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Abstract— We propose a sequential and adaptive hypothesis

test that operates in a completely distributed setting, relying on

a sensor network where no single data-fusion center is present.

The test is inspired by Chernoff’s optimal solution, originally

derived in a centralized setting. We compare the performance

of our test with the optimal sequential test in sensor networks

and provide sufficient conditions for which the proposed test

achieves asymptotic optimality, minimizing the expected cost

required to reach a decision plus the expected cost of making a

wrong decision, when the observation cost per unit time tends to

zero. Under these conditions, the proposed test is also shown to

be asymptotically optimal with respect to the higher moments

of the time required to reach a decision.

I. INTRODUCTION

With the boom in the Internet of Things, sensor-network
based solutions have become increasingly popular for in-
ference systems. Their advantages include the increasingly
low cost of the sensors, their embedded computational ca-
pabilities, the inherent redundancy provided by the structure
of the network, and the availability of high-speed wireless
communication channels [1]. In a typical setup, a set of
hypotheses is tested based on the observations collected at
the sensors, and the result of the test is used to choose future
actions to be performed in the network. Applications that
fall in this framework include intrusion and target detection,
and object classification and recognition [2]–[7]. These sys-
tems can be broadly classified into three types: centralized,
decentralized, and completely distributed. In a centralized
setting, the sensors send all of their observations to a
central processor, where the inference task is performed. In
a decentralized setting, the computational capabilities of the
sensors are exploited to perform some amount of preliminary
processing, before sending a limited amount of information
to the central processor. This reduces the communication
overhead, possibly at the price of sub-optimal performance.
In a completely distributed setting, sensors are connected
to each other via communication links, typically forming a
sparse network, and there is no central processing unit. Thus,
the sensors need to perform computations locally, share their
processed data with neighboring sensors, and collectively
reach a decision. A natural question is what kind of local pro-
cessing to perform and what fusion schemes to adopt at the
sensor nodes in order to reduce the communication overhead
while keeping a high level of detection performance. In this
paper we address this question by proposing a completely
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distributed statistical test for sensor networks that generalizes
Chernoff’s optimal one derived in a centralized setting [8].

Hypothesis testing techniques can be broadly classified
as sequential or non-sequential tests, and adaptive or non-
adaptive tests. Our focus is on a sequential and adaptive test.
In a sequential test, the number of observations needed to
take a decision is not fixed in advance, but depends on the
observed data. The test proceeds to collect and process data
until a decision with a prescribed level of reliability can be
made, and an important performance figure — in addition to
the probability of correct decision — is the average number
of observations required to end the test. In an adaptive test,
the sensors’ probing actions are chosen on the basis of the
collected data in a causal manner. Hence, the sensors learn
from the past, and adapt their future probing actions in a
closed-loop fashion.

Our contributions are as follows. We propose a sequential
and adaptive test that generalizes Chernoff’s classic test
to a completely distributed setting. We provide an upper
bound on the test performance in terms of expected risk,
the expected cost required to reach a decision plus the
expected cost of making a wrong decision. We also provide
upper bounds on the higher order moments of the time
required to reach a decision. Finally, we derive bounds on
the best possible performance of any sequential test in sensor
networks and provide sufficient conditions for our test to
retain the same asymptotic optimality of Chernoff’s original
centralized solution. These results extend and build upon our
previous ones for hypothesis testing in a decentralized setting
and in the presence of a fusion center [9].

There is a huge literature on distributed estimation and
detection over networks. We now briefly recall some key
results regarding the fully distributed setting. For references
on sequential and adaptive tests in centralized and decentral-
ized settings see [9]. Various gossip protocols have been pro-
posed for distributed computation of different functions, like
mean, sum, minimum and maximum, of different network
parameters [10]–[15]. These protocols can be divided into
two categories: consensus protocols and running-consensus
protocols. In consensus protocols, estimation of the desirable
parameter occurs after the measurements are collected at the
sensors [10], [11], [13], [14]. On the other hand, in running-
consensus protocols, the sensing of the environment and the
estimation of parameters are performed simultaneously [12],
[15]. Necessary and sufficient conditions for the convergence
are studied in both of these cases [16].

Similarly, protocols for distributed detection are based
on the computation of a belief about a hypothesis and its
propagation over the network occurs in a similar fashion
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as in running-consensus protocols. Works in this area focus
on different strategies to transmit and combine the belief
vectors of the hypotheses over the network, and study the
learning rate of these strategies [17]–[21]. The analysis of
these techniques in terms of expected decision time, however,
has been limited and our work provides an asymptotically
optimal solution for this.

