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Abstract: We propose a novel state estimation algorithm for consensus dynamics subject to
measurement error. We first demonstrate that with properly tuned parameters, our algorithm
attains the same equilibrium value that would be attained using the traditional algorithm
based on local state feedback (nominal consensus). We then show that our approach improves
consensus performance in a particular class of problems by reducing the state error (i.e., the
difference between the agent states and the consensus value). A numerical example compares
the performance of the distributed algorithm we propose to that of the traditional local feedback
scheme. The results show that the proposed algorithm significantly reduces the state error.
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1. INTRODUCTION

The need to coordinate a network of dynamical systems to
attain a common state arises in a number of applications.
Examples of these so-called consensus problems include
frequency regulation in power systems (Paganini and Mal-
lada, 2017), and time synchronization of computer systems
(Mallada et al., 2015). Platoons of vehicles traveling in for-
mation at a common velocity represent another important
class of consensus problems, see e.g., Wang et al. (2012).

Consensus problems for linear dynamical systems are typ-
ically defined in terms of static local state feedback laws
in which connected neighboring agents share their state
information, see e.g., Jadbabaie et al. (2003), Olfati-Saber
and Murray (2004), and Ren et al. (2005a). This local
feedback law, which we refer to as the Traditional Con-
sensus Algorithm (TCA), leads to a distributed algorithm
that enables each agent’s state to asymptotically converge
to an average value under ideal conditions, i.e. with no
external disturbances or state errors, see e.g Bullo (2017).

Given that the network attains consensus, it is important
to evaluate the relative quality of the algorithm. This con-
sensus performance can be quantified in a number of ways,
including the time to reach consensus, the steady-state
error of the state values, and the variance of fluctuations
around the equilibrium, i.e., the consensus state, in the
presence of white stochastic noise. In fact, it is known
that the TCA drives the expected value of the states
to consensus in the presence of white stochastic additive
noise, but the resulting state fluctuations can lead to
the states drifting away from their consensus value (Xiao
et al., 2007). In the steady-state error analysis context,

the introduction of global information in the form of abso-
lute state measurements relative to a common datum has
been shown to be critical in maintaining finite fluctuations
(Bamieh et al., 2012). Ji et al. (2018) aimed to quantify
this effect by studying how the relative proportion of this
global versus local feedback affects the steady-state error
in vehicle platoons. That work supports previous findings
indicating that even that a small amount global feedback
is enough to maintain finite steady-state error. The intro-
duction of a leader agent, see e.g., Lin et al. (2012), and
Fitch and Leonard (2016), provides another type of global
information that has been shown to improve performance
in vehicular platoons (Lin et al., 2012).

Consensus performance for networks subject to noise can
also be improved by altering the network interconnection
structure see e.g., Ellens et al. (2011), Summers et al.
(2015), Abbas and Egerstedt (2012), and Jadbabaie and
Olshevsky (2019). For example, Ellens et al. (2011) show
that the state errors for agents subject to additive noise
is smaller for systems connected over a complete graph
versus a line graph. Sarkar et al. (2018) demonstrate that
graph structure can also affect the convergence rate.

Performance has also been improved by optimizing the
graph edge weights given a fixed interconnection structure.
Xiao et al. (2007) used this approach to minimize the
state variance from its equilibrium. Similarly, Ghosh et al.
(2008) optimized the steady-state variance of the distance
between adjacent nodes.

Changes to the graph structure or edge weighs can be com-
putationally intensive or difficult to implement in practice.
In engineering applications, the network structure or graph



weights may be predetermined by physical constraints or
costly to change. For example, the structure of a power
system network is typically fixed by transmission lines
and associated infrastructure, with topological changes
limited to contingency events. Changing the power system
graph edge weights requires replacing wires, which may be
infeasible in practice.

In this work, we instead aim to improve consensus perfor-
mance in systems subject to measurement errors through
a state estimation algorithm that acts as a consensus filter.
Our approach differs from Kalman filter based algorithms
that rely on measurement based iterative updates of the
state error co-variance to obtain state estimates, see e.g.,
Ren et al. (2005b), Alighanbari and How (2006), Olfati-
Saber (2007), and Li et al. (2016). We instead focus on
systems subject to measurement errors, and use the state
estimation to construct a feedback law that drives the
expected value of the states to consensus. We refer to our
approach as an augmented consensus algorithm (ACA).
The ACA provides a distributed feedback law, and is there-
fore also distinguished from typical Jacobi based methods,
e.g. Barooah and Hespanha (2005), in that it does not
require global information.

