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Abstract— This work investigates local and global measures
of disorder in large-scale directed networks of double-integrator
systems connected over a multi-dimensional torus. We quantify
these performance measures in systems subjected to distributed
disturbances using an Hz norm with outputs corresponding
to local state errors or deviations from the global average.
We consider two directed uni-directional state feedback inter-
connections that correspond to relative position and relative
velocity feedback in vehicle network applications. Our main
result reveals that absolute state feedback plays a critical role
in system robustness when local state measurements are uni-
directional. Specifically, if absolute measurements of either state
variable are available, then systems with uni-directional relative
feedback perform as well as their symmetric bi-directional
counterparts but have the advantage of reduced communication
requirements. However in the absence of absolute feedback
their performance is worse; in fact, it is impossible to maintain
stability (i.e. a finite 73 norm) with uni-directional state mea-
surements for arbitrarily large networks. Numerical examples
illustrate the theory.

I. INTRODUCTION

Synchronization performance of networked systems can
describe system attributes such as efficiency and robustness.
Measures of such performance quantifying coherence (e.g.
state deviation from the average) and degrees of disorder (e.g.
state deviations from those of the nearest and farthest agents)
[1] have been widely studied in the context of coupled
linear oscillators (double-integrator dynamics) and first order
consensus networks, see e.g. [1]-[7].

Disorder is a measure of system robustness that has been
shown to depend on the network interconnection structure
and network size, which can be measured either in terms of
the number of agents [1], [8]-[14] or the spatial dimension
of agent interactions [1], [9], [12]-[14]. For networks of
second order integrators with undirected, static feedback in-
terconnections, both long and short range disorder can grow
unboundedly with network size without absolute measure-
ments of both the position and velocity states [1]. Dynamic
feedback with undirected interconnections and at least one
type of absolute state measurement can uniformly bound the
state deviation from the average with respect to network
size [9], [10]. Scaling of measures of disorder with network
size has been investigated for directed first order consensus
networks controlled by static feedback in one [8], [11] and
multiple [12]-[14] spatial dimensions as well as in directed
I-dimensional double-integrator networks [8], [15].
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Improved scaling of these measures were demonstrated in
I-dimensional vehicle strings with directed nearest-neighbor
interactions [8], and recent work has shown that more general
directed feedback interconnections can reduce disorder in
double integrator networks [3]. However, as in the undirected
case, coherence cannot be achieved without absolute state
measurements [16]. The scaling of disorder measures in
double-integrator systems over multiple spatial dimensions
with directed feedback interconnection has yet to be inves-
tigated.

In this paper, we take a step toward determining whether
or not a directed feedback structure can improve how perfor-
mance scales with respect to network size by considering uni-
directional feedback in networks with arbitrary but finite spa-
tial dimension. More precisely, we compare the performance
of a network of agents with double-integrator dynamics
and directed uni-directional local state measurements defined
over a multi-dimensional torus to that of the network with
symmetric bi-directional local state measurements studied in
[1]. These models represent, for example, spatially invariant
vehicle networks where comparible performance in systems
with directed uni-directional feedback structures would be
desirable due to the reduced sensing/communication require-
ments. Performance of the network is evaluated in terms of
both a local measure quantifying the variance of an agent’s
position error with respect to its nearest predecessor and
a global measure describing the variance of each agent’s
position deviation from the network average (dispersion
of consensus error). We compute these measures using an
‘H> norm of the system subjected to distributed stochastic
disturbances for system outputs defined to yield the desired
measures. We then extend the scaling laws in [1] to the case
of directed uni-directional feedback.

We exploit the spatial invariance of the interconnection
structure to define the feedback laws and the performance
outputs in terms of circular convolution operators based on
the machinary used in [1]. After establishing the necessary
and sufficient condition for input-output stability, we provide
the closed-form solution for the H3 norm of the system for
general feedback laws and performance outputs. Then we
focus on the special case of directed uni-directional feed-
back which employs ‘look-ahead’ state measurements. For
networks with absolute measurements of velocity, we provide
a sufficient condition under which the Hy norm (perfor-
mance measure) for a system with uni-directional feedback
lower bounds the Hy norm of systems with symmetric bi-
directional (‘look-ahead / look-behind’) feedback for any
finite network size and spatial dimension. This bound gen-
eralizes recent results suggesting that directed feedback can



