
Mathematics Problem-Posing in Informal Contexts 

Mathematics instruction in the United States largely involves engaging students in 

correctly solving predetermined problems (Jacobs et al., 2006; Litke, 2015).  This means that 

students have few opportunities to engage in a core element of problem solving—finding and 

articulating problems that are interesting to solve. Unsurprisingly, our understanding of the 

mathematical practice of problem-posing — a fundamental driver of disciplinary engagement 

(Einstein & Inhfeld, 1938; NCTM, 1991) — is underdeveloped (Singer, Ellerton, & Cai, 2013). 

In fact, neither teachers nor students gain much experience in problem-posing, as the people who 

pose the problems of school mathematics are often erased through the distant, authoritative 

voices of textbooks. This sterilization of problem-posing from our understanding mathematical 

practice is disingenuous to the essence of the discipline. In truth, "problem formulation and 

problem solution go hand in hand, each eliciting the other as the investigation progresses" 

(Davis, 1985, p. 23). In other words, mathematical problem-posing and problem-solving are 

reflexive practices.  

  In contrast, mathematics in everyday life is rich with examples of problem posing. In a 

study of family mathematics, Pea and Martin (2010) found that families reflexively articulate and 

resolve mathematical problems that arise in their daily routines as they deal with tensions 

between competing elements such as family values, needs, income (c.f. Lave, Murtaugh, de la 

Rocha, 1984).  

 

Objectives and Setting 

In this study, we seek to bridge the gaps between research on problem-posing in everyday 

life and in mathematics classrooms by examining student engagement in a mathematical 



playground called Math On-A-Stick (MOAS), located at the Minnesota State Fair. MOAS is a 

unique research setting because of the playful mathematical tools offered at its interactive 

exhibits (see Figure 1). This, along with children’s voluntary participation and their freedom in 

how and how long to engage with the exhibits make it an ideal context for a study of how 

learners engage in mathematical problem-posing in informal contexts.   

[INSERT FIGURE 1]  

Theoretical Framework 

In order to understand learners’ problem-posing in this context, we examine the interaction  

between the mathematics embedded in the tools at MOAS with  the mathematics that children 

might tacitly attend to in their play by foregrounding the situated nature of learning (Lave & 

Wenger, 1991). This follows contemporary studies of problem-solving, which began in the 

1980s with laboratory experiments (Schoenfeld, 1985) and continue to today with classroom 

studies that emphasize fostering sense-making (Lampert, 2003). The transition from studying 

problem-solving in a laboratory to studying sense-making in the classroom was largely 

motivated by a theoretical shift to situative perspectives, which requires accounting for students’ 

competence as interwoven with their social and material contexts (e.g., Gresalfi, Martin, Hand, 

& Greeno, 2009).  

However, much of the recent research on problem-posing primarily consist of 

methodologies (e.g., Singer, Ellerton, & Cai, 2013) that limit our understanding of the mediating 

role of the social and material environment by backgrounding learners’ reactions and reasoning 

in favor of analysis of the types of problems posed (Singer, Ellerton, Cai, Leung, 2011). For 

example, studies of problem posing often begin by giving students a streamlined story or a static 

representation and ask students to pose problems that would come from those resources. While 



this allows for clean analyses of the range of problems that are posed, it is distant from the 

ecology of problem-solving of which problem-posing is a part.  

In this study, we ground our approach to problem-posing in Hiebert and colleagues’ (1996) 

argument that mathematical problems arise as learners notice, wonder, inquire, and pursue 

resolutions (p. 12). Following this logic, we take a phenomenological perspective, considering 

problem-posing that occurs when children engage in episodes of making, or episodes of activity 

in which participants created something with the MOAS tools. By conceptualizing episodes of 

making (EOMs) as problem-posing at MOAS, we foreground children’s perspectives and 

sensemaking as mediated by affordances of the mathematical-tools (Wertsch, 1998).  

Methods 

Data Collection  

Following situative studies of families’ interactions “in the wild” (Goodwin, 2006), video 

recordings serve as our primary data source. Videos comes from head-mounted GoPro™ 

cameras that captured participants’ talk, gestures, and object manipulation (Figure 2) in order to 

support inferences on attention and interest. Over the 10 days of data collection, we recruited 345 

children, aged 4 through 17, to participate. The average duration of participants’ time at MOAS 

was 26 minutes (sd = 0.007). The majority of our participants were between the ages of 7 to 12 

(n = 279), and thus we focused our preliminary analyses on this age band.   