The introduction of state estimation alters the dynamics
of the system, which can result in a different equilibrium
value (consensus state); a problem common to the ap-
proach of adding global feedback. Our first result char-
acterizes the conditions under which the ACA attains the
same consensus state (equilibrium) as the TCA. We then
focus on the known problem of the buildup measurement
errors that can result in unbounded state errors in systems
controlled by TCA. We provide conditions under which the
ACA reduces this error buildup as well as the amplitude
of the fluctuations around the consensus state. In other
words, we provide a distributed consensus algorithm for
a particular class of network of linear dynamical systems
subject to measurement errors. Our algorithm improves
performance without requiring global information (e.g.
absolute feedback, a leader or the system state error co-
variance), centralized coordination, or topological changes.
Numerical results support our analysis and show that our
algorithm leads to smaller state errors than the TCA.

The reminder of this paper is organized as follows. In
section 2, we introduce the problem setting and outline
the problem of measure error accumulation in systems
controlled by the TCA. Section 3 details the steps of
the ACA. In section 4, we analytically study the behav-
ior of a network of linear dynamical systems subject to
measurement, error operating under the ACA. Conditions
under which the expected value of the states reach the
same equilibrium value as the TCA (nominal consensus)
but with reduced state errors are provided. Numerical
analysis and conclusions are provided in sections 5 and
6, respectively.

2. BACKGROUND AND PROBLEM SETTING

In this section, we first introduce the mathematical nota-
tion and terminology used throughout this paper. We then
describe the behavior of a network of linear dynamical sys-
tems subject to measurement errors updated according to
the TCA. In particular, we show how measurement errors

can lead to unbounded state error in order to motivate the
ACA proposed in this work.

2.1 Notations

We use E() to denote the expected value, and N{u,o} to
denote a normal distribution with mean p and standard
deviation 0. 0,x, € R™ ™ denotes a matrix with all
elements equal to zero, and Iy, € R"™*" indicates an
n x n identity matrix. 1,, € R™ is a column vector with
all elements equal to 1 and span{1,} indicates the span of
1,. 0, € R™ is a column vector of zeros.

Given a matrix A € R A=l is the inverse of A
such that AA™! = I,.,. AT denotes the transpose of
A. null{A} denotes the nullspace of the matrix A. A > 0
indicates that A is positive definite. We use p(A) to denote
the spectral radius of A, and A(A) to denote an eigenvalue
of A.

Definition 1. A non-negative matrix A € R™ with unit
row sum, i.e., Z?Zl a;; = 1 is said to be a row-stochastic
matrix, see e.g., Horn and Johnson (1986).

A weighted digraph is denoted by a triplet G = (N, €, W),
where N is the set of nodes and £ is a set of ordered
pairs (i,7) of nodes i,j € N called edges. W is a set of
nonnegative weights associated with each ordered node
pair; for the ordered pair (i,7) € &, w(j; > 0 is the
directed edge weight associated with the ordered node
pair. If (i, j) ¢ &, then w; ;) = 0.

2.2 Traditional Consensus Algorithm

Given a networked dynamical system with underlying
graph G(N, &, W), the dynamics are given by,

P =gkt okt (1)

Here % = [z, 2F]T € R" is the vector of states z¥,
where i € Nt represents the i** node, k € Nt is the time
step and u* = [uf,--- ,uF]T € R" is the corresponding

vector of control inputs.

k

If we consider a static control strategy, u¥ = Fz*, then
the discrete system (1) can be represented by,

b = AgkL, (2)
where A =1+ F € R™*™,

Definition 2. We refer to the algorithm (2) as the Tradi-
tional Consensus Algorithm (TCA) if A is a row-stochastic
matrix with a simple eigenvalue! equal to 1 and all other
eigenvalues A*(A) satisfy |A\*(A)| < 1. The consensus state
(equilibrium) of such a system is given by,

kgr}rloom(k) = kEIEOOA xo =w" Toly, (3)
where w is the left eigenvector of A associated with the
simple eigenvalue 1 (Bullo, 2017).

Remark 3. Tt is easy to verify that the static feedback
matrix F also has a simple zero eigenvalue, and w in (3)
is its corresponding left eigenvector using Definition 2. All
eigenvalues A*(F) of F other than 0 have negative real
parts, i.e., Re(A\*(F)) < 0.

1 Recall that an eigenvalue is simple if and only if its algebraic and
geometric multiplicities are 1s.
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Fig. 1. Augmented Consensus Algorithm Block-diagram.

Definition 4. (Nominal Consensus). We refer to consen-
sus state attained by the TCA in equation (3) as nominal
consensus.