improve performance [3]. We then show that local and global
measures of disorder scale identically in systems with uni-
directional and symmetric bi-directional feedback if at least
one type of absolute state (position or velocity) feedback is
employed. Conversely, in the absence of absolute velocity
measurements we prove that it is impossible to maintain the
input-output stability with uni-directional relative position
and velocity feedback as the network size increases for
arbitrary spatial dimension, which is consistent with the
observations for 1-dimensional cyclic networks [17]-[20].
We note that a similar result more recently appeared in [21].
This condition represents an important difference between
the uni-directional and the symmetric bi-directional feedback
structures, as the latter maintains the stability for arbitrarily
large spatially invariant networks [1].

Our results highlight a trade-off between performance and
stability in large-scale networks with uni-directional feed-
back; while achieving comparable performance with reduced
communication can be favorable, it comes at the cost of
degradation of stability for certain feedback interconnection
structures. Numerical examples confirm the theoretical re-
sults regarding performance scaling with respect to network
size and the loss of stability for arbitrarily large networks
without absolute velocity feedback.

The remainder of this paper is organized as follows.
Section II-A defines the notation and provides the mathe-
matical background used throughout the paper. Section 1I-B
presents the system models and Section II-C presents the
feedback policies. Section II-D describes the performance
measures. Sections III provides the conditions for the input-
output stability of the system, the closed-form solution for
the H2 norm as well as a description of how performance
scales with respect to network size and dimension. Section
IV presents numerical examples supporting the theoretical
results. Section V concludes the paper.

II. PROBLEM FORMULATION
A. Preliminaries and Notation

We consider systems connected over the d-dimensional
torus va = Zpn % --- x Zjp defined as the d-fold cartesian
product of the 1-dimensional torus Zy = {0,1,...,N — 1}.
An array A is defined as the mapping A : Z4, — CP*4
where p and g are scalars and Ay denotes each of the
array elements corresponding to the spatial multi-index
k= (ki,...,ka) € Z%. We denote vector-valued arrays
(g = 1) with a lower-case letter. For example, the position
state x(t) is an array whose elements x(t) € R represent
the position of the k' system in d spatial dimensions.
Addition is performed modulo N for indices k,l € Zg,,
iee.m=k+Ilwithm; =(ki+ L)y fori=1,...,d

The multi-dimensional circular convolution of the arrays
A and h yields an array z with elements given by

ZEp = Z Ak_gh;. (])
1ezd,

We equivalently write (1) as z = Ah, where A denotes
the circular convolution operator associated with array A

acting on array h. The multi-dimensional Discrete Fourier
Transform (DFT) of A is defined by

Ap =) Ape7¥E (¢

d
kezd,

where (-) denotes the scalar product, n € Z% is the
wavenumber and A,, is the Fourier symbol of A. It is a well-
known fact that the DFT diagonalizes a circular convolution
operator [1], so

tn = Aphn YneZ4,.

IfA,isa square matrix, then the eigenvalues of the circular
convolution operator A are the union of the eigenvalues of
all Ay, ie. o(A) = Unezi,‘?(fin): where o(-) denotes the
spectrum of its argument.

The adjoint (conjugate transpose) of an operator (matrix)
Q is denoted by Q*. E{-} denotes the expected value of
a random variable and ||-||3, denotes the Hs norm of a
linear system. The zero and identity operators (matrices) are
denoted by O (0) and Z (I), respectively. T" denotes an array
with identical non-zero elements, ie. Ty = 17 # 0 for all
k,l € Z%, and 1 denotes the array with elements 15 =T
for all k € Z%,. The arrows  and \, repsectively denote
the left and right limits to a real number. O(-) denotes the
approximation order.

B. Double-Integrator Systems over the d-Dimensional Torus

We consider M := N identical systems defined over Z;
each having double-integrator dynamics given by

Vg = —ug + Wk, 3)
v =1Ir VkE€E Z}d\r,

where z3 € RY, vg € RY, uy, € R? and wy, € R? respectively
denote the position, velocity, control input and an exogenous
local disturbance. The control input is of the form

Up = GoTk + foUk + Z Gr_iz1 + Z Fy_ v, (@)
lezd; 1ezd;

where g,, fo = 0 are the feedback gains associated with the
measurements of states with respect to an absolute reference
frame (absolute feedback). The circular convolutions of the
states with the feedback arrays G : Z% +~ R9*4 and
F : Z% + R* define feedback laws based on relative
state measurements (relative feedback).

