that were extracted from novels written
by amateur authors. The sentences were shuffled
and presented in isolation to 42 subjects. The eye-
tracking portion of the UCL corpus used in these
experiments contains 205 sentences with a total of
1,931 word tokens, for a total of 53,070 fixation
events.

In all experiments, the response variable is
log fixation duration (go-past duration for eye-
tracking). Models use the following set of pre-
dictor variables in common use in psycholinguis-
tics: Sentence position (index of word in sen-
tence), Trial (index of trial in series),10 Saccade
Length (in words, eye-tracking only), Word Length
(in characters), Unigram Log Probability, and 5-
gram Surprisal. Unigram Log Probability and
5-gram Surprisal are computed by the KenLM
toolkit (Heafield et al., 2013) trained on Gigaword
4 (Parker et al., 2009). Examples of studies using
some or all of these predictors include Demberg
and Keller (2008); Frank and Bod (2011); Smith
and Levy (2013) and Baayen et al. (2018).

In addition, DTSR enables fitting of the impulse
response to a Rate predictor, which is simply a
vector of ones, one for each observation (Bren-
nan et al., 2012). Rate can be viewed as a decon-
volutional intercept, providing information about
stimulus timing but no information about stimulus
properties. The fitted response to Rate is an esti-
mate of the baseline response of the system, with
expected deviation from that baseline governed by
the estimated responses to the other predictors,
which vary from stimulus to stimulus. Rate esti-
mates also provide insight into the effect of tempo-
ral density of stimulus presentation, since the Rate
responses accumulate for stimuli that impinge on

10Except UCL, which contains isolated sentences, in
which case Trial is identical to Sentence Position.



the system before it has effectively finished re-
sponding to Rate from previous stimuli. Since
without deconvolution Rate is identical to the in-
tercept, it is excluded from non-deconvolutional
baseline models.

Following standard practice in psycholinguis-
tics, by-subject random intercepts along with by-
subject random coefficients for each of these pre-
dictors are included in all models (baseline and
DTSR).11 All predictors are rescaled by their stan-
dard deviations prior to fitting.12 A single DTSR
model was fitted to each corpus.

Existing work provides some expectations
about the relationships of these variables to read-
ing time. Processing difficulty is expected to in-
crease with Saccade Length, Word Length, and 5-
gram Surprisal, and positive linear relationships
have been shown experimentally (Demberg and
Keller, 2008). Unigram Log Probability is ex-
pected to be negatively correlated with reading
times, since more frequent words are expected to
be easier to process. Sentence Position, Trial, and
Rate index different kinds of change in the re-
sponse over time and their relationship has not
been carefully studied, in part for lack of deconvo-
lutional regression tools. Although reading times
tend to decrease over the course of the experi-
ment (Baayen et al., 2018), suggesting an expected
negative effect of Trial, this may be partially ex-
plained by temporal diffusion.

The predictors Saccade Length, Word Length,
Unigram Log Probability, and 5-gram Surprisal
are all motor, perceptual, or linguistic variables
to which the sentence processing system has been
shown to respond upon word fixation (Demberg
and Keller, 2008) and to which the response might
not be perfectly instantaneous. To the extent that
temporally diffuse responses to any of these pre-
dictors exist, it is desirable that the model be
able to capture them. By contrast, Trial and Sen-
tence Position merely index progress through doc-

11By-subject IRF parameters were not used for this study
because they substantially complicate the model and ini-
tial experiments using them showed little benefit on training
data. By-word random intercepts, though common in psy-
cholinguistic studies (Demberg and Keller, 2008), were also
avoided because (1) estimates for Word Length and Unigram
Log Probability are of interest for this study but are context-
free and can therefore be wholly or partially consumed by the
random intercepts and (2) early experiments suggested that
by-word intercepts led to overfitting (based on development
set performance) in both DTSR and baseline models.