[INSERT FIGURE 2] 

Data Analysis  

Because we conjectured that sustained engagement at exhibits might support increasingly 

complex EOMs, we focused on children in our age band who stayed at an exhibit longer than 

was typical (above the median exhibit stay, n=171) at more than two exhibits (n=62). Narrowing 



our data in this way allowed us to identify contrasts in how problem-posing was mediated 

differently across exhibits. We examine participants’ activity at two exhibits with contrasting 

designs that sustained children’s engagement for much of their time at MOAS (Table 1): Pattern 

Machine (Figure 1a) and Pentagons (Figure 1b). This reduced our data set to 17 participants. 

[INSERT TABLE 1] 

Using an open-coding approach (Strauss & Corbin, 1990), we began by documenting 

students’ EOMs by locating both the objectives of an episode (sometimes seen in participants’ 

own words, or in the coherent activity of an episode), and the end of an episode (seen in a new 

goal being stated, or often clearing of work; see Table 2 for examples of this in our codebook). 

We then examined participants’ activity within these episodes (Jordan & Henderson, 1995) to 

understand how participants’ problem-posing and solving emerged in interaction with the tools. 

Examining both within-child contrasts across exhibits as well as across-children contrasts within 

each exhibit allowed us to develop a nuanced perspective on the nature of mathematical 

problem-posing in informal contexts designed for engaging mathematics.  

[INSERT TABLE 2] 

Results 

The Emergence of Problem-Posing and The Influence of Tool Affordances 

Our analysis revealed that problem-posing was emergent and often built on participants’ 

prior EOMs within each exhibit. In addition, tool affordances influenced participants’ EOMs, 

and thus also influenced the types of problems posed and opportunities for encountering 

mathematical concepts. In this section, we discuss the affordances for engagement in problem-

posing and encountering mathematical concepts in relation to tool affordances.  



Each exhibit’s affordances influenced how many EOMs participants engaged, as well as 

how long they persisted within EOMs (Table 3). While the nature and quantity of EOMs varied 

across the exhibits, the average duration of participants’ engagement at each exhibit was quite 

similar (Mpentagons = 8.58 minutes; Mpattern machine = 7.79 minutes). Both exhibits supported 

engagement in problem-posing and solving, but in different ways. As described below, the 

Pattern Machine supported participants to pose many problems, and usually to solve them rather 

quickly. The Pentagons, on the other hand, supported problem-posing that required more 

persistent efforts to realize a satisfactory end product.  

[INSERT TABLE 3] 

Revisions and boundedness. The easy-to-revise nature of the Pattern Machines, along 

with their bounded 9x9 grid, facilitated participants’ ability to pose numerous problems and thus 

engage in many EOMs. Students often posed problems that involved the design of snowflakes, 

checkerboards or diagonals, and sometimes representations such as hearts, animals, or names. 

Participants often revised their representations to make them better fit their archetypes or to play 

with variations.  

The small tiles at the Pentagons exhibit led to a different pace of activity. The tiles could 

be put together to fill up an entire table and so some participants spent their time covering space 

through a process of gap-filling. When participants made designs with the pentagon tiles, they 

rarely made large revisions or re-attempted a EOM by starting over, as was common at the 

Pattern Machine, likely because it required more effort and time, and because moving the tiles 

did not have the same unique aesthetic appeal as clicking the Pattern Machine’s buttons.  

Possible combinations. Because the pentagon tiles fit together in many ways, including 

ways that produced multiple curvatures, participants were able to make more intricate designs 



than those possible on the Pattern Machines. Thus, participants spent more time posing problems 

that resulted in complex and aesthetically pleasing designs at the Pentagons. More frequently 

than at the Pattern Machine, participants at the Pentagons exhibit showed their finished products 

to nearby peers, parents, or volunteers, indicating a kind of pride in what they had produced. 

Affordances for Encountering Mathematical Concepts 

The affordances of the tools at each exhibit influenced the mathematical concepts that 

participants encountered. These mathematical concepts emerged (though were rarely explicitly 

named) as the design of the exhibits pushed back against participants’ expectations. We consider 

this push-back from the tools to elicit a kind of tacit problem-posing as participants work to 

overcome trouble in accomplishing their EOMs. As described below, the Pattern Machine 

afforded encounters with mathematical ideas of symmetry and curvature because it constrained 

participants’ ability to achieve them. Similarly, the Pentagons afforded encounters with spatial 

orientation and patterning because finding tiles whose orientation and color both fit the pattern 

was often constrained by the dual-colored tile.  

Grids: symmetry and curvature. While both the Pattern Machine and the Pentagons 

afforded symmetric designs, the 9x9 grid of the Pattern Machine included a true middle, and its 

square shape cued participants to produce rotational, vertical, and horizontal symmetries. 

Participants would often use two hands to create patterns on the Pattern Machine, mirroring the 

activity of their right and left hands. When participants recruited the symmetry of their own 

bodies as resources, they often created symmetric designs unproblematically. However, when 

only one hand was used, participants sometimes struggled. Thus, the Pattern Machine’s design 

seemed to afford producing symmetry, but often ended up constraining it when the EOM was 

representational. Because symmetry became a source of trouble for some participants, the 



Pattern Machine afforded problem-posing around the mathematical concept of symmetry as they 

worked to repair their designs. 

Radial symmetry was also a frequent feature of participants’ designs at the Pentagons 

exhibit. In fact, the most common EOM at the pentagon station was a pinwheel made out of 

curved pentagons. The pentagon tiles also made it easier for participants to produce symmetric 

designs with curvature. The Pattern Machine’s constraints for curvature (its grid-like nature) 

seemed to afford problem-posing around curvature when they experienced trouble creating 

representations that met their prototypes (e.g., a heart). Creating curvature and symmetry were 

far less problematic at the Pentagons, and thus participants likely engaged in less sensemaking 

with these concepts.  

 

Scholarly Significance: Problem-Posing and Problem-Solving as Reflexive Practices 

This analysis has explored mathematical problem-posing in informal contexts that 

foreground agentic interaction with mathematical-tools. For the most part, current discussions of 

tool affordances are largely missing from problem-posing literature. Furthermore, while much of 

the problem-posing literature separates problem-posing from problem-solving — much as 

problem-solving literature separates problem-solving from problem-posing — our analyses 

suggest that disentangling these aspects of mathematical inquiry may remove ecological validity, 

because the processes are so clearly reflexive. Thus, this study bridges a gap in the field’s 

understanding of problem-posing by examining mathematical activity as a process of problem-

posing and solving, mediated by mathematical-tools. Because our analysis remained close the 

phenomena, this work contributes a nuanced perspective on problem-posing in informal 

contexts.  



While we do not claim that problem-posing would look identical in other contexts, we 

posit that understanding mathematical problems as emerging from tensions between children’s 

exploration and the constraints of mathematical tools is a productive way to begin re-imagining 

engagement in the discipline. Rather than conceptualizing mathematical problems as existing 

within textbooks, we can conceptualize mathematical problems as something learners generate in 

interaction. By expanding our knowledge of how different designs for mathematical tools and 

environments can afford mathematical problem-posing, we can begin to make mathematics 

learning more accessible and meaningful. 
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Figures 
 

    

  
Figure 1. The mathematical tools at the (a) Pattern Machine exhibit, (b) the Pentagons exhibit, 
(c) the Tiles and Patterns exhibit, and (d) the Eggs and Crate exhibit.  
 
 

 
Figure 2. Child with video capturing device. 

  

(a) (b) (c) (d) 



Tables 
 

Table 1 
 
Selection criteria for the two featured exhibits. 
Selection Criteria Pattern Machine Pentagons 

% of time at MOAS (M for n = 171) 27% 35% 

Mathematical Design Features Discrete 9x9 array Irregular pentagons that 
tile the plane in many 

ways 
 
 
Table 2 
 
Codebook excerpt for goal coding at the Pattern Machine exhibit. 
Code Description 

Diagonals diagonal lines alternating pushed down/ popped up, usually started with the 
center diagonal (longest diagonal) and moved out to the sides, sometimes this 
resulted a checkerboard if they did not leave space between the diagonals.  

 

 



Checkerboard alternating buttons pushed down/up over the entire pattern machine  

 
Lattice Made rows and columns, skipping every other. The lattice that starts on the 

outside looks exactly the same as the “windows” code but was constructed 
differently (by rows and columns rather than by squares and +’s). 

 
 

 

Table 3 
 
Number and duration of goals at focal exhibits.  
EOM Duration Measures (min) Pattern Machine Pentagons 

Average 1.6 3.2 

Standard deviation 2.8 2.5 

Median 0.9 2.4 

Minimum 0.2 0.4 

Maximum 22.4 11.3 

Total number of EOMs 75 37 

Average EOMs per participant 4.4 2.2 
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