Combining (3) and (4) yields

-1 B

where A = g,Z +G and B = f,7 + F. Here, G and F are
the circular convolution operators associated with the arrays
G and F, respectively.

Remark 1: Since the feedback laws in (5) are determined
by circulant operators, the feedback laws are invariant to
the specific location k € Z,, i.e. (5) describes a spatially
invariant system [1], [22].



Assumptions: The following standard assumptions [1] will
be imposed on G and F throughout the paper. Note that for
clarity of exposition we state them only in terms of G.
(A1) The feedback laws satisfy the property

Y Ge=0,

d
kezd,

which implies that T' € ker (G).

(A2) If d > 2, the feedback laws are decoupled in spatial
coordinates, i.e. the interactions in the i*" spatial coordinate
only depend on the state measurements in that spatial coordi-
nate, for¢ = 1,...,d. This results in diagonal array elements
G In addition setting the non-zero entries of Gy, to be equal
leads to

Gr=gxl, gr€R.

This condition also implies that the Fourier symbol of G is
a scalar matrix )

Gn = .‘;"nI .
Therefore, by a slight abuse of notation we will refer to g,
as the Fourier symbol of G.
(A3) If (A2) holds, the diagonal entries of each array element
Gy = gil satisfy the property

>0, ki=---=kqg=0
9k .
<0, otherwise.

For spatially invariant systems, (A1) - (A3) generalize the
properties of a circulant weighted graph Laplacian matrix to
systems with arbitrary spatial dimension.

Under these assumptions, G and JF can be specified to
define feedback laws based on relative state measurements.
In this setting, if g, # 0 (f, # 0), then the system
is said to have absolute position (velocity) feedback. If
go = 0 (fo = 0), then we assume the system has relative
position (velocity) feedback. If no relative position (velocity)
feedback is used, then we assume g, # 0 (f, # 0).

C. Feedback Policies

We are interested in examining the effect of directed
communication on the performance of large-scale networks
by comparing systems with uni-directional and symmetric bi-
directional feedback. In particular, we will investigate how
the performance scales with network size. We next define
the two feedback policies and then specify the peformance
measures of interest in the subsequent subsection.

Bi-directional Feedback: In this communication structure,
each agent employs a look-ahead / look-behind policy, in
which the information flow in either direction is equally
weighted. For example, if d = 1, this feedback intercon-
nection is attained through the control input

1
Uk = JoTk + four + 5[’)’g($k — Tpy1) + Yok — Tr—1)

+y5(vk — vkg1) + v5 (v — ve—1)],

where 74,7y > 0 are control gains and the factor of %
provides a normalization of weights with respect to the uni-
directional feedback described in the following subsection.

For d > 1, the array associated with the corresponding local
symmetric bi-directional feedback operator @ is given by

dl, ki=---=ki=0
Qr=14 -1, ki==41,k;=0forj#i (6)
0, otherwise,

such that the operators G and JF in (5) are given by
G=7%9, F=72 (7

This feedback law was studied extensively in [1], [9].

Uni-directional Feedback: For directed communication,
we consider uni-directional (look-ahead) feedback. For
d = 1, the associated control input is given by

Up = GoTk + foUk + Vo(Tk — Thy1) + V7 (Vi — Vks1).

For d > 1, the array associated with the corresponding local
uni-directional feedback operator R is given by

dl, kk=---=k;z=0
Ry=q—1, ki=-1,kj=0forj+#1 (®)
0, otherwise.

In this case, the operators G and JF in (5) are given by
G=7%R, F=R 9

The following proposition about the Fourier symbols of Q
and R will be used in the subsequent results.

Proposition 1: The respective Fourier symbols g, and 7,
of the circular convolution operators @ and R defined by (6)
and (8) are given by

d d

. L N 2T

Tn:;(l — ej%‘rn‘), qn:; (1 — cos (Wﬂq)) - (10)
Proof: Since Q can be decomposed as Q = &ER;", it

holds that g, = Re (#,) for n € Z%. Using the definition of

the DFT given in (2) leads to R, = (d — Zf=1 ei"‘zﬁ?“*) L

The result is then obtained by invoking (A2), i.e. ﬁ’,n =7,l.
|

D. Performance Measures

We now define system outputs that allow us to quantify
local and global measures of system disorder through the
input-output Hy norm of a system of the form (5) for the
two feedback interconnection structures (7) and (9). These
measures were detailed in [1] for systems with the feedback
interconnection structure (7) but we repeat their definitions
here for completeness.