12Except Rate, which has no variance and therefore cannot
be scaled by its standard deviation of 0.

uments and sentences respectively. They are not
perceptual or linguistic properties of the experi-
ment, and it is unclear how any diffuse impulse
response attributed to them would be interpreted.
Following prior work (Demberg and Keller, 2008;
Baayen et al., 2018), their presence in the model
is motivated by the possibility of trends in the re-
sponse. For this reason, ShiftedGamma IRFs are
fitted to all predictors except Trial and Sentence
Position, which are assigned a Dirac delta IRF (i.e.
a linear coefficient). Consequently, in plots, the
Trial and Sentence Position estimates are shown
as stick functions at time 0s.

Specifying the Bayesian model requires stating
priors over the IRF parameters. Unfortunately, the
existing literature on human reading does not pro-
vide detailed evidence as to the temporal char-
acteristics of the response to predictors, due at
least in part to the difficulty of estimating these
characteristics without the aid of DTSR. Nonethe-
less, some relevant signposts exist. For example,
studies using many spillover positions have found
the influence of linguistic predictors like surprisal
to decrease monotonically with spillover position
(Smith and Levy, 2013). Although spillover does
not have a clear continuous-time interpretation,
these results support a strictly-decreasing shape
for the prior on the IRF kernel. In addition, the
timecourse of the sentence processing response
has been very carefully studied in the domain of
electroencephalography, with consistent finding of
a number of distinct event-related potentials gen-
erally occurring within one second after stimulus
onset (Sur and Sinha, 2009). Together, these con-
siderations support prior bias towards a stricly-
decreasing exponential-like IRF with response pri-
marily localized to the first second after stimulus
onset. In this study, the prior means used to meet
this desideratum are α = 2, β = 5, and δ = −0.5.
Note that these are simply choices for the prior;
the model can deviate unboundedly far from them
in its parameters as motivated by the data, poten-
tially finding late-peaking responses, more rapidly
decaying responses, and more slowly decaying re-
sponses. In practice, the choice of prior does
not appear to be very constraining, since posterior
means of fitted models often deviate quite far from
the prior means.

In all reading experiments, data were parti-
tioned into training (50%), development (25%)
and test (25%) sets. Outlier filtering was also
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Figure 5: Human data. Estimated IRFs with 95% credible intervals for Natural Stories (left), Dundee
(center) and UCL (right). Intervals are too tight to be seen.

performed. For Natural Stories, following Shain
et al. (2016), items were excluded if they have fix-
ations shorter than 100ms or longer than 3000ms,
if they start or end a sentence, or if subjects missed
4 or more subsequent comprehension questions.
For Dundee, following van Schijndel and Schuler
(2015), unfixated items were excluded as well as
(1) items following saccades longer than 4 words
and (2) starts and ends of sentences, screens, doc-
uments, and lines. For UCL, unfixated items were
excluded as well as (1) items following saccades
longer than 4 words and (2) sentence starts and
ends.13 Partitioning and filtering were applied
only to the response series. The entire predictor
history remained visible to the model.

From a modeling perspective, the primary re-
sults of interest in Experiment 2 are the IRFs them-
selves and the insights they provide into human
sentence processing. However, to check the re-
liability of the DTSR estimates, prediction qual-
ity on unseen data is compared to that of non-
deconvolutional baseline models fitted with LME
and GAM.14 Both baselines are fitted with and
without three preceding spillover positions for
each predictor (baselines with spillover are desig-
nated throughout this paper with the suffix -S).15

13Most of these outlier filters are designed to minimize the
influence of boundary effects like implicit prosody (Breen,
2014). Differences across corpora in exclusion criteria are
driven by a combination of (1) differences in precedent es-
tablished by studies that use these corpora (see citations), (2)
differences in modality, since e.g. unfixated items and long
saccades are only relevant to eye-tracking, and (3) differences
in source data, since e.g. only Dundee provides information
about screen, document, and line boundaries.

14Formulae used to construct each model reported in this
study are available in the associated code repository.