The rest of the paper is organized as follows: Section II
formulates the problem; Section III reviews the Chernoff
test and Section IV introduces its consensus based version;
Section V describes the main idea behind the distributed test
and Section VI presents rigorous theoretical results; Section
VII present the simulations; Section VIII concludes the work.

II. PROBLEM FORMULATION

We consider a distributed sensor network with a fully-
flat architecture without any fusion center. All the com-
munication and the information processing tasks take place
at the node level, and are fully distributed because nodes
exploit only locally available information. The network is
composed by L sensors and is modeled as a graph G (L ,E ),
where the set of nodes L = {1,2, . . . ,L} represents the
L sensors, and the elements of E are the edges, namely
unordered pairs of nodes {(`, j)}, in which (`, j) represents
the communication link between sensors ` and j, ` 6= j.
The inter-sensor communication is allowed only over the
edges E of G (L ,E ). The diameter dG of the network is the
maximum shortest hop-distance between any pair of nodes.
We also denote by hG the shortest height of all possible
spanning trees of G (L ,E ). It is assumed that the network
is connected, namely, there exists a path between any two
sensors ` and j. Thus, dG and hG are both finite.

The state of nature to be detected is one of M exhaus-
tive and mutually exclusive hypotheses {hi}i2[M], where the
short-cut notation [M] = {1, . . .M} is used. At each time
instant, each sensor takes a probing action, selected from a
fixed set of actions S = {ui}i2[M]. We assume that sensors
select their actions independently of each other, and that
the cardinality of the set S is equal to M. Under this latter
assumption, action ui can be interpreted as the “best” action
when the state of nature is hi. All the results of this paper
can be extended to the more general case.

Suppose that the state of nature is hi, and consider sensor
` 2 L . Let uk, k 2 [M], be the probing action taken by
sensor ` at a given time. Then, the probability distribution
of the observation received at the sensor as a consequence
of its probing action is denoted by puk

i,`. Given the true
hypothesis h⇤, the observations received by any sensor are
independent of the observations received by other sensors.
On the other hand, for a given sensor, observations collected
at different time instants are not independent, because the
probing actions are observation-dependent. The sensor learns
from the past and try to select the best action for the future.

The performance measure used in this work – the risk – is
analogous to the one considered in [8]. Under true hypothesis
hi, the risk Rd

i of a sequential test d is defined as follows:

Rd
i = cEd

i [N]+wiPd
i (Ĥ 6= hi), (1)

where N is the time required to reach a global decision in
the network, c is the observation cost per unit time, Ĥ is
the final decision, Ei and Pi are the expectation and the
probability operators computed under H⇤ = hi, and wi is the
cost of a wrong decision. We propose a test for a distributed
sensor network and evaluate its performance in terms of risk
for all i 2 [M], as c! 0. We provide bounds on the higher
moments of the time N required to reach a decision, and
also provide sufficient conditions under which the proposed
test is asymptotically optimal in terms of risk as well as the
higher moments of the decision time N, as c! 0.

We assume that following a sensor’s probing action, the
observation corresponding to the probing action is instantly
available at the sensor. In addition, we assume that the com-
munication links between the sensors are noise free, and the
information sent along these links is instantly available at the
receiving end. The KL-divergence between the hypotheses is
assumed to be finite for the entire action set S, namely, for
all `2 [L] and i, j,k1 2 [M], we have D(p

uk1
i,` ||p

uk1
j,` )<•. Also,

for all `2 [L] and i, j 2 [M], there exists an action uk1 , where
k1 2 [M], such that D(p

uk1
i,` ||p

uk1
j,` )> 0. This assumption entails

little loss of generality, rules out trivialities, and is commonly
adopted in the literature, see e.g. [8]. Also, for all `2 [L] and
i, j,k1 2 [M], we assume E[log(p

uk1
i,` (Y ))/ log(p

uk1
j,` (Y ))]

2 <•.
We shall use of the following notation: if v1 = [v1,1, . . .vk,1]
and v2 = [v1,2, . . .vk,2] are two vectors of same dimension k,
then v1 � v2 means vi,1  vi,2 for all i 2 [k]. In addition, |v1|
is the vector of absolute values of the entries of v1.

III. STANDARD CHERNOFF TEST

We start with considering sensor ` alone, with no interac-
tions with other sensors of the network. The Chernoff test
for this isolated sensor works as follows:

1) At step k� 1, a temporary decision is made, based on
the maximum posterior probability of the hypotheses,
given the past observations and actions. Stated with a
formula, the temporary decision is in favor of hi⇤k�1

if

i⇤k�1 = argmax
i2[M]

P(H⇤ = hi|yk�1
` ,uk�1

` ), (2)

where H⇤ is the true hypothesis, yk�1
` = {y1,`, . . .yk�1,`},

where yi,` is the realization of the observation collected
at time index (step) i, uk�1

` = {u1,`, . . .uk�1,`}, and ui,`
is the realization of the action made at step i.

2) At step k, the action uk,` is randomly chosen among the
elements of action set S, according to the Probability
Mass Function (PMF) Q`

i⇤k�1
, where:

Q`
i⇤k�1

= argmax
q2Q

min
j2Mi⇤k�1

Â
u

q(u)D(pu
i⇤k�1,`

||pu
j,`),

in which Q denotes the set of all the possible PMFs
over the alphabet [M] of S, and Mi⇤k�1

= [M]\{i⇤k�1}.
3) For all i 2 [M], update the probabilities P(H⇤ =

hi|yk
` ,u

k
`).
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4) The test stops at step N if the worst case log-likelihood
ratio crosses a prescribed fixed threshold g , i.e.,

log
pi⇤N,`

(yN
` ,u

N
` )

max j 6=i⇤N p j,`(yN
` ,u

N
` )
� g, (3)

where pi⇤N,`
(yN

` ,u
N
` ) is the posterior probability P(H⇤ =

hi⇤N |y
N
` ,u

N
` ) at sensor `. If the test stops at step N, then

the final decision is hi⇤N . Otherwise, k (k+1), and the
procedures continues from 1).

IV. CONSENSUS BASED CHERNOFF TEST

We propose a version of the above Chernoff test designed
for fully-flat sensor networks, which is referred to as the
consensus-based Chernoff test (CCT). The proposed CCT
consists of three phases: consensus among the sensors re-
garding their cumulative capability to detect hypothesis hi,
i2 [M], performing a Chernoff test locally at each sensor, and
consensus regarding the decision among the sensors. The first
two phases of CCT can be performed in parallel while the
last phase begins after the completion of the first two phases.

In the first phase, the goal of each sensor is to acquire
knowledge about the cumulative capability of the network
to detect hypothesis hi, i 2 [M]. For sensor `, the measure of
the capability to detect hi is given by

vi,` = max
q2Q

min
j 6=i

Â
u

q(u)D(pu
i,`||pu

j,`). (4)

Thus, the cumulative capability of the network to detect
hypothesis hi is

I(i) =
L

Ầ
=1

vi,`, i 2 [M], (5)

and I = [I(1), . . . , I(M)] is the corresponding vector. Since
there is no central entity to facilitate the computation of
the quantities in (5), the sensors use local information and
consensus techniques to acquire this knowledge. Consen-
sus techniques allow to compute the arithmetic mean of
remotely-collected observations by exploiting only informa-
tion locally available to the sensors, see e.g., [10], [11], [13],
[14]. Assuming that the number of sensors L is known to all
the sensors, we use a linear consensus technique to estimate
the arithmetic mean I/L of the cumulative capability, which
multiplied by L provides the desired estimate of I. The
distributed linear consensus technique is of the form

În+1
` = w`,` · În

` + Â
j2N`

w`, j · În
j , (6)

where În
` = [În

` (1), . . . , Î
n
` (M)] is the vector of estimated

cumulative capabilities for M hypotheses at sensor ` and
time instance n, w`, j is the weight assigned by sensor ` to
the estimate of sensor j, and N` = { j|{`, j} 2 E } is the
set of immediate neighbors of sensor ` in G (L ,E ). At
n = 0, the estimated cumulative capabilities are initialized as
Î0
` = [v1,`, . . . ,vM,`], and the initialization Î0

` can be computed
locally at the sensors. Since the sensor ` does not commu-
nicate to sensors { j| j 62N`[{`}}, it follows that w`, j = 0.

Thus, for the network graph G (L ,E ), the linear consensus
technique (6) can be written as

În+1 =W · În, (7)

where În = [În
1 , . . . , Î

n
L ]

T is an L⇥M matrix of the estimate of
the cumulative capability of the network at time instance n
at all sensors, and W is an L⇥L matrix with elements w`, j
where `, j 2 [L]. The matrix W is constrained to belong to

T = {W 2 RL⇥L|w`, j > 0 if j 2N`[{`} else w`, j = 0}.
(8)

The consensus iteration (7) will converge to the mean of
the cumulative capability of the network I/L if and only if
[16]

1

T ·W = 1

T , (9)

W ·1 = 1, (10)

and

R

 
W � 1L⇥1 ·11⇥L

L

!
< 1, (11)

where R(.) denotes the spectral radius, and 1A⇥B is a A⇥B
matrix of all ones. Since the rate of convergence of the con-
sensus scheme (7) is proportional to R(W � 1L⇥1 ·11⇥L/L),
the computation of W can be formulated as a convex opti-
mization problem subject to (8), (9) and (10), and can be
determined using standard techniques [16].

Another challenge in the Phase 1 of CCT is the stopping
rule of the consensus algorithm. Assuming the number of
sensors in the network is known to all the sensors, a localized
stopping rule is proposed in [22]. Using this rule, the first
phase of CCT is summarized in Algorithm 1. As soon as
z` > L+1, sensor ` sends a termination bit m1

t = 1 of Phase
1 to inform its neighbors N` that the consensus to ⇡ I/L has
been reached. When sensor j receives m1

t = 1, it halts the
consensus, scale the estimate În

` by L to get an estimate of I,
and forwards m1

t to its neighbors N j. Using threshold c/L2 at
each sensor (see Algorithm 1), the stopping rule ensures that
the network has reached an uniformly local c/L2-consensus,
i.e. for all ` 2 [L] and j 2N`,

|În
` � În

j |�
c

L2 ·11⇥M.

Therefore, for all `, j 2 [L],

|În
` � În

j |�
c
L
·11⇥M, (12)

because the diameter dG of the network is at most L. After
scaling by L, at termination of Phase 1, for all `, j 2 [L],

|În
` � În

j |� c ·11⇥M. (13)

In the second phase of CCT, all sensors perform a
Chernoff test independently of each other, and compute
log pi⇤n,`(y

n,un)/max j 6=i⇤n p j,`(yn,un). Following the termina-
tion of Phase 1, if at time n and sensor `

log
pi⇤n,`(y

n,un)

max j 6=i⇤n p j,`(yn,un)
� r̂n

i⇤n,` |logc|, (14)
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where r̂n
i⇤n,`

= vi⇤n,`/În
` (i
⇤
n), then the local decision Ĥn

` is
updated in favor of hypothesis hi⇤n , otherwise, it is set to
null. Note that the consensus about I/L in the first phase
is independent of the Chernoff test and the computation
of log-likelihood in the second phase. Hence, these can be
performed in parallel over the network. However, in (14),
the local decision at the sensors requires reliable estimate of
rn

i⇤n,`
= vi⇤n,l/I(i⇤n) which is only attained after the termination

of the first phase. Hence, the local decision Ĥn
` at node ` is

made only after receiving the termination bit m1
t = 1.

Phase 3 follows after the update of the local decision at
the sensors. Each sensor ` communicates its local decision
Ĥn
` , if any, to N`. It also communicates dn

` defined as

dn
` = min{ min

j2N`[{`}
dn�1

j ,xn�1
` }+1, (15)

where for all ` 2 [L], d0
` = 0 and

xn
`=

8
><

>:

xn�1
` +1 if 8 j 2N`, Ĥn

` = Ĥn
j and Ĥn

` = Ĥn�1
` ,

1 if 8 j 2N`, Ĥn
` = Ĥn

j and Ĥn
` 6= Ĥn�1

` ,

0 otherwise.
(16)

Say xn
` is some constant k, then the decision of N` is the

same as the local decision Ĥn
` of sensor ` for the past k time

instances. The value of dn
` is responsible for the percolation

of this information along the sensor network. Using (16),
if a sensor j does not report its local decision, then xn

` = 0
in the neighborhood of j. A sensor ` stops the test at time
instance N if dN

` > L+1. This ensures that there exists a time
instance kN at which the local decision of all the sensors is
same i.e. min j2[L] xk

j � 1 (Appendix I of [23]). Additionally,
if dN

` > L+ 1, then sensor ` informs its neighbors N` that
the final decision is ĤN

` , and sends a termination bit m3
t = 1

of Phase 3 to terminate the test. When a sensor j receives
m3

t = 1 and the final decision, it halts the test and forwards
m3

t along with the final decision to its neighbors N j. All the
sensors will receive m3

t = 1 after at most dG time instances.

Algorithm 1 Phase 1 of CCT
Initialize n = 0, and For all ` 2 [L], Î0

` , y` = 0 and z` = 0
while True do

For all ` 2 [L], broadcast local information Î(n)` and z`.
Update the local cumulative capability using (6).
z` = min{y`,min j2N`[{`} z j}+1
if z` > L+1 then

Sensor ` broadcasts m1
t = 1 and stop updating.

Break While;
end if

if max j2N`
|Î(n)` � Î(n)j |� c ·11⇥M/L2

then

y` = y`+1
else

y` = 0
end if

n = n+1
end while

In the literature, distributed hypothesis testing is performed
while communicating the posterior probabilities for all hy-
potheses which are real valued vectors over the network
[17]–[21]. On the other hand, CCT only communicates the
local decision of the sensors. CCT requires communication
of În

` , a real valued vector, in its first phase to find the
cumulative capabilities of the network. However, since the
termination time of Phase 1 is bounded [23], the number
of communications of real valued vectors is bounded. Thus,
CCT is parsimonious in terms of the communication in
comparison to the schemes in the literature [17]–[21].

V. INFORMAL DISCUSSION

The key idea behind the CCT is to determine the individual
capabilities of the sensors for detecting the hypotheses. These
capabilities — that depend on the true hypothesis h⇤ — are
captured by vi,`. All the sensors in the network determine
their cumulative capabilities to detect any hypothesis. Since
there is no central entity to facilitate the communication
of this information, they use a consensus algorithm, first
phase of CCT, to acquire this information. If the consensus
algorithm stops at time instance N, then r̂N

i,` denotes the
estimated fraction of the capability contributed by sensor `
for hypothesis hi. To minimize the expected time to reach a
decision, it is desirable to determine the threshold (see right
hand side of (14)) for each sensor ` such that all the sensors
require roughly the same time, following the termination of
Phase 1, to reach the triggering condition (14). Given the
estimate of cumulative capabilities ÎN , this is analogous to
dividing the task of hypothesis testing among the sensors
based on their speed of performing the task, such that all the
sensors finish their share of the task roughly at the same time.
Phase 3 is a localized stopping criterion of the Chernoff test,
and ensures the sensors stop the test as they reach the same
decisions. xn

` and dn
` capture this information mathematically,

and percolate it over the network.

VI. THEORETICAL RESULTS

In the following theorems, N indicates the time required to
make a decision. The superscripts C and d refer to the CCT
and to a generic decentralized sequential test, respectively.
The ergodic coefficient of the matrix W is

h(W ) = min
i 6= j

L

Â
k=1

min{wi,k,w j,k}.

The proofs of theorems can be found in the appendices of
[23]. Part (i) of Theorem 2 states that the probability of
making a wrong decision can be made as small as desired
by an appropriate choice of c. Part (ii) provides a bound on
the expected time to reach the final decision, and part (iii)
bounds the risk as an immediate consequence of parts (i) and
(ii). (iv) presents the bound on the higher moments of the
decision time N of CCT. First, we present a lemma which
is used in the proof of Theorem 2.

Lemma 1: If the network is connected, then 0 <
h(W hG

)< 1 [24, Proposition 1].
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Theorem 2: (Direct). The following statements hold:
(i) For all c2 (0,1) and for all i2 [M], given that hypothesis
hi is true, the probability that the CCT makes an incorrect
decision is bounded as

PC
i (Ĥ 6= hi)min{(M�1)c

1
1�c/I(i) ,1}.

(ii) For all i 2 [M], given that hypothesis hi is true, the
expected decision time is

EC
i [N]

 (1+o(1))max

(
hG · log(c/max j2[L] I( j))

log
�
1�h(W hG )

� ,
|logc|

I(i)� c

)
,

(17)

as c! 0.
(iii) Combining (i) and (ii), the risk defined in (1) verifies

RC
i (1+o(1))max

(
hG · |log(1/max j2[L] I( j))|

|log(1�h(W hG ))|
,

1
I(i)� c

)

· c|logc|,
(18)

as c! 0.
(iv) For all ` 2 [L], i, j,k1 2 [M] and r � 2, if
E
⇥

log p
uk1 ,`
i,` (Y )/p

uk1 ,`
j,` (Y )

⇤r
< •, then

EC
i [N

r]


 
(1+o(1))max

(
hG · log(c/max j2[L] I( j))

log(1�h(W hG ))
,
|logc|

I(i)� c

)!r

.

(19)

as c! 0.

The following theorem provides a converse result.
Theorem 3: (Converse). For any sequential test d , if for

all i 2 [M] the probability of missed detection satisfies

Pd
i (Ĥ 6= hi) = O(c | log(c)|), as c! 0, (20)

then we have

Ed
i [N

r] �
⇣
(1+o(1))

|logc|
I(i)

⌘r
, as c! 0. (21)

Using the above result of r = 1, we have

Rd
i � (1+o(1))

c |logc|
I(i)

, as c! 0. (22)

The following result is a consequence of Theorems 2 and 3. It
provides a sufficient condition for the asymptotic optimality
of the CCT as c! 0.

Theorem 4: Let d ⇤ be the optimal sequential test in the
sensor network. For the CCT , if the maximum in (17) is
|logc|/(I(i)� c), then for all i 2 [M] we have

lim
c!0

EC
i [N]

Ed ⇤
i [N]

= 1, (23)

lim
c!0

RC
i

Rd ⇤
i

= 1. (24)

The following corollary provides sufficient conditions for
which the maximum in (17) results in |logc|/(I(i)� c).

Fig. 1. Example of a sensor network for L=10

Corollary 4.1: The following are sufficient conditions for
CCT to be asymptotically optimal. As c! 0,
(i) For all i 2 [M], we have

I(i)
��� log

�
max
j2[M]

I( j)
����

��� log
�
1�h(W hG

)
����

hG
. (25)

(ii) For all i 2 [M], we have

I(i)
��� log

�
max
j2[M]

I( j)
����

��� log
�
1�aG ·W hG ����

hG
, (26)

where aG is the number of spamming trees of G (L ,E ) of
height hG , and W = min{w`, j : w`, j > 0}.
(iii) For all i 2 [M], we have

I(i)
��� log

�
max
j2[M]

I( j)
����

��� log
�
1�aG ·W dG ����

dG
. (27)

We now briefly discuss the physical significance of the
sufficient conditions presented in Corollary 4.1. The con-
sensus in Phase 1 of CCT should be reached before the
triggering condition (14) for Chernoff Test is satisfied. In
other words, consensus along the network should be faster
than the time required by the Chernoff test to accumulate
sufficient information to make a decision.

VII. SIMULATION RESULTS

We now evaluate the performance of CCT for different
sensor networks. Given a number of sensors L, we connect
dL/2e of them to form a ring topology, and the remaining
ones are randomly connected to the sensors in the ring. An
example network is depicted in Figure 1. We assume the
number of hypotheses is M = 3. The probability distribution
puk

i,` is a Bernoulli distribution with parameter p, which is
selected uniformly at random from (0,1/3),(1/3,2/3) and
(2/3,1) for hi = 1,2 and 3 respectively. In Figure 2, the
expected decision time of CCT increases with the number of
sensors. Using Part (ii) of Theorem 2, as L increases, there is
a trade-off between the time required to reach consensus in
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Fig. 2. Performance of CCT for different number of sensors

Phase 1 and the time required to reach the local decision
(see (14)) in Phase 2. As L increases, the diameter of
the network increases thus the consensus in Phase 1 will
require more time. On the other hand, as L increases, the
cumulative capabilities of the network will increase, thus,
reducing the time required to reach the local decision (see
(14)). According to Figure 2, the time required to reach
consensus in Phase 1 of CCT becomes the dominating factor
in the decision time for this network. This is in accordance
with the theoretical bounds in Part (ii) of Theorem 2. The
first term in the max operation in (17), corresponding to the
time of Phase 1, becomes dominant, and increases with L.

Another key observation from Figure 2 is that the expected
decision time reduces with the increase in observation cost
per unit time c. As c increases, the stopping criterion of Phase
1 and the decision criterion in Phase 2 i.e. (14) are relaxed,
and can be reached earlier. The observation is in accordance
with the theoretical bounds provided in Theorem 2.

VIII. FINAL REMARKS

The literature of distributed hypothesis testing has mainly
focused on the communication of real-valued belief vectors,
which is analogous to communicating posterior probability
of the hypotheses, over the network. In contrast, our solution
is parsimonious in terms of communication. In Phase 2 and
Phase 3 of CCT, communication is limited to local decisions
and (15), which can be encoded in log2(M) + log2(L) + 1
bits. Although Phase 1 of CCT requires communication of
real valued vectors, however, the number of these commu-
nications is bounded.

In the literature, the analysis of distributed hypothesis
testing schemes is limited to the asymptotic learning rate
as time tends to infinity. In contrast, in our work we have
studied the probability of missed detection, expected decision
time, and the higher moments of the decision time.
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