Since we focus on spatially invariant systems, it is conve-
nient to define a nodal performance measure of the form

Py := lim E{y;(t)yx(t)}, (11)

where gy is the performance output given by the circular
convolution

Yk = Z Cr_iz; Yk e Z}d\r (12)

d
=7



Here, we assume that C} satisfies assumptions (A1) and
(A2). Due to (Al), the consensus modes of (5) will be
unobservable from the system output

v=lc ali].

where C represents the respective circular convolution op-
erator associated with the operation in (12). We denote the
input-output system defined by (5) and (13) by H. In this
work we limit the analysis to performance measures based
solely on the position, which is common for coordination
[1]1, [9] and phase synchronization [4], [5] applications.

For white noise disturbance inputs w with unit covariance,
the squared Hy norm of H quantifies the steady-state vari-
ance of the output [4]

IHI3, = Jim E{y*®)y(®)},

whenever H is input-output stable. Since the performance
output of each system y; is also spatially invariant, it is
sufficient to divide (14) by the network size to recover each
system’s measure P, i.e.

(13)

(14)

1
Py = —|HI,,

where we recall that M = N¢.

1) Local Error: This measure quantifies the steady-state
variance of the deviation of each agent’s position from that
of its predecessor. For d = 1, the corresponding output for
each system is

Y = Tk — Tk41-

The system output (13) for d > 1 can be obtained using the
right shift operator along dimension i, namely D such that

(Dix)(kl,...,k,;,....,kd) = Lk, ki1, ka)s

and specifying

_ Ml
1-D (yk)g- = T(ky,..,kiyekad)
C= : = = T(ky,. kit 1, k)5 (15)
T — pd i=1,...,d.

The local measure of disorder for each system at location &
is then given by

d
Pioc = lim E {Z (we); (yk),}.

i=1

(16)

2) Deviation from the Average: This measure quantifies
the steady-state variance of the deviation of each system’s
position from the average position of all of the systems.
Therefore each system’s output gives the consensus error

1
Uk =Tk — 35 D T 17
1ezd;
In this case, the output operator C becomes
1
c=1--=-J, (18)

M

where 7 denotes the circular convolution operator associated
with the array 1. The corresponding performance measure of
the form (11) quantifies the global degree of disorder in the
network and will be denoted by Py, for each system.

III. DISORDER IN LARGE-SCALE UNI-DIRECTIONAL
NETWORKS

In this section, we first provide conditions for the input-
output stability of H. We then derive the closed-form so-
lution of its Hs norm, for the case in which the directed
feedback operators A and B (satisfying (A1)-(A3)) in (5)
and the directed output operator C (satisfying (A1) and (A2))
in (13) are circular convolution operators. These results for
directed networks can be used to recover those in [1], which
deal with the special case of undirected feedback.

Then we focus on the uni-directional feedback structure
described in (9) and the specific performance measures P,
and Pyq, defined through the outputs in (15) and (17). We
investigate these measures under various combinations of
absolute and relative feedback and establish upper bounds
on the Hs, norm of H as a function of network size and
spatial dimension. In particular, we provide sufficient condi-
tions under which the uni-directional and the symmetric bi-
directional feedback provide the same performance scaling.

Furthermore, for certain cases lacking absolute velocity
feedback we show that uni-directional local measurements
cannot maintain stability with finite control gains in any
number of spatial dimensions if the network size is arbitrarily
large.

A. Input-Output Stability

In this subsection, we derive conditions for the input-
output stability of H. We first provide a condition for the case
of any circulant output operator C satisfying assumptions
(A1) and (A2), and then restate this condition for the specific
cases of Piye and Pigy.

We begin by stating a result from [23], which provides a
generalization of the Routh-Hurwitz stability criterion to a
second order polynomial with complex coefficients.

Proposition 2 (Lemma 4, [23]): The roots of a complex-
coefficient polynomial p(s) = s? + s+ a, where a, 8 € C,
satisfy Re(s) < O if and only if the inequalities

Re(f8) >0 and

Re (a)Re(B)* +Im (a)Im (8)Re(8) — Im (a)® > 0
simultaneously hold.