15This number of spillover positions is among the largest

7.2 Results

The fitted IRFs for Natural Stories, Dundee, and
UCL are shown in Figure 5. Effect sizes by corpus
— computed here as the integral of each IRF over
the first 10s — are shown in Table 1, along with
95% credible intervals (CI). The IRFs (curves)
in these plots represent the expected change in
the response over time from observing a unit im-
pulse of the predictor. For example, the Dundee
model estimates that observing a standard devi-
ation of 5-gram surprisal engenders a slowdown
of about 0.05 log ms instantaneously and a slow-
down of about 0.03 log ms 250 ms after stimu-
lus presentation. Because the response is reading
time, positive IRFs represent inhibition and neg-
ative IRFs represent facilitation. In all estimates
the response decreases monotonically in magni-
tude, with a peak instantaneous influence that de-
cays with time. In general, the estimated responses
for Word Length, Unigram Log Probability, and
5-gram Surprisal are positive and concentrated in
the first second after stimulus onset. There are also
large-magnitude negative Rate estimates across all

attested in the psycholinguistic literature because model com-
plexity in LME and GAM increases substantially with each
spillover position added, especially when by-subject random
slopes are included for each spillover position for each vari-
able. Indeed, many of the baseline models run for these ex-
periments are already at the limits of tractability, as shown by
the non-convergence reported in certain cells of Table 2. An
advantage of the DTSR approach is that it can consider arbi-
trarily long histories at no cost to model complexity. While
this permits DTSR to consider much longer histories than
its competitors (in these experiments, 128 timepoints vs. 4),
DTSR is much more constrained in its use of history in that
it must apply the same set of IRFs to all datapoints, while
the baselines essentially fit separate models for each spillover
position.



Natural Stories Dundee UCL
Predictor Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Trial -0.0053 -0.0057 -0.0049 -0.0085 -0.0010 -0.0071 — — —
Sent pos 0.0154 0.0148 0.0160 0.0004 -0.0013 0.0022 0.0340 0.0301 0.0379

Rate -0.1853 -0.1858 -0.1848 -0.0649 -0.0659 -0.0640 -0.0806 -0.0832 -0.0781
Sac len — — — 0.0249 0.0216 0.0207 0.0217 0.0209 0.0225

Word len 0.0020 0.0019 0.0021 0.0107 0.0105 0.0109 -8e-07 -1.7e-5 1.4e-5
Unigram 2.6e-6 -5e-6 2.2e-5 -2.0e-6 -3.9e-5 2.8e-5 1e-06 -4e-6 1.2e-5
5-gram 0.0057 0.0056 0.0059 0.0139 0.0134 0.0145 0.0159 0.0148 0.0171

Table 1: Effect sizes by corpus with 95% credible intervals based on 1024 posterior samples

corpora, with an especially pronounced Rate re-
sponse in Natural Stories. More detailed interpre-
tation of these curves is provided below in Sec-
tion 7.3.

Table 2 shows prediction error from DTSR vs.
baselines fitted to the same feature set. As shown,
DTSR provides comparable or improved predic-
tion performance to the baselines, even against the
-S models which are more heavily parameterized.
DTSR outperforms LME models on unseen data
across all corpora and generally improves upon or
closely matches the performance of GAM (with no
spillover). Compared to GAM-S (with three addi-
tional spillover positions), there is a clear advan-
tage of DTSR for Natural Stories but not for the
eye-tracking datasets. This is likely due to more
pronounced temporal confounds in Natural Sto-
ries (especially of Rate, which the baseline models
cannot estimate) compared to the other corpora.
Note that GAM-S is more heavily parameterized
than DTSR in that it fits multidimensional spline
functions of each spillover position of each pre-
dictor. This makes it difficult to generalize infor-
mation about effect timecourses from GAM fits,
motivating the use of DTSR for studies in which
timecourses are a quantity of interest.

Note also that even in the absence of very dif-
fuse effects that afford prediction improvements,
the ability to measure diffusion directly is a major
advantage of the DTSR model, since it can be used
to detect the absence of diffusion in settings where
it might in principle exist.

As shown in Table 3, pooling across corpora,
permutation testing reveals a significant improve-
ment in MSE on test data of DTSR over each base-
line system (p = 0.0001 for all comparisons).16

16To ensure comparability across corpora with different er-
ror variances, per-datum errors were first scaled by their stan-
dard deviations within each corpus. Standard deviations were
computed over the joint set of error values in each pair of
DTSR and baseline models. The reason DTSR outperforms
GAM-S in the pooled permutation test despite underperform-
ing it on Dundee and UCL is that it gives a large relative

7.3 Discussion

Some key generalizations emerge from the DTSR
estimates shown in Figure 5. The first is the pro-
nounced facilitative role of Rate in all three mod-
els, but especially in Natural Stories. This means
that fast reading in the recent past engenders
fast reading in the present, because (1) observ-
ing a stimulus exerts a large-magnitude, diffuse,
and negative (facilitative) influence on the sub-
sequent response, and (2) the Rate contributions
of the stimuli are additive. This result demon-
strates an important pre-linguistic influence of in-
ertia — a tendency toward slow overall change
in base response rate. This effect is especially
large-magnitude and diffuse in Natural Stories,
which is self-paced reading and therefore differs
in modality from the other datasets (which are
eye-tracking). This suggests that SPR participants
strongly habituate to repeated button pressing and
stresses the importance of deconvolutional regres-
sion for bringing this low-level confound under
control in analyzing SPR data, since it appears to
have a large influence on the response. If left un-
controlled, variation due to Rate (i.e. due to the
timing structure of the stream of stimuli) might
be mis-attributed to other predictors, possibly con-
founding model interpretation.

Second, effects are generally consistent with ex-
pectations: positive effects for Saccade Length,
Word Length, and 5-gram Surprisal, and a neg-
ative effect of Trial. The null influence of Uni-
gram Log Probability is likely due to the presence
in the model of both 5-gram Surprisal (which in-
terpolates unigram probabilities) and Word Length
(which is inversely correlated with Unigram Log
Probability). The biggest departure from prior ex-
pectations is the null estimate for Word Length
in UCL. It appears that the contribution of Word
Length in this corpus can be effectively explained

improvement on Natural Stories, which is itself much larger
than the other two datasets.



Natural Stories Dundee UCL
System Train Dev Test Train Dev Test Train Dev Test

LME 0.0803 0.0818 0.0815 0.2135 0.2133 0.2128 0.2613 0.2776 0.2561
LME-S 0.0789† 0.0807† 0.0804† 0.2099† 0.2103† 0.2095† 0.2509† 0.2754† 0.2557†

GAM 0.0798 0.0814 0.081 0.212 0.2116 0.2111 0.2576 0.2741 0.2538
GAM-S 0.0784 0.0802 0.0799 0.2083 0.2085 0.2078 0.2440 0.2661 0.2457

DTSR 0.0648 0.0655 0.0650 0.2100 0.2094 0.2088 0.2590 0.2752 0.2543

Table 2: Mean squared prediction error by system (daggers indicate convergence warnings)

Baseline DTSR improvement (z-units) p-value
LME 0.059 0.0001∗∗∗

LME-S 0.054 0.0001∗∗∗

GAM 0.057 0.0001∗∗∗

GAM-S 0.051 0.0001∗∗∗

Table 3: Overall pairwise significance of prediction
improvement from DTSR vs. baselines

by other variables.
Third, the response estimates for Dundee and

UCL (both of which are eye-tracking) are similar,
which suggests that DTSR is discovering replica-
ble population-level features of the temporal pro-
file for eye-tracking data.

Fourth, there is a general asymmetry in degree
of diffusion between low-level perceptual-motor
variables like Saccade Length and Word Length,
whose responses tend to decay quickly, and the
high-level 5-gram Surprisal variable, whose re-
sponse tends to decay more slowly, as shown by
the existence in all corpora of a point in time af-
ter which the 5-gram Surprisal response exceeds
the Saccade Length and Word Length responses
in magnitude. This is consistent with a view
of sentence processing in which perceptual-motor
variables have a faster response because they in-
volve rapid bottom-up computation (e.g. visual
processing or motor planning/execution), while
surprisal has a slower response because it involves
more expensive top-down computations about fu-
ture words given context (Friederici, 2002; Con-
nor et al., 2004; Bonte et al., 2005). While this
outcome is suggested e.g. by the aforementioned
finding that spillover 1 winds up being a stronger
position for a surprisal predictor in the Shain et al.
(2016) models, indicating a diffuse response that
spreads to or even peaks at subsequent words,
DTSR permits direct investigation of these dy-
namics.

8 A note on hypothesis testing

As a Bayesian model, DTSR supports hypothe-
sis testing by querying the variational posterior.

For example, as shown in Table 1, the CI for 5-
gram Surprisal in Natural Stories does not include
zero (rejecting the null hypothesis of no effect),
while the CI for Unigram logprob does (failing
to reject). To control for effects of multicolinear-
ity, one could perform ablative tests of fitted null
and alternative models using non-parametric tests
of predictive performance on in-sample or out-of-
sample data.

However, DTSR estimates are obtained through
non-convex stochastic optimization, which com-
plicates hypothesis testing because of possible es-
timation noise due to (1) convergence to a lo-
cal but not global optimum, (2) imperfect con-
vergence to the local optimum, and/or (3) Monte
Carlo estimation of the test statistic via posterior
sampling. It cannot therefore be guaranteed that
hypothesis testing results are due to differences
in model structure rather than differences in rel-
ative amounts of estimation noise introduced by
the fitting procedure. Thus, hypothesis tests based
on direct comparison of DTSR models rely on
a (possibly incorrect) assumption that the mod-
els are effectively optimal. The empirical results
presented in Section 6 support this assumption by
showing DTSR fits that are consistently close to
the true data generating model, even in the pres-
ence of strongly correlated predictors, suggesting
that non-global optima may not be a severe con-
found in practice. The procedure of statistically
comparing models fitted via non-convex optimiza-
tion is identical to the one typically followed for
model comparison in machine learning (Demšar,
2006), where differences between two models in
performance on held-out data is subjected to sta-
tistical testing, even when the fits are obtained in
a non-convex deep learning setting. The outcomes
of such tests are implicitly conditional on the fit-
ted parameters of each model. The probability of
that the fitted parameters are indeed optimal for a
given experiment can be increased by Monte Carlo
techniques in which multiple randomly initialized
models are fitted and then aggregated, an approach



to which DTSR is also amenable.
However, even in situations where such un-

certainty in hypothesis testing is not acceptable,
DTSR is appropriate for certain important use
cases. First, DTSR can be used for exploratory
data analysis in order to empirically motivate the
spillover structure of the linear model. Spillover
variables can be excluded or included based on the
degree of temporal diffusion revealed by DTSR,
permitting construction of linear models that are
both parsimonious and effective for controlling
temporal diffusion. For example, if the average
trial duration is 300ms and the estimated response
to a predictor is near zero at that point, this could
be used to motivate the exclusion of spillover vari-
ables for that predictor. To overcome the limita-
tion that linear models cannot fit estimates of Rate,
the convolved Rate predictor from the DTSR fit
can be extracted and supplied to the linear model
as a predictor. Second, DTSR can be used to fit
a data transform which is then applied to the data
prior to statistical analysis. This approach is iden-
tical in spirit to e.g. the use of the canonical HRF
to convolve predictors in fMRI models prior to lin-
ear regression (Boynton et al., 1996). The canoni-
cal HRF may be sub-optimal for the data at hand,
yet likelihood maximization and model compari-
son are conditional on it. The same would hold
of linear fits to predictors convolved using DTSR.
However, unlike the canonical HRF, since DTSR
is domain-general, it can be integrated into any
analysis toolchain for time series.

9 Conclusion

This paper presented a variational Bayesian de-
convolutional time series regression method as a
solution to the problem of temporal diffusion in
psycholinguistic time series data and applied it to
both synthetic and human responses in order to
better understand and control for latent temporal
dynamics. Results showed that DTSR can yield
a plausible, replicable, parsimonious, insightful,
and predictive model of a complex dynamical sys-
tem like the human sentence processing response
and therefore support the use of DTSR for psy-
cholinguistic time series modeling. While the
present study explored the use of DTSR to under-
stand human reading times, DTSR can in princi-
ple also be used to deconvolve other kinds of re-
sponse variables, such as the HRF in fMRI mod-
eling (Boynton et al., 1996) or intracranial event-

related potentials (Walter et al., 1964) in oscilla-
tory measures like electroencephalography, sug-
gesting a rich array of potential applications of
DTSR in computational psycholinguistics.
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A Definition of mixed effects DTSR

For expository purposes, in Section 3 the DTSR
model was defined only for fixed effects. How-
ever, DTSR is compatible with mixed modeling
and the implementation used here supports ran-
dom effects in the model intercepts, coefficients,
and IRF parameters. The full mixed-effects DTSR
equations are presented below.

The definitions of X, y, µ, σ, a, b, c, d, F, M ,
N , K, and R presented in Section 3 are retained
for the mixed model definition. The remaining
variables and equations must be redefined to some
extent. Mixed-effects DTSR models additionally
contain the following parameters:

• a vector o ∈ RO of O random intercepts

• a vector u ∈ RU of U fixed coefficients

• a vector v ∈ RV of V random coefficients

• a matrix A ∈ RR×L of R fixed IRF kernel
parameters for L fixed impulse vectors

• a matrix ∈ RR×W of R random IRF kernel
parameters for W random impulse vectors

Random parameters o, v, and are constrained to
be zero-centered.

To support mixed modeling, the fixed and ran-
dom effects must first be combined using addi-
tional utility matrices. Let O ∈ {0, 1}N×O be
a mask matrix for random intercepts. A vector
q ∈ RN of intercepts is:

q
def
= µ+Oo (6)

Let ∈ {0, 1}L×U be an indicator matrix for fixed
coefficients, V ∈ {0, 1}L×V be an indicator ma-
trix for random coefficients, and V′ ∈ {0, 1}N×V

be a mask matrix for random coefficients. A ma-
trix Q ∈ RN×L of coefficients is:

Q
def
= 1 (u)⊤ +V′ diag(v)V⊤ (7)

Let W ∈ {0, 1}L×W be an indicator matrix
for random IRF parameters and W′

1, . . . ,W
′
n ∈

{0, 1}R×W be mask matrices for random IRF pa-
rameters. Then matrices Pn ∈ RR×L for n ∈
{1, 2, . . . , N} are:

Pn
def
= A+ (W′

n⊙)W⊤ (8)

In each equation above, the random effects param-
eters are masked using the random effects filter
associated with each data point. Q and Pn are
then transformed into the impulse vector space us-
ing the indicator matrices V and W, respectively.
This procedure sums the random effects associ-
ated with each data point and adds them to the
population-level parameters.

To define the convolution step, let gl for l ∈
{1, 2, . . . , L} be parametric IRF kernels, one for
each impulse. Convolution is performed by pre-
multiplying the inputs X with L sparse matrices
l ∈ RN×M for l ∈ {1, 2, ..., L}:

(l)[n,∗]
def
= gl

(
b[n] − a⊤; (Pn)[∗,l]

)
⊙ F[n,∗] (9)

Finally, let L ∈ {0, 1}K×L be an indicator ma-
trix mapping the K predictors of X to the corre-
sponding L impulse vectors of the model.17 The

17Predictors and impulse vectors are distinguished because
in principle multiple IRFs can be applied to the same predic-
tor. In the usual case where this distinction is not needed, L
is identity and K = L.



convolution that yields the design matrix of con-
volved predictors X′ ∈ RN×L is then defined us-
ing a product of the convolution matrices, the de-
sign matrix, and the impulse indicator L:

X′
[∗,l]

def
= l XL[∗,l] (10)

The full model mean is the sum of (1) the in-
tercepts and (2) the sum-product of the convolved
predictors with the coefficient parameters:

y ∼ N
(
q+ (X′ ⊙Q)1, σ2

)
(11)