We next describe how measurement error affects the
behavior of the TCA. If we assume additive measurement
error v*, then the noisy state dynamics are given by

b =kl 4 Faht 4 0b), (4)
and the state at step k is given by,
k
o = AFzo+ ) AR (5)
i=1

If the measurement error is white noise, i.e., E(v¥) = 0,
then the expected value of the states are given by
lim ]E(xk) = Arzo = w201,
k—+oco
i.e., the expected value of the system states reaches the
nominal consensus value. Such behavior is referred to as
consensus in the average sense.

However, equation (5) also indicates that the measurement
errors accumulate through the system evolution. Hence
the state may become unbounded or fail to reach con-
sensus, e.g., fluctuate around consensus, as k — oo, unless
Sk AR Ry =0

In the next section, we propose an augmented consensus
algorithm (ACA) that aims to eliminate this build-up of
errors and thereby improve the performance of the noisy
consensus dynamics.

3. AUGMENTED CONSENSUS ALGORITHM

The Augmented Consensus Algorithm (ACA) comprises a
three-step consensus filter and associated feedback law, as
depicted in Fig. 1. In particular, at time step k, the three
parts of the algorithm are given by

Measurement: 2% = HzF 4 o, (6a)
Prediction: ~ 2FF=1 = gh=1 4 pgk—1, (6b)
Correction: 2% = argmin J(e)| (6¢)

(iklk—l}zk)a

where zF € R”™ and v* € R™ are the respective mea-
surement and measurement error at step k. H € R"*"
is the projection of z* onto z*, i.e. H = I when the
measurements correspond to the states.

In (6b), #¥1¥=1 is the prediction of the state at step k based
on the estimate of the previous state #¥~!, and F is the
same static feedback matrix as in equation (2).

The Correction step (6¢) involves a quadratic optimization
problem with objective function J(e) that is constrained
by the dynamics in (6a) and (6b).

Specifically, the optimization problem in the correction
step for linear consensus dynamics with measurement
errors is defined as,

1
min J(ik) = i(jjk _ @klkfl)T(jk _ £k|k,1)

+ %(zk — Hi*TR™1 (2% — H&P), (7)

s.t. (6a), (6b),

where R = RT > 0 is a system parameter that defines
the relative weighting of the filter versus the measurement
€error.

Remark 5. Note that this algorithm can be generalized to
deal with a larger class of system errors by redefining the
objective function in the optimization problem (7).

Finally, the estimation is used as feedback,
Feedback: u* = Fi*, (8)
where F' is the same as in the TCA (2).
The solution to the optimization problem (7) is given by,
i = (I +H'R'H) Az + HTR72E. (9)

Grouping the dynamics of the real and estimated state we
obtain,

21 1 F k! N Onxn | &
gF| 70 (T+Q)THA] |ah! HTR™'| %>
where Q = HTR™'H and A = I+ F. The full dynamics of

the real and estimated states with respect to measurement
error can be represented by,

k R k—1 0
4 Bl

i F
- [Q QF + (I+Q)‘1A}

is the new state matrix. The real and estimated states at
step k can then be written as

oS e

=1

(10)

where

(11)

Equation (11) indicates that at any time instant k& >
1, the measurement errors accumulate in both the real
and estimated states. In the next section, we provide
analytical results that provide conditions under which the
ACA attenuates this accumulated noise and filters out the
measurement errors leading to an overall reduction in the
state errors.

4. PERFORMANCE ANALYSIS

As expected the introduction of state estimation alters
the dynamics of the system. In this section we first show
that the ACA reaches some consensus state in the average
sense as defined in section 2. We then demonstrate that
the objective function defined in (7) enables the ACA to
attain nominal consensus in expectation through judicious
selection of the quadratic parameters. We then compare
the performance of the TCA and ACA.



In all of the analysis below we employ the following
assumption regarding the initial state.

Assumption 1. The initial state is accurate, i.e., zg = 2.

4.1 Consensus in the Mean Sense

Consider measurement error with zero mean, i.e., E(v*) =
0. The dynamics of the expected value of the states are

given by, E(EH>ZAE<B:1D.

Theorem 6. Given a networked system who updates ac-
cording to the ACA, if the state matrix A is row-stochastic
with a simple 1 eigenvalue and all other eigenvalues
|A*(A)] < 1, then the expected value of the system states
achieves consensus.

Theorem 6 only provides the conditions under which the
expected value of the states reach consensus but it does
not ensure that this equilibrium is the same as that of
the unfiltered dynamics. The following theorem provides
conditions under which the ACA drives the expected value
of the system states to nominal consensus.