The following proposition provides the necessary and
sufficient condition for the input-output stability of H. The
proof builds upon (Corollary 3, [22]).

Proposition 3: System H defined by (5) and (13) is input-
output stable if and only if the inequalities

Re (by,) >0 and
O, :=Re (4n) Re (bn)”
+ Im (@) Im (by) Re (by) — Im (é5)* > 0

(19a)
(19b)



simultaneously hold for all wavenumbers
n #0, n € Z% such that &, # 0.
Proof: Taking the DFT of the arrays on both sides of

(5) and (13), one can obtain n subsystems of the form

i [0 I 7[2.] [0].
il T =4, =B 8| T 1Y

-

Un = [én 0] [En] , NE Z}d\r

non-zero

(20)

Due to Assumption (A2), each subsystem can be decom-
posed into 7 identical subsystems

(G- B[]+ [ omn
()i = [éa 0] [EJ’;] im1...d

Denoting the transfer function of the realization in (20) by
H, (s) and that of the realization in (21) by hy(s) leads to

20

én

82+ bps + an
where we used the fact that (21) is in controllable canonical
form. Since all of the modes associated with (20) are
controllable, the poles of H(s) are precisely given by the
union of the poles of Hn(s) for all wavenumbers n € Z
such that é, # 0, i.e. they are determined by the observable
modes. Since Cj, satisfies Assumption (A1), we can use the
definition of the DFT in (2) to obtain

é(}: Z Ok:[):

kEZ

Hp(s) = hn(s)I and hy(s) = , (2

which implies that &, = 0 due to Assumption (A2), i.e.
the output operator C has a zero Fourier symbol at n = 0.
Therefore it is sufficient to consider only n # 0.

Then disregarding the multiplicities, the poles of H(s)
are precisely given by the poles of h,(s) for all non-zero
wavenumbers n # 0, n € Z% such that &, # 0. Invoking
Proposition 2, the poles satisfy Re(s) < 0 if and only if
the inequalities in (19) simultaneously hold. [ ]

The interpretation of Proposition 3 is as follows. Since the
output operator C satisfies (A1), the consensus modes of (5)
associated with the wavenumber n = 0 (which are unstable
in the absence of absolute feedback [8]) are unobservable
from the output. Therefore, the input-output stability of H is
equivalent to the stability of the observable modes associated
with the non-zero wavenumbers. The next Lemma specializes
this result to the cases of P, and Pyqy.

Lemma I: Consider the output matrices (15) and (18)
associated with the performance measures Pj,. and Pygq.
System H defined by (5) and (13) is input-output stable if
and only if the inequalities in (19) simultaneously hold for
all n#0,n € Z5,.

Proof: We first consider Pjo.. Using (15) we get Q =
%C*C [1] therefore |é,|2 = 2§,. Then for any n such that
n # 0, we observe from (10) that ¢, > 0, which implies
én # 0. For Pygy, ¢n = 1 for any n # 0 [1]. In both cases
én # 0 for all n # 0, so Proposition 3 yields the result. W

TABLE I: In systems with uni-directional feedback, asymptotic scalings of
upper bounds on performance measures with respect to network size M in
finite spatial dimension d. Quantities are up to a multiplicative factor that
is independent of M ,y, or vy.

Ploc Piay
abs. pos. & abs. vel. L
(fa > .:_i,'}'j # ﬂ) max{7g.V1} 1
rel. pos. & abs. vel. ) M d=1
1/, —<In(M) d=2
> Ja g
(f"—"rf”}'f#ﬂ) Ty a>3
M d=1
abs. pos. & rel. vel.
(Ve ki 0) 1/vs -y In(M) d=2
1 d>3
abs. pos. & rel. vel. . .
(vg #0) ee 0
rel. pos. & rel. vel. + 0o oo

B. Performance Scaling with respect to Network Size

In this subsection we present the closed-form solution for
the Hz norm of H. We then derive corresponding scaling
bounds for the case of uni-directional feedback, in analogy
with those reported in [1] for symmetric bi-directional feed-
back.

We first discuss the general setting with circulant directed
feedback operators A and B (satisfying (A1)-(A3)) and a
circulant directed output operator C (satisfying (Al) and
(A2)).

Lemma 2: Suppose that system H defined by (5) and (13)
is input-output stable. Then its H2 norm is given by

d . oRe(by)
IH|G, =5 D [éal? =,
2 . (S
én#0,
n#0,ncz%

(23)

where ©,, is given by

O = Re (én) Re (bn)”+1m (an) Im (b)) Re (bn)—Im (an)>.
Proof: Since the Hs norm of H is invariant to the
change of basis that yields (20) [1], it is given by

IHIE, = 3 1Bl =d > Il
én#0, én#0,
n#0,neZd; n#0,neZ;

where we used (22) and the fact that unobservable modes
have no contribution. Based on the realization of h,, given
in (21), one can solve the associated Lyapunov equation

[ 0 ] [41511 d’lz]_'_[ﬁ%ll {512][ 0 1 ]_[ énén 0]
—an —bn) |$7y b2a] ' |0ty Soa)l—an —bn 0 0
and use the fact that ||hy, |3, = 45 . Solving the Lyapunov

: Re (b
equation leads to ¢Sy = | énl*=5 e( “) and summing over all

of the observable modes yields the result. [ ]

Lemma 2 indicates that the H5 norm depends on both the
real and the imaginary parts of the Fourier symbols of A
and B. This is in contrast to the case in which the feedback
structure is undirected, where the terms with the imaginary
parts do not exist.

Remark 2: If the feedback operators 4 and B have even
symmetry, ie. if Ay = A_p and By = B_j for all the




non-zero entries of the arrays A and B, then the feedback
is undirected and Fourier symbols a, and b, are real. Then
(23) reduces to the result in [1]

d |én|?
2
IHIR, =5 Y 5 (24)
6nr0, Gnbn
n#0,nezd;
The following lemma provides two sufficient conditions

under which the Hy norm of the system with uni-directional
feedback described by (9) respectively lower bounds or
equals the Hy norm of the system with symmetric bi-
directional feedback described by (7). At least one of these
conditions can be satisfied for any finite network size in
arbitrary spatial dimension given absolute measurements of
at least one state variable (position or velocity).

Lemma 3: Consider the system H defined by (5) and (13).
Let Hg and Hx respectively denote the systems that have
the feedback laws defined by (7) and (9). Then

1) ||[Hr|%, < |[Hgll3, if the following inequality holds

d
o [fo +r Y (1 — cos (?V—“n))] — 9 >0, (25

i=1

for all non-zero wavenumbers . # 0, n € Z% such that
én # 0.
2) [|Hrl, = | Hollk, if v = 0.

Proof: We first consider the stability of Hg, which has

~

an = go + 'Yg'-"ﬁ‘n. and b, = f, +'Tf'-"ﬁn-

It holds that Re(s) = gn = >, (1 — cos (2En;)) due to
(10) in Proposition 1 and we see by inspection that ¢, > 0
for all n # 0,n € Z%,. Recalling that

On = (go + ’Yg@n)(fo‘f"}’f@nﬁ (26)
+7g Im (7n)? [y5 (fo + 77dn) — Yl »

we observe that ©, > 0 for all n # 0,n € Z% such that
én 7 0 in either case of (25) or 4 = 0 (since absolute or
relative feedback is used for each state variable). Combining
this with the fact that Re(b,) > 0 for n # 0, we observe
that (19) is satisfied for all n # 0,n € Zf\r such that é, # 0,
hence Hg is input-output stable by Proposition 3. Setting
Im (@,) = Im (bn) = 0 in (19) directly leads to the input-
output stability of Hg, which has real a,, and by,.
Then one can rewrite (23) as

d |éal*(fo +77Gn)
2 _ @ ot Vfan
IHRIG, =5 D 6.
En7#0,
n#0,ncz

Similarly, (24) reduces to

1Holt, =5 Y o
2 2 En0 (go + ’)’g‘iﬂ)(fﬂ + %"iﬂ-)
n#0,n€Ls

Finally the inequality in (25) leads to

|En|2(fo +’)’f§n) |E:‘?fl-|2
O, o (go +'Tgén)(fo+7féﬂ),

27

for all n # 0,n € Z% such that é, # 0. Summation over
such n yields the first result. If y, = 0, equality holds in
(27) due to (26). This leads to the second result. [ |

Lemma 3 provides a sufficient condition under which uni-
directional feedback performs at least as well as symmetric
bi-directional feedback in finite spatial dimension, for any
circulant output operator C (satisfying (A1) and (A2)). Al-
though achieving equal or better performance with a smaller
number of relative state measurements is counterintuitive,
this is possible through well tuned gains, for example using
those that satisfy the inequality (25) in Lemma 3. However,
in certain instances uni-directional feedback cannot perform
better than symmetric bi-directional feedback, e.g. if the sign
of this inequality is reversed. It must be emphasized that with
appropriate gain selection, uni-directional feedback can be
preferable due to only requiring single directional sensing.

We next employ this result to establish upper bounds on
Py, and P,,,, which we then invoke to specify how the
performance scales with the network size M. The asymptotic
scalings of the performance measures for the systems with
uni-directional feedback are summarized in Table L

Theorem 1: Consider the system with uni-directional
feedback, namely Hg. Then, the upper bounds on the per-
formance measures have the following asymptotic scalings
in finite spatial dimension d as N — co.

1) Suppose that absolute velocity feedback is present, i.e.
fo # 0. Then for 75 # 0 and f, > 1—;

a) Absolute Position and Absolute Velocity Feedback
1

max {7g, Vs }’
Pda'u ~ 11

-P!oc ~

b) Relative Position and Absolute Velocity Feedback

Ploc""l/’)’g:
M d=1
Py~ —{In(M) d=2.
711 d>3

2) Absolute (but no relative) Position (g, # 0 and 4 = 0)
and Relative Velocity Feedback

P;oc”"lf’}‘f:
M d=1
Pigp ~ — sIn(M) d=2.
1 d>3

Here the quantities are given up to a multiplicative factor
that is independent of M, -4 or ;.

Proof: 1t is shown in [1] that the upper bounds given
above hold for Hg, i.e. the system with symmetric bi-
directional feedback given by (7). We start by proving the
first result. Recall from the proof of Lemma 1 that ¢, # 0
for all n # 0 in the case of Pj,. and Py, Therefore,
we invoke the first result of Lemma 3 for all n # 0. By

Ta

assumption f, > o which implies that (25) is satisfied



for all n # 0,n € Z% because the sum term is positive for
such n. This yields ||[Hr|3, < |[Holl},. so the upper
bounds on P,,. and Pj,, also hold for Hi. The second
result follows from a similar argument and the second result
of Lemma 3, since || Hg |3, = ||Holl, if 74 =0 [

Remark 3: In the absence of absolute velocity feedback,
ie. if f, = 0, satisfying (25) for given 7, # 0 and large
wavenumbers n requires that y; — oo as N — oo. In this
case, the scaling laws of Theorem 1 do not necessarily hold.

As we demonstrate next for the system with uni-directional
feedback, lack of absolute velocity measurements in systems
with relative position and velocity feedback leads to insta-
bility (i.e. infinite ‘Ho norm) in an arbitrarily large network
connected over a multi-dimensional torus.

Theorem 2: Consider the system with uni-directional
feedback, namely Hyr and the performance measures P,
and Pgyqy. Suppose that f, = 0 and 4, # 0, ie. the system
either has

1) Absolute (with relative) Position and Relative Velocity
Feedback, or
2) Relative Position and Relative Velocity Feedback.

In finite spatial dimension d, if g,, 74 and 7; are finite,
then there exists a finite N > 0 such that for all N > N,
Hy, is unstable, i.e. does not have a finite Ao norm.
Proof: For absolute (with relative) position and relative
velocity feedback, using (10) one can write (26) as

2

3
d
27
On =007} Z 1 —cos +7m; +477
i=1

Zd: 1 —cos Q—Wn-
, N
i=1

d

. 2w

+g Z sin an

i=1
Consider the wavenumber n = (N —1,..., N — 1). Then
2—1:5711 /" 2m as N — oo. Therefore, if we approximate cos(-)
and sin(-) around 27 using the first three terms in the Taylor
series expansion, we obtain

2
d
2T
'}'12- Zl —COSWTL«; — g |- (28)
i=1

2

cos(2mr —4) = 1— % and sin(2r —4) =~ —4, 6> 0.

Using these expressions one can re-write G(N_l,_mN_l) as

2 73
Yo V§d do  Ygd
9(N—1,,,..,N_1)ﬁ%56+7?d2(f+%)54—7§d252.

As N — oo, § N\, 0 which leads to
e(1\.f—1,..,,,1\.f—1) ~ —0(52)-

Thus for any finite g,, 7y and -+, there exists a
finite N > 0 such that for all N > N, it holds that
Ov_1,...n—1) <0, ie. the second inequality in (19) is
violated for n = (N —1,...,N —1). Then by Lemma 1
Hy is unstable, i.e. does not have a finite 5 norm. For
relative position and velocity feedback, we have g, = 0 and
the same argument holds. [ |

Remark 4: Due to Proposition 3, we note that the proof
of Theorem 2 holds for any output of the form (13) such that

2
— — uni-feedback, d=1
——bifeedback, d=1
15 - — uni-feedback, d=2
- ——bifeedback, d=2
2 - — unifeedback, d=3
1 —bifeedback, d=3

0
0 200 400 100
M =Nt M = N4
Fig. 1: Pga, and Pj,. as a function of the network size M for relative
position and absolute velocity feedback ( go = 0, fo = 1, 7g = 1 and
7 = 1). Performance scales as the laws given in Theorem 1.

200

N1

Omv_1,.
L

Fig. 2: With uni-directional relative position and velocity, but no absolute
velocity feedback (go = 1, fo = 0, 7g = 1 and 75 = 1), Oy in (28)
cannot remain positive for n = (N — 1,..., N — 1) and finite N, which
leads to instability due to Proposition 3.

¢(n-1,.,N—1) # 0, i.e. the modes which become unstable
as the network size grows are observable from the output.

Systems with double-integrator [17] or more general linear
dynamics [18]-[20], which have directed relative feedback
defined over the 1-dimensional torus, have been shown to
exhibit similar instability behavior. While our result provides
a generalization to the case of uni-directional feedback over
a multi-dimensional torus, more recently a similar result ap-
peared for directed bi-directional multi-neighbor interactions
over the same lattice structure [21].

Theorem 2 highlights the limitation of uni-directional
relative feedback. If relative position feedback is used, it is
not possible to find a set of finite control gains that stabilizes
arbitrarily large networks in any finite number of spatial
dimension unless the agents have access to their absolute
velocity. However, networks with uni-directional relative
feedback can not only be stabilized but also provide the same
performance scaling as that of the symmetric bi-directional
feedback using at least one type (position or velocity) of
absolute state information, as stated in Theorem 1. Namely,
either by adding absolute velocity feedback to the cases
with relative position feedback, or by eliminating relative
position feedback given that absolute position measurements
are available. While uni-directional feedback can lead to
instability in arbitrarily large networks without absolute state
information, access to it in position or velocity combined
with well-tuned gains can lead to a favorable scheme, since
the same performance scaling can be achieved with reduced
sensing/communication requirements.

The next section provides numerical examples that illus-
trate the results in theorems 1 and 2.



IV. NUMERICAL EXAMPLES

In this section, we provide two numerical examples that
confirm the theory presented in the previous section. The
first one shows the performance scalings in the case of
relative position and absolute velocity feedback. The second
one demonstrates that stability is lost for finite network size
if uni-directional relative position feedback is used in the
absence of absolute velocity feedback.

In Figure 1, performance measures Pj,. and Pyg, are
plotted as a function of the network size M. For relative
position and absolute velocity feedback with the gains f, =1
and 4 = y; = 1, the performance scaling obeys the laws
presented in Theorem 1. It is also observed that the uni-
directional feedback provides better performance compared
to that of the symmetric bi-directional feedback, which is
expected based on the result of Lemma 3, ie. since the
control gains strictly satisfy the inequality in (25).

We also confirm the result of Theorem 2 by plotting 6,
in (28) for n = (N —1,...,N — 1) as a function of
N with uni-directional relative feedback and no absolute
velocity information (i.e. f, = 0) in Figure 2. Specifically,
for absolute (with relative) position and relative velocity
feedback with the gains g, = 1 and 4 = 7y = 1 and spatial
dimensions d = 1,...,5, ©y_y, . n_1) cannot remain
positive as N is increased. This leads to instability for finite
N due to Proposition 3. As expected, O(y_1__n_1) goes
to zero as N — oc.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

We have studied the asymptotic scaling of local and
global measures of disorder in a large-scale directed network
defined over a multi-dimensional torus. We have considered
absolute as well as relative uni-directional state measure-
ments. Our main results show that absolute state information
plays a critical role in the performance and the stