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Abstract— This paper characterizes synchronization perfor-
mance and total transient power losses in droop-controlled
microgrids with heterogeneously rated inverters. We consider
frequency and voltage dynamics for a Kron-reduced network
model with highly inductive lines in the presence of impulse
disturbances. We quantify the total transient frequency and
voltage deviations from synchrony and the associated total
transient resistive losses through the L2 norm of the system
output. We derive closed-form expressions for this norm that
depend on the heterogeneous droop gains and properties of
the network. Our results indicate the importance of inertia in
mitigating transient frequency deviations. We also show that if
disturbances are uniform, the transient resistive losses are given
by a monotonically decreasing function of the active power
droop gains regardless of the network topology. Numerical
examples further analyze these losses, revealing that they can
be amplified by high droop gain heterogeneity. This relationship
indicates that non-uniform power sharing requirements can
limit performance.

I. INTRODUCTION

Stable operation of a microgrid requires frequency and
voltage synchronization. Power sharing, which is the distri-
bution of power demand between the generation units, is also
an important measure of the system efficiency [1]. Stability
and power sharing in inverter based microgrids are typically
achieved through droop control; a decentralized proportional
control action on the frequency and voltage [2]. Conditions
ensuring frequency synchronization and active power sharing
have been obtained for microgrids modeled through their
frequency dynamics, assuming constant voltages [3]. Models
also including voltage dynamics yield conditions for both
frequency and voltage synchronization [4], [5] as well as
reactive power sharing [6]. Recent work uses a higher order
model accounting for line current dynamics to obtain more
comprehensive stability conditions [7].

Other measures of system performance and efficiency
include robustness and the transient resistive power losses
sustained in maintaining synchrony when the system is
subjected to distributed disturbances. These transient resistive
losses have been investigated using the linearized swing
dynamics of a Kron-reduced transmission network [8], a
structure preserving network model of a renewable energy
integrated power system [9], as well as a model of droop-
controlled microgrids with coupled frequency and voltage
dynamics [10]. Related work uses H2 norm based analysis to
examine the robustness in second order consensus networks
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[11], [12] and low-inertia power systems with constant
voltage [13]. Control nodes [14] and virtual inertia placement
[15] have been proposed to optimize the synchronization
performance in constant voltage transmission grids. Dynamic
control strategies such as distributed PI-control have been
shown to reduce transient resistive losses [16]. A dynamic
droop control based on lead-lag compensation has also been
shown to improve noise and delay robustness [17].

Much of the literature focuses on identical nodal dynam-
ics, which simplifies the analysis significantly while still
providing insight into the robustness of droop control [10].
However, this simplified setting prevents the investigation of
a number of important situations that can arise in practice.
For example, power sharing constraints resulting from a load
demand that is heterogeneous across the network lead to het-
erogeneous droop gains [3], [5]. There has been some work
in transmission systems with heterogeneous inertias, which
provides a step response characterization of the synchronous
system frequency [18]. In a similar setting, the interaction be-
tween the network topology and this synchronous frequency
is studied [19]. However, extensions to microgrids which are
typically far less uniform by design have yet to be addressed.

In this work we analyze the robustness of droop-controlled
microgrids with heterogeneously rated inverters modeled by
both frequency and voltage dynamics. We consider two
performance measures in the presence of distributed impulse
disturbances. The first one quantifies the total transient
frequency and voltage deviations from the synchronous state
while the other quantifies the associated total transient re-
sistive losses. Both measures are captured through the L2

norm of the system output. We derive closed-form solutions
for these measures in terms of the heterogeneous droop gains
and properties of the network for the case of highly inductive
lines (i.e. decoupled frequency and voltage dynamics). We
show that the transient deviations from synchrony prevail
even in the hypothetical case of infinite droop gains (i.e.
infinite control action), which points to the importance of
inertia in further mitigating these oscillations. We also show
that if disturbances are uniform the transient resistive losses
are a monotonically decreasing function of the active power
droop gains regardless of network topology. On the other
hand, these losses depend on both the reactive power droop
gains and the network topology due to the voltage dynamics.
Numerical examples further analyzing the losses reveal that
they can be amplified by high droop gain heterogeneity.
These simulations also provide insights into how non-
uniform line susceptances affect judicious selection of the
droop gains for decreasing the losses.



The remainder of the paper is organized as follows.
Section II describes the system model, performance measures
and the structural assumptions undertaken. Section III pro-
vides our main results characterizing the system performance
based on total transient frequency and voltage deviations
as well as resistive losses. Section IV provides numerical
examples. Section V concludes the paper.

II. PROBLEM FORMULATION

A. Linearized Model of the Microgrid Dynamics

We adopt the framework in [5], [10] and consider a
Kron-reduced network [20] of inverters over a weighted,
undirected, and connected graph G = {N , E}. Here
N = {1, ..., N} is the set of nodes representing the inverters
and E = {Eik} is the set of edges representing the lines.

The active and reactive power injections Pi and Qi into
the network at node i are given by

Pi = −giiV 2
i +

∑

i∼k
gikViVk cos θik + bikViVk sin θik, (1a)

Qi = biiV
2
i +

∑

i∼k
gikViVk sin θik − bikViVk cos θik, (1b)

where Vi and θi are the respective nodal voltage magnitude
and phase angle and θik := θi−θk if i ∼ k (i.e. Eik ∈ E). The
conductance and susceptance of each line are respectively
denoted by gik, bik > 0. Here gii = ḡi +

∑
i∼k gik, and

bii = b̄i+
∑
i∼k bik with shunt conductance and susceptance

ḡi and b̄i, respectively. We assume that shunt elements are
purely inductive [6], i.e. ḡi = 0, and b̄i ≥ 0. Assuming small
deviations from the equilibrium, the first-order Taylor series
expansions of (1a) and (1b) around (V ∗i = V ∗k = 1, θ∗ik = 0)
lead to

∆Pi ≈
∑

i∼k
(bik∆θik − gik(∆Vi −∆Vk)) , (2a)

∆Qi ≈ 2b̄i∆Vi +
∑

i∼k
(gik∆θik + bik(∆Vi −∆Vk)) , (2b)

where the ‘∆’ terms indicate the deviation of the respective
variable from its equilibrium value. In the following, by an
abuse of notation we omit the ‘∆’ from these variables.

Remark 1: By the choice of θ∗ik = 0 we assume that the
phase angle differences are small at equilibrium, which is a
common assumption in power systems analysis [8], [10].

Droop control aims to operate each inverter at a common
frequency ω∗ and attain the desired nodal voltage magnitude
V ∗i , active power P ∗i and reactive power Q∗i via the following
control laws [2]:

ωi = ω∗ − kPi
(P̂i − P ∗i ), Vi = V ∗i − kQi

(Q̂i −Q∗i ), (3)

where ωi is the frequency, P̂i and Q̂i are the respective
active and reactive power measurements, and kPi

> 0 and
kQi

> 0 are the active and reactive power droop gains
at node i. We assume that the power measurements are
governed by first order dynamics [10] with time constants
τPi

, τQi
. Differentiating (3) with respect to time gives the

following closed-loop dynamics at each node i

θ̇i = ωi, τPi ω̇i = −ωi + ω∗ − kPi(Pi − P ∗i ), (4a)

τQi
V̇i = −Vi + V ∗i − kQi

(Qi −Q∗i ). (4b)

Using equations (2), (4) and introducing the disturbance
input w, the closed-loop dynamics can be written as

ẋ = Ax+Bw, (5)

where x :=
[
θT ωT V T

]T
, w :=

[
(wP )T (wQ)T

]T
,

A :=




0 I 0
−T−1

P KPLB −T−1
P T−1

P KPLG
−T−1

Q KQLG 0 −T−1
Q (CQ +KQLB)


,

B :=

[
0 T−1

P 0
0 0 T−1

Q

]T
, KP :=diag{kPi}, KQ :=diag{kQi},

TP := diag{τPi
}, TQ := diag{τQi

}, CQ = diag{cQi
}.

Here, diag{·} denotes the diagonal matrix of the scalars
in its argument and cQi = 1 + 2b̄ikQi . We define the
weighted Laplacian matrix LB as: [LB ]ii :=

∑
i∼k bik,

[LB ]ik := −bik if i ∼ k, [LB ]ik := 0 otherwise.
LG is defined similarly using the conductances gik. The
eigenvalues of LB are denoted by 0 = λ1 < λ2 ≤ · · · ≤ λN .

We will evaluate the system performance in the presence
of a distributed impulse disturbance input of the form

w(t) = δ(t)w0, (6)

where δ(t) denotes the Dirac delta function and w0 ∈ RN
defines the input magnitude and direction.

Remark 2: The special case of (6) in which E{w0wT
0 } =

I is equivalent to a white noise input u(t) with unit covari-
ance, i.e. E{u(0)u(t)T } = δ(t)I , which naturally arises in
H2 norm based analysis [8]. Therefore, (6) is a generalization
that can model spatially correlated disturbance inputs.

B. Performance Measures

In this section we introduce the two performance measures
that are the subject of this work; the total transient devi-
ation from frequency and voltage synchrony, and the total
transient resistive power losses. The former is a measure of
the efficiency of system synchronization in the presence of
disturbances while the latter can be interpreted as the “cost”
of this synchronization.

1) Deviation from Synchrony: In the following analysis
we will show that the frequency can be decomposed as

ω(t) = ω̄(t)1 + ω̃(t)

in analogy with transmission networks [18], where ω̄(t) ∈ R
denotes the synchronous system frequency and ω̃(t) ∈ RN
denotes deviations from it. As discussed later, a similar
decomposition is not always possible for V (t) if the inverter
ratings are heterogeneous, therefore we consider voltage
deviations from the equilibrium. For the sake of simplicity,
we also use the term “synchrony” for the voltage dynamics
by an abuse of terminology. Combining these ideas the total
transient deviation from synchrony can be quantified by

Πsync =

∫ ∞

0

‖ω̃(t)‖22dt+

∫ ∞

0

‖V (t)‖22dt =: ‖ysync‖2L2
, (7)

where ysync :=
[
ω̃T V T

]T
defines the performance output

and ‖·‖2 denotes the Euclidean norm. The frequency part of



the measure in (7) was used in [18] to quantify the deviations
from synchrony in a transmission network with heteroge-
neous generator inertia, subjected to step disturbances.

2) Transient Resistive Power Losses: The instantaneous
resistive power loss incurred across each line Eik is

Πloss
ik = gik|vi − vk|2, (8)

where vi = Vie
jθi is the complex voltage. Using standard

trigonometric identities (8) becomes Πloss
ik = gik(V 2

i +
V 2
k −2ViVk cos θik). A second order Taylor series expansion

around (V ∗i = V ∗k = 1, θ∗ik = 0) leads to

Πloss
ik ≈ gik[(Vi − Vk)2 + (θi − θk)2]. (9)

The corresponding total transient resistive power losses are
given by Πloss =

∫∞
0

∑
i∼k Πloss

ik (t)dt. Using (9) and re-
writing this expression in terms of LG gives

Πloss≈
∫ ∞

0

[
V (t)TLGV (t) + θ(t)TLGθ(t)

]
dt=‖yloss‖2L2

, (10)

where the output, yloss :=

[
L

1
2

G 0 0

0 0 L
1
2

G

]
x.

C. Decoupled Dynamics for Performance Analysis

We will employ the following assumptions from [10],
which are common in power system performance analysis.

Assumption 1: The power measurement time constants
τPi and τQi are uniform across all inverters, i.e. τPi = τP
and τQi

= τQ ∀i ∈ N .
Assumption 2: Shunt susceptances are uniform across all

nodes, i.e. b̄i = b̄ ∀i ∈ N .
Assumption 3: The conductance-to-susceptance ratio α is

uniform for all edges, i.e. α := gik
bik
∀Eik.

Assumption 4: The transmission lines are inductive, i.e.
the conductance-to-susceptance (resistance-to-reactance) ra-
tio α is small, α ≈ 0.

Remark 3: Assumption 3 is reasonable in this setting due
to the increased uniformity in node degrees in Kron-reduced
networks [22] and the uniformity of physical line properties
in microgrids. Although Assumption 4 is not applicable in
general, it is reasonable for an inverter-based network since
inverter output impedances are highly inductive [6] and can
dominate line resistances in a Kron-reduced model. Although
the analysis easily extends to the case of non-uniform shunt
susceptances, we use Assumption 2 for notational simplicity.

Assumtion 3 implies that LG = αLB which is then
combined with assumptions 1, 2 and 4 so that (5) leads to
the decoupled phase-frequency and voltage dynamics


θ̇
ω̇

V̇


=




0 I 0
− 1
τP
KPLB − 1

τP
I 0

0 0 − 1
τQ

(CQ +KQLB)





θ
ω
V


+

+




0 0
1
τP
I 0

0 1
τQ
I


w, yloss=

√
α

[
L

1
2

Bθ

L
1
2

BV

]
, ysync=

[
ω̃
V

]
. (11)

This decoupling between phase and voltage as well as fre-
quency and voltage will enable us to quantify the individual

contributions of frequency and voltage dynamics to the
performance measures in (7) and (10).

III. PERFORMANCE OF HETEROGENEOUSLY RATED
INVERTERS

In this section, we employ the framework introduced in
[18] to investigate the effect of heterogeneous inverter ratings
on the performance of droop-controlled microgrids.

A. Diagonalization of the Closed-Loop System

We begin by defining a parameter called the node rating.
When considering frequency and voltage dynamics individ-
ually we respectively choose the node ratings as fPi

:=
kPi

kP

and fQi
:=

kQi

kQ
for i = 1, . . . , N such that they determine

the ratio of each droop gain to predetermined constants
kP > 0 and kQ > 0.

By taking the Laplace transform of (4) and excluding the
power flow terms, we define two open-loop transfer functions
associated with each node; one corresponding to the phase
and the other to the voltage dynamics

gPi (s) :=
kPi

τP s2 + s
and gQi (s) :=

kQi

τQs+ 1
, i = 1, . . . , N.

These can be written in terms of the node ratings as

gPi (s) = fPig
P
0 (s) and gQi (s) = fQig

Q

0 (s), i = 1, . . . , N,

where gP0 (s) and gQ0 (s) are node-independent reference trans-
fer functions with fixed parameters (independent of kPi

or
kQi ). We specify these reference transfer functions as

gP0 (s) =
kP

τP s2 + s
and gQ0 (s) =

kQ
τQs+ 1

.

Combining the nodal open-loop transfer functions leads to
the open-loop transfer function of the system

G(s) :=

[
diag{gPi (s)}

diag{gQi (s)}

]
= Fg(s), (12)

where F :=

[
FP

FQ

]
, FP := diag{fPi

}, FQ :=

diag{fQi
} and g(s) :=

[
gP0 (s)I

gQ0 (s)I

]
.

Based on the state equation in (11), the closed loop system
is given by the block diagram in Figure 1. Here, we introduce
the feedback matrix

L :=

[
LB

2b̄I + LB

]
,

which determines the power flows emerging from the under-
lying interconnection graph; as well as the matrix of droop

gains K :=

[
KP

KQ

]
. Due to (12), G(s) = F 1

2 g(s)F 1
2

K−1 + G(s)

L

w(s)
[
θ(s)
V (s)

]

−

1

Fig. 1: Closed-loop microgrid dynamics.



F− 1
2 Γ + g(s)

L

F 1
2

F 1
2F 1

2

w(s)
[
θ(s)
V (s)

]

−

1

Fig. 2: Closed-loop dynamics with the open-loop determined by the refer-
ence transfer functions and the scaled Laplacians in the feedback.

which along with block manipulations leads to the block

diagram in Figure 2, where Γ :=

[
1
kP
I

1
kQ
I

]
. We use a

scaled Laplacian [18] defined by

LF := F 1
2LF 1

2 =

[
F

1
2
P LBF

1
2
P

F
1
2
Q (2b̄I+LB)F

1
2
Q

]
, (13)

which is symmetric, therefore orthogonally diagonalizable

LF := SΛST , (14)

where S ∈ RN×N and SST = I , and Λ ∈ RN×N
is diagonal. Due to the block diagonal form of (13), the
decomposition in (14) is also block diagonal with

S =

[
R

U

]
and Λ =

[
ΛP

ΛQ

]
,

which equivalently results in the orthogonal diagonalizations

LF =:

[
LP

LQ

]
=

[
RΛPR

T

UΛQU
T

]
. (15)

This decomposition and block manipulations lead to the di-
agonalized closed-loop dynamics shown in the block diagram
of Figure 3 with the transfer function

T (s) = F 1
2SH(s)STF− 1

2 .

F− 1
2 ST Γ + S g(s) ST

Λ

S F 1
2

w(s)
[
θ(s)
V (s)

]

−

1

Fig. 3: Diagonalized Closed-loop dynamics.

The diagonalized transfer function H(s) can be partitioned
with respect to phase-frequency and voltage dynamics as

H(s) =

[
HP (s)

HQ(s)

]
.

We next describe each of these blocks.
1) Phase-Frequency Dynamics: Since FP is full rank, LP

is positive semi-definite and rank N − 1 due to (13). There-
fore the decomposition in (15) leads to ΛP =: diag {λPi }
and 0 = λP1 < λP2 ≤ · · · ≤ λPN .

The transfer function from wP (s) to θ(s) in Figure 3 is

TθwP (s) = F
1
2

P RH
P (s)RTF

− 1
2

P , (16)

where HP (s) = diag {hPi (s)} and for i = 1, . . . , N ,

hPi (s) =
1

kP

(
gP0 (s)

1 + λPi g
P
0 (s)

)
=

1

τP s2 + s+ λPi kP
. (17)

Given the partition R =
[
r1 R⊥

]
, the first eigenvector of

LP can be written as r1 = γPF
− 1

2

P 1, with the normalization

parameter γP =
(∑N

i=1 f
−1
Pi

)− 1
2

and 1 =
[
1 . . . 1

]T
.

Using (16), the phase signal due to input (6) is given by

θ(s) =: θ̄(s)1 + θ̃(s) (18)

= F
1
2

P r1︸ ︷︷ ︸
=γP 1

hP1 (s)rT1 F
− 1

2

P wP
0 + F

1
2

P R⊥H̃
P (s)RT⊥F

− 1
2

P wP
0 ,

where R⊥ =
[
r2 . . . rN

]
, H̃P (s) := diag{hPi (s)}i=2,...,N .

We note that the frequency signal can be obtained from

ω(s) = sθ(s) =: ω̄(s)1 + ω̃(s), (19)

which is characterized by the dynamic terms

hP, ωi (s) := shPi (s), i = 1, . . . , N. (20)

Since rT1 R⊥ = 0, we have 1TF−1
P ω̃(s) = 0. Then multiply-

ing the equation above from the left by 1TF−1
P leads to the

expression for the synchronous frequency ω̄(t)

ω̄(t) =

∑N
i=1 f

−1
Pi
ωi(t)∑N

i=1 f
−1
Pi

=

∑N
i=1 k

−1
Pi
ωi(t)∑N

i=1 k
−1
Pi

.

This is analogous to the center of inertia (COI) in transmis-
sion networks [18] in the sense that the averaging weights are
the inverses of active power droop gains instead of inertias.

The following result proves the stability of the phase-
frequency dynamics.

Proposition 1: The phase and frequency deviations θ̃(t)
and ω̃(t) are asymptotically stable.

Proof: First, observe from (18) and (19) that the
stability of θ̃ and ω̃ are respectively determined by hPi (s)
and hP, ωi (s) for i = 2, . . . , N . Then the result follows from
(17) and (20) by noting that λPi > 0 for i = 2, . . . , N .

2) Voltage Dynamics: Since FQ is full rank, LQ is
positive definite and full rank due to (13). Therefore the
decomposition in (15) leads to ΛQ = diag {λQi } and
0 < λQ1 ≤ λQ2 ≤ · · · ≤ λQN .

The transfer function from wQ(s) to V (s) in Figure 3 is

TV wQ(s) = F
1
2

QUH
Q(s)UTF

− 1
2

Q , (21)

where U =
[
u1 . . . uN

]
, HQ(s) = diag {hQi (s)} and

hQi (s) =
1

kQ

(
gQ0 (s)

1 + λQi g
Q

0 (s)

)
=

1

τQs+ λQi kQ + 1
, (22)

for i = 1, . . . , N . Using (21) the voltage due to input (6) is

V (s) = F
1
2

QUH
Q(s)UTF

− 1
2

Q wQ

0 =
N∑

i=1

hQi (s)ξi, (23)

where ξi =
(
uTi F

− 1
2

Q wQ

0

)
F

1
2

Qui ∈ RN . In contrast to the
frequency in (19), the voltage signal may not include an
inherent synchronous mode characterized by 1 if the reactive
power droop gains are heterogeneous. This is shown in
Proposition 2 and for this reason we consider the deviations
from the equilibrium voltage as defined by (7).

Proposition 2: Suppose that ui has non-zero entries for
all i such that ξi 6= 0. If FQ 6= ζI for all ζ > 0, then
ξi /∈ span{1} for all i such that ξi 6= 0.



Proof: Using (23) consider ξi =
(
uTi F

− 1
2

Q wQ

0

)
F

1
2

Qui 6=
0. Assume that ξi ≡ βi1 and 0 6= βi ∈ R for some i such
that ξi 6= 0. Then noting that ui = ηiF

− 1
2

Q 1 for 0 6= ηi ∈ R,

we have λQi ui = LQui = ηiF
1
2

Q (2b̄I + LB)1 = 2b̄FQui,

where we used (13) and (15). This implies that FQ =
λ
Q
i

2b̄
I

since by assumption ui has non-zero entries.
The following result proves the stability of the voltage

dynamics.
Proposition 3: The voltage V (t) is asymptotically stable.

Proof: The result follows from (22) and (23) by noting
that λQi > 0 for i = 1, . . . , N .

Next we study the deviations from synchrony.

B. Deviation from Synchrony

In this subsection, we study the synchronization perfor-
mance of (11). The following lemma provides a preliminary
result that will be used in the analysis that follows.

Lemma 1: The measure Πsync in (7) is given by

Πsync = zT0 Ψz0,

where z0 :=
[
(zP0 )T (zQ0 )T

]T
, zP0 = RT⊥F

− 1
2

P wP
0 and

zQ0 = UTF
− 1

2

Q wQ

0 . The matrix Ψ :=

[
ΨP

ΨQ

]
has the

entries

ψPij = φPij 〈hP, ωi+1, h
P, ω

j+1〉, i, j = 1, . . . , N − 1, (24)

ψQij = φQij 〈hQi , hQj 〉, i, j = 1, . . . , N, (25)

where φPij and φQij respectively denote the entries of
ΦP := RT⊥FPR⊥ and ΦQ := UTFQU . The inner products
in (24) and (25) are given by

〈hP, ωi , hP, ωj 〉 =
λPi + λPj

2τP (λPi + λPj ) + kP τ2
P (λPi − λPj )2

, (26)

〈hQi , hQj 〉 =
1

2τQ + kQτQ(λQi + λQj )
. (27)

Proof: See Appendix.
Note that Πsync depends on the heterogeneous droop gains
through the eigenvalues λPi and λQi . Lemma 1 is next used
to compute Πsync for homogeneous inverter ratings.

Theorem 1 (Homogeneous Inverter Ratings): Suppose
that F = I . Then Πsync in (7) is given by

Πsync =
1

2τP

N∑

i=2

(rTi wP
0 )2 +

1

2τQ

N∑

i=1

(uTi wQ

0 )2

cQ + kQλi
,

where cQ = 1 + 2b̄kQ. If in addition E{w0wT
0 } = I , then

E{Πsync} =
1

2τP
(N − 1) +

1

2τQ

N∑

i=1

1

cQ + kQλi
.

Proof: FP = FQ = I leads to ΦP = I and
ΦQ = I so ΨP and ΨQ are diagonal due to (24),
(25). Also zP0 = RT⊥wP

0 and zQ0 = UTwQ

0 . Using
Lemma 1, Πsync = tr(z0z

T
0 Ψ) which yields the first result

via (26), (27). Assuming E{w0wT
0 } = I , the second result

follows from E{(rTi wP
0 )2} = E{rTi wP

0 (wP
0 )
T
ri} = 1 and

E{(uTi wQ

0 )2} = 1.

If the disturbances have unit covariance and the inverter
ratings are homogeneous, the contribution of frequency dy-
namics is independent of network topology whereas that of
the voltage dynamics depends on the topology through the
eigenvalues of LB . If the disturbance direction is arbitrary,
then for given ‖wP

0 ‖2, the contribution of frequency dynam-
ics is zero if wP

0 ∈ span{1} and maximal if wP
0 ∈ span{1}⊥

since in the homogeneous case r1 = 1√
N
1. Similarly

for given ‖wQ

0 ‖2, the contribution of voltage dynamics is
minimal if wQ

0 ∈ span{uN} and maximal if wQ

0 ∈ span{1}.
The next theorem provides an analogous result for hetero-

geneous inverter ratings.
Theorem 2 (Heterogeneous Inverter Ratings): For given

inverter ratings F , Πsync in (7) has the asymptotic value

Πsync →
1

2τP

N−1∑

i=1

φPii(z
P
0i)

2,

assuming that λPi 6= λPj for i 6= j, as kP →∞ and kQ →∞,
i.e. in the limit of large droop gains; and

Πsync →
1

2τP

N−1∑

i,j=1

φPijz
P
0iz

P
0j +

1

2τQ

N∑

i,j=1

φQijz
Q

0iz
Q

0j ,

as kP → 0 and kQ → 0, i.e. in the limit of small gains.
Proof: In the limit of kP → ∞ and kQ → ∞,

(24) and (25) lead to the fact that ΨP is diagonal with
ψPii → φPii

2τP
and ΨQ → 0. Similarly, as kP → 0 and kQ → 0,

ψPij →
φPij
2τP

and ψQij →
φ
Q
ij

2τQ
. Using the fact from Lemma 1

that Πsync = tr(z0z
T
0 Ψ) yields the result.

In these asymptotic expressions the dependence on hetero-
geneous droop gains is through the entries of ΦP , ΦQ and
z0. The dependence on network topology is only through
the eigenvectors ri and ui of the scaled Laplacians LP
and LQ; and λPi and λQi do not appear. For given FP and
FQ, Πsync in the small gain limit has additional summation
terms for i 6= j, while these terms are suppressed in the
large gain limit. Furthermore, in the limit of large gains
there is no deviation from the equilibrium voltage hence
the contribution of the voltage dynamics to Πsync is zero.
In contrast, frequency deviations cannot be eliminated even
with infinite control action. Theorem 2 therefore shows
that lack of inertia can indeed be problematic in inverter-
based systems because even at the large gain limit frequency
deviations can grow unboundedly as the disturbance mag-
nitude is increased. Additional inertia would contribute to
the time constant term τP due to (4), and help to mitigate
these deviations. Dynamic control strategies can also improve
frequency synchronization [17].

C. Transient Resistive Power Losses

In this subsection, we begin by providing the closed-form
solution for the transient resistive losses. In the special cases
where disturbance directions have unit covariance and the
covariance scales with inverter ratings, we will analyze the
dependence of losses on the droop gains kPi and kQi .



Lemma 2: The measure Πloss in (10) is given by

Πloss =
α

2kP

N−1∑

i=1

(
zP0i
)2

︸ ︷︷ ︸
=: ΠP

loss

+
α

2τQ

N∑

i=1

(
zQ0i
)2

kQ + 1

λ
Q
i

− ΣQ

︸ ︷︷ ︸
=: Π

Q
loss

where the notation is adopted from Lemma 1 and

ΣQ = 2αb̄(zQ0 )TΨQz
Q

0 . (28)

Furthermore Πloss → 0 as kP → ∞ and kQ →∞, i.e. in
the limit of large droop gains for given inverter ratings F .

Proof: See Appendix.
As Lemma 2 indicates, Πloss depends on both the droop

gains and the network topology. The dependence on network
topology is through the eigenvectors ri and ui of the scaled
Laplacian for ΠP

loss whereas ΠQ

loss additionally includes the
eigenvalues λQi . Note that these variables also are functions
of the droop gains. Πloss can be eliminated in the hypothet-
ical case of infinite gains, while this is not true for Πsync as
shown by theorems 1 and 2.

We now investigate the effect of network topology and
heterogeneous droop gains on the transient resistive losses.

Theorem 3: Suppose that E{w0wT
0 } = I . Then

E{Πloss} =
α

2

(
N∑

i=1

k−1
Pi
−
∑N
i=1k

−2
Pi∑N

i=1k
−1
Pi

)

+
α

2τQ

N∑

i=1

uTi F
−1
Q ui

kQ + 1

λ
Q
i

− E{ΣQ},

where ΣQ is given by (28). If E{w0wT
0 } = F , then

E{Πloss} =
α

2kP
(N − 1) +

α

2τQ

N∑

i=1

λQi − 2b̄uTi FQui

1 + kQλ
Q

i

.

Proof: Assuming E{w0wT
0 } = I , we have

E{(zP0i)
2} = rTi+1F

−1
P ri+1 and E{

(
zQ0i
)2} = uTi F

−1
Q ui.

Then using E{ΠP
loss} = α

2kP
tr
(
R⊥RT⊥F

−1
P

)
=

α
2kP

tr
[(
I − r1r

T
1

)
F−1
P

]
and recalling that r1 = γPF

− 1
2

P 1

and γP =
(∑N

i=1 f
−1
Pi

)− 1
2

leads to

E{ΠP
loss} =

α

2kP
tr
(
F−1
P − γ2

PF
−1
P 11TF−1

P

)

=
α

2kP

(
N∑

i=1

f−1
Pi
−
∑N
i=1 f

−2
Pi∑N

i=1 f
−1
Pi

)
.

Taking 1
kP

inside the parenthesis yields the first result.
Assuming that E{w0wT

0 } = F , we have E{zP0 (zP0 )
T } = I

and E{zQ0
(
zQ0
)T } = I . Therefore (25) and (28) lead to

E{ΣQ} = 2αb̄ tr (ΨQ) = 2αb̄
N∑

i=1

uTi FQui‖hQi (t)‖2L2
.

Combining (33) and Lemma 2 completes the proof.
If the disturbance has unit covariance, E{ΠP

loss} only
depends on the active power droop gains and is independent
of network topology. In contrast, E{ΠQ

loss} depends on the

reactive power droop gains as well as the network topology.
Scaling the inverter ratings in accordance with the distur-
bance magnitude at each node leads to E{ΠP

loss} scaling
linearly with network size, while E{ΠQ

loss} still depends both
on network topology and droop gains.

Next we show E{ΠP
loss} is monotonically decreasing in

the active power droop gains if the disturbance has unit
covariance.

Corollary 1: If E{w0wT
0 } = I , then E{ΠP

loss} is mono-
tonically decreasing in kPl

for l = 1, . . . , N , i.e.

∂

∂kPl

[
α

2

(
N∑

i=1

k−1
Pi
−
∑N
i=1k

−2
Pi∑N

i=1k
−1
Pi

)]
< 0, l = 1, . . . , N.

Proof: See Appendix.
Since the derivative in each direction is negative, perfor-

mance is improved by increasing any of the active power
droop gains. Therefore, E{ΠP

loss} can be minimized by
maximizing all kPi for given upper limits on these gains. Fur-
thermore, since there is no dependence on network topology,
node connectivity does not play a role in the optimal choice
of kPi

. On the other hand, the directional derivative in (34) is
a function of the direction kPl

. So, for given heterogeneous
gains, the directional descent can be non-uniform. This point
will be further investigated in Section IV.

We next establish an upper bound on E{ΠQ

loss}.
Corollary 2: If E{w0wT

0 } = I ,

E{ΠQ

loss} ≤
α(2b̄+ λN )kQN

2τQ
(
1 + (2b̄+ λN )kQN

)
N∑

i=1

k−1
Qi
, (29)

where kQN
:= maxi{kQi}.

Proof: See Appendix.
The bound in (29) depends on the network topology only

via the maximum eigenvalue of LB instead of the eigenval-
ues and the eigenvectors of LQ. It also asymptotically goes
to zero in the limit of large reactive power gains. Although
E{ΠQ

loss} is not necessarily monotonically decreasing in
the gains, for given kQN

this bound provides a worst case
performance value that is decreasing in all kQi

6= kQN
.

IV. NUMERICAL EXAMPLES

We now numerically investigate the dependence of the
transient resistive losses on the changes in heterogeneous
droop gains for E{w0wT

0 } = I . The parameter values are
α = 0.2, b̄ = τQ = 1 in all simulations. The directional
derivative (34) is plotted with respect to non-uniform active
power gains kPi

∈ {1, . . . , 50} in Figure 4 (left). It can
be observed that the steepest descent in E{ΠP

loss} occurs in
the direction of the smallest gain. Furthermore, the degree
of descent monotonically decreases as the magnitude of
the perturbed gain increases. As a result, in this partic-
ular example the amount of performance improvement is
inversely related to the magnitude of the perturbed gain.
Therefore, heterogeneous active power sharing requirements
(equivalently heterogeneous inverter ratings FP ) might limit
performance, regardless of the network topology and line
properties. Analytical exploration of this observation is a
direction for future work.



In the case of a complete graph with unit edge weights,
which dictates uniform topology dependence of all nodes,
a similar behavior is observed from Figure 4 (right) for
∆E{ΠQ

loss}
∆kQi

, i.e. the estimation of the directional derivative of
E{ΠQ

loss} with respect to kQi
∈ {1, . . . , 50}. We estimate

this derivative by choosing a perturbation of ∆kQi
= 10−5.

As before, performance improvement is inversely related to
the magnitude of the perturbed gain.
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-0.04

-0.02

0

1 10 20 30 40 50

-0.06
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-0.02

0

Fig. 4: Directional derivative of E{ΠP
loss} with respect to kPi

(left), and a
numerical estimate of the directional derivative of E{ΠQ

loss} with respect to
kQi

for a complete graph of unit edge weights (right) with E{w0wT
0 } = I .

We next investigate (for E{w0wT
0 } = I) how line suscep-

tances affect the rate of change in E{Πloss} due to a change
in each node’s droop gain. We only consider E{ΠQ

loss} since
E{ΠP

loss} does not depend on the network topology. We
consider a complete graph with edge weights drawn from
the uniform distribution over the interval (0, 1] and assign
uniform gains via FQ = I and kQ = 1. Using a perturbation

of ∆kQi
= 10−5, ∆E{ΠQ

loss}
∆kQi

is plotted with respect to the
perturbed node i in Figure 5. Here the nodes are sorted by
increasing weighted degree. The general trend is that a larger
performance improvement is observed for unit change in
the droop gain as the weighted degree increases. However
this relationship is not monotonic. In several instances this
general trend is not seen, which can be explained as follows.
E{ΠQ

loss} depends on the eigenvalues and eigenvectors of
the scaled Laplacian LQ as well as the inverter ratings FQ
per Theorem 3. Since the weighted degrees are non-uniform,
each gain perturbation leads to possibly non-uniform per-
turbations in the eigenvalues and the eigenvectors of LQ.
So, the perturbation terms in E{ΠQ

loss} can result in a non-
monotonic relationship with increasing weighted degree.

1 5 10 15 20 25 30 35 40 45 50
-0.086

-0.085

-0.084

-0.083

-0.082

-0.081

Fig. 5: A numerical estimate of the directional derivative of E{ΠQ
loss}

with respect to kQi
for a complete graph with edge weights drawn from

the uniform distribution over (0, 1], where E{w0wT
0 } = I .

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

This work generalized previous performance analysis con-
cerning uniform nodal dynamics in droop-controlled mi-
crogrids to the case of heterogeneously rated inverters.
Our result for the frequency and voltage synchronization

performance emphasizes the possible problem of inertia
in inverter-based systems. We also demonstrated that the
transient resistive losses are sensitive to the heterogeneity
in droop gains, hence power sharing requirements can limit
performance. Extension to the case of coupled frequency-
voltage dynamics is a direction for future work.

APPENDIX
Proof of Lemma 1

Equations (24) and (25) follow from (7), using (19) and
(23) in the time-domain. A realization for (20) is given by

hP, ωi =

(
Ai Bi
Ci 0

)
,

where Ai =

[
0 1

−kPτP λ
P
i − 1

τP

]
, Bi =

[
0
1
τP

]
, Ci =

[
0 1

]
.

The inner product in (24) can be computed by [18]

〈hP, ωi , hP, ωj 〉 =

∫ ∞

0

[hP, ωi (t)]ThP, ωj (t)dt = BTi XijBj ,

where Xij is the solution to the Sylvester equation

ATi Xij +XijAj = −CTi Cj . (30)

The inner product 〈hQi , hQj 〉 in (25) can be similarly com-
puted using the following time-domain realization for (22)

hQi =

(
−1−kQλQi

τQ
1
τQ

1 0

)
. (31)

Proof of Lemma 2

We can rewrite (10) as

Πloss = α

∫ ∞

0

[
θ(t)TLBθ(t) +

V (t)T (2b̄I + LB)V (t)

]
dt− 2αb̄‖V ‖2L2

,

which by using (18) and (23) in the time-domain leads to

Πloss = α

∫ ∞

0

[
(zP0 )T H̃P (t)RT⊥LPR⊥H̃

P (t)zP0 + (32)

(zQ0 )THQ(t)UTLQUH
Q(t)zQ0

]
dt− 2αb̄‖V ‖2L2

.

Here RT⊥LPR⊥ = diag{λPi }i=2,...,N =: Λ̃P and we recall
that UTLQU = ΛQ which leads to
∫ ∞

0

H̃P (t)Λ̃P H̃
P (t)dt = diag{λPi ‖hPi (t)‖2L2

}i=2,...,N ,

∫ ∞

0

HQ(t)ΛQH
Q(t)dt = diag{λQi ‖hQi (t)‖2L2

}.

The realization of hPi in (17) is given by hPi =(
Ai Bi
Ci 0

)
, where Ai =

[
0 1

−kPτP λ
P
i − 1

τP

]
, Bi =

[
0
1
τP

]
,

Ci =
[
1 0

]
. Then ‖hPi (t)‖2L2

= BTi XiiBi where Xii

solves (30) for i = j, which is a Lyapunov equation.
Similarly the realization of hQi in (31) leads to

‖hPi (t)‖2L2
=

1

2kPλPi
, ‖hQi (t)‖2L2

=
1

2τQ

(
1 + kQλ

Q
i

). (33)



Substituting these expressions and ‖V ‖2L2
= (zQ0 )TΨQz

Q

0

from Lemma 1 into (32) yields the first result. Taking the
limit of Πloss as kP →∞ and kQ →∞ and using ΨQ → 0
from the proof of Theorem 2 leads to the second result.

Proof of Corollary 1

The partial derivative of E{ΠP
loss} with respect to kPl

is

∂E{ΠP
loss}

∂kPl

=
α

2k2
Pl


−1 +

2k−1
Pl∑N

i=1k
−1
Pi

−
∑N
i=1k

−2
Pi(∑N

i=1k
−1
Pi

)2


 (34)

= α




−kPl

N∑
i=1

k−2
Pi
− kPl

N∑
j=1

j−1∑
i=1

(kPi
kPj

)−1 +
N∑
i=1

k−1
Pi

k3
Pl

(
N∑
i=1

k−1
Pi

)2


,

where we used the fact that
(∑N

i=1k
−1
Pi

)2

=
∑N
i=1k

−2
Pi

+

2
∑N
j=1

∑j−1
i=1(kPi

kPj
)−1. So ∂E{ΠP

loss}
∂kPl

< 0 if and only if

κl := −kPl




N∑

i=1

k−2
Pi

+
N∑

j=1

j−1∑

i=1

(kPi
kPj

)−1


+

N∑

i=1

k−1
Pi

< 0.

Partitioning the double summation over a triangular region,
N∑

j=1

j−1∑

i=1

(kPikPj )−1 =

l−1∑

i=1

(kPikPl
)−1 +

N∑

j=l+1

(kPl
kPj )−1 +Ξl,

where Ξl =
l−1∑
j=1

j−1∑
i=1

(kPikPj )−1 +
N∑

j=l+1

l−1∑
i=1

(kPikPj )−1 +

N∑
j=l+2

j−1∑
i=l+1

(kPi
kPj

)−1. Substituting this expression into κl

gives κl = −kPl

(
∑

i∈{1,...,N}\l
k−2
Pi

+ Ξl

)
< 0, which

completes the proof since l ∈ {1, . . . , N} is arbitrary.

Proof of Corollary 2

Recalling that ΣQ = 2αb̄‖V ‖2L2
≥ 0, the following holds

E{ΠQ

loss} ≤
α

2τQ

N∑

i=1

uTi F
−1
Q ui

kQ + 1

λ
Q
i

, (35)

due to Theorem 3. Using the definition of LQ given by (13)
and (15), one can write for i = 1, . . . , N

λQi
uTi FQui

=
uTi F

1
2

Q (2b̄I + LB)F
1
2

Qui

uTi FQui
∈ conv({2b̄+ λj}),

where conv(·) denotes the convex hull and we used the
numerical range of the symmetric matrix 2b̄I + LB [21].
Then λQi ∈ conv

(
{uTi FQui(2b̄+ λj)}

)
, which leads to

λQi ≤ max
j
{uTi FQui(2b̄+ λj)} = uTi FQui(2b̄+ λN ).

Finally noting that λQi ≤ maxi{λQi } ≤ (2b̄ + λN )
kQN

kQ
,

substituting into (35) and using
∑N
i=1 u

T
i F
−1
Q ui =

tr(UTF−1
Q U) = tr(F−1

Q ) yields the result.
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