Theorem 7. For a networked system that updates accord-
ing to the ACA. If F and @ > 0 are simultaneously
diagonalizable and the eigenvalues, A\; and 6;, of F' and
(@ that correspond to the same eigenvector satisfy

1 Ai
1 .
p Qe Al 4 T2

then the expected value of the system states reach nominal
consensus.

) <1, Vi#1, (12)

Proof. If the static feedback matrix F' is diagonalizable,
i.e., F = VAV ™! then the matrices V, V! and A can be
sorted as

V=[l,0] A= {0 AT], vl {wﬂ L (13)

w?”

where 1,, and w, are the right and left eigenvectors asso-
ciated with the simple zero eigenvalue 0. v, € C**(n=1)
and w, € C"*("=1) are matrices that are composed of the
rest of the right and left eigenvectors. A, = diag(\;(F)) €
Cr=Dx(n=1) i5 a diagonal matrix with the rest eigenvalues
of F' on its main diagonal, note that the order of the rest
eigenvalues is uniquely determined by v,..

Furthermore, if F and @ are simultaneously diagonaliz-

able, then, Q@ = VOV~! and © = {01 o } , where 0, is
T

the eigenvalue of @) corresponding to the eigenvector 1,,.

Denote ¢; = [0,---,1,---,0]7 € R?" as a column vector
with 1 in its i*" position and the rest are 0s. We can define
a permutation matrix

E = [ela €n+1y €2y, En42, ", €n, 62%]' (14)

From previous analysis, A can be decomposed by using F

and V as
R -1
A= {VV] EMET {V (15)

V—1:| )

where M = diag(M;) is a block diagonal matrix, and each
1 A

block is M; = lai A, - 1+ X; |. In particular, the first
1+6;
1 0 1
block is M; = I |, with@ >0, |——| <1
1 1 + 91 1 —+ 01

Therefore, when condition (12) holds,

- k_ ik 1. 7 _T
kgrfooa: =[I 0] A%zo = [{ O][ 0 ][w 0] zo=w"z01,.
Remark 8. We note that the condition of simultaneously
diagonalizable F' and @) > 0 holds for at least one common
class of problems, those in which each state is measured,
ie., H=1,and R =nl).

For the reminder of this paper, we assume the ACA drives
the expected value of the states to nominal consensus, i.e.,
the conditions listed in Theorem 7 hold.

4.2 Real and Estimated State Deviation

In this section, we first provide analytical tools to compare
the performance of the TCA and ACA in terms of error
accumulation. Then we show that under certain condi-
tions, the ACA completely eliminates the effect of the
measurement error.

The following theorem quantifies two types of error accu-
mulation, (a) the steady-state variance of the deviation of
each state from the average state (consensus), and (b) the
state deviation of either the real or estimated state from
the nominal consensus value at a time step of interest, p.

Theorem 9. Consider two networks of linear dynamical
systems, Gaca and Grca, that are respectively governed
by the ACA and TCA. The output at the k** step for both
systems is defined as,

1

y* = <I - 1n1£> Yk > 0. (16)

n

(a) The steady-state variance of deviation of Gaca is
lower than that of Grcy if,

I[Gacalla, < [|Grealln,, (17)
where ||G||3, denotes the Ha norm of the networked
system G.

(b) The state deviations from the nominal consensus
state at the p'" step of Gaca are lower than those
of GTCA if,

=~ 0

Ty A [HTR] vil| <

=

Zp: APyt
i=1

Proof.

(a) The system output defined in equation (16) is anal-
ogous to the deviation from average problem in
(Bamieh et al., 2012; Oral and Gayme, 2019). Specif-
ically, the condition (17) can be expanded as,

trace{ [;}Lgilrf ((AT)* { c’

0
k=0 nXxn

400
[ Ho%l;fﬁl” <trace{FT Z(AT)kCTCAkF} :

k=0

][C Onxn] A¥)
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Fig. 2. The left and middle panel show the evolution of the states from the initial condition xo = [1 2 3 4]T. Both
the TCA (left) and ACA (middle) enable the system’s expected state values to converge to the nominal consensus
state (3[1 1 1 1]7), but the fluctuations around this value are noticeably smaller under the ACA. The variance of
state deviation Var(dz) in both the ACA and TCA from step 1500 to step 2000 is depicted in the right panel.

where C = I — %1,1157 i.e., the comparison of
steady-state variance of the deviation of the TCA and
ACA can be computed analytically without requiring
information about the measurement error at each
step.

(b) The deviation of the real and estimated states from
nominal consensus can be represented as,

oxF = zF —E(z), 6% = 2F — K@),

and the dynamics of the deviations are,
5k ~[oakt Onxn k
[5@’“} =4 [553“ HuTr| v
The corresponding deviation at the p!* time for the

TCA and ACA at each step can be computed directly
under the given conditions to complete the proof.

Remark 10. Theorem 9 indicates that by properly tuning
the algorithm parameters R and H, the measurement error
accumulation can be reduced compared with the TCA
approach, leading to a reduction in the state error.

In addition to attenuating the error accumulation under
the conditions given in Theorem 9, the ACA can directly
cancel the contribution of the measurement error given
certain conditions. Specifically, for a system operating un-
der the TCA, the measurement error v can be eliminated
at the step k > h if and only if v" € span{1,}. In the
following discussion, we show how the ACA can bypass
this strong condition by tuning the algorithm parameters.

In order to facilitate this discussion, we first present the
decomposition of the j** power of the ACA state matrix
defined in (10), i.e., (A)7. Based on the analysis in Section
4.1, (fl)] can be decomposed in the following manner,

-1 2o

3,5 4,5

where for any partition p € {1,--- ,4}, M, ; is a diagonal
matrix.

Theorem 11. If the expected equilibrium value (consensus
state) attained by ACA is the expected value of the
nominal consensus, and the measurement error at step h
satisfies,

" € nul{My sV ' HTR™'Y, k> h, (19)

where Mo (,,_p) is the upper-right block of based on
the decomposition of (A)*~") given in (18), then this
measurement error v” can be eliminated and will not
contribute to the overall state error after the k" step.

Proof. According to equation (11), the expression gov-
erning the measurement error build up at step k is given
by,

[ 0] (A) 1) { I;)%szznl}“h =V Moy g_mV HTR "

Corollary 12. 1f the expected equilibrium value (consensus
state) attained by ACA is the expected value of the
nominal consensus, and the measurement error at step h
satisfies, HT' R~1v" € span{1,,}, then for any step k > h,
there is no additional buildup of measurement error.

Proof. As F and @ are simultaneously diagonalizable,
(I+Q)~! and F commute. Since F1, = 0,, and Al,, =
177,3 v] Z 03

[T 0] (A)? [;;;{11} V" = [T Opxn] (A)? {nofn]
= [I 0pxn)(A)02 [n (QF(I+Q)77£-1|-TEI+Q)_2) LJ

0
g I nxn ni» e s
L Onx ]{n(I+Q) Jln} O
where HT' R=*v' = n1,, n € R.

5. NUMERICAL RESULTS

We now simulate a networked system with four nodes
connected over line graph in the presence of measurement
error to evaluate the performance our new algorithm.
The measurement error satisfies a normal distribution,
vF ~ N{0,0.1}. We assume that each individual state
is measurable, i.e., H = I, and set R = i[. The static
1 -1
feedback matrix is F' = — Ly, = 7% X -1 _21 ;1 1
-1 1



As Lgym is a symmetric Laplacian matrix, the left eigen-
vector associated with the simple zero eigenvalue of Ly,
is 0.25 x [1 1 1 1]7. We simulate the system for 2000 steps.
The state evolution with both the TCA and ACA are
respectively plotted in the left and middle panels of Fig. 2.
We further quantify the performance through the variance
of the state deviation, Var(dz*) = §27§z, which is plotted
in the right panel of Fig. 2. The figures illustrate that
although the TCA converges faster, the ACA significantly
reduces the state fluctuations. As expected, the variance
the of state deviation resulting from the ACA is much
lower than the variance in the TCA. In particular, the
average variance of the state deviation for TCA is 0.02
whereas the ACA reduces the average variance to 0.005.

6. CONCLUSION

In this paper, we present a consensus-filter for systems sub-
ject to measurement noise. The filter enables the system to
reach consensus with lower state errors (state deviations
from consensus value) than a system operating under the
TCA. Theoretical analysis shows that the ACA drives the
expected values of the system states to consensus. We then
provide a method to ensure that the ACA attains the
same consensus state as the original TCA dynamics. In
both cases the state errors are reduced versus the TCA.
Simulation results confirm that our algorithm reduces the
state errors and drives the expected value of the system
states to the original TCA equilibrium value. Future work
includes providing a distributed algorithm to obtain the
system parameters R and H. Deriving explicit conditions
under which the ACA can lead to lower deviation from
nominal consensus is another topic of on-going work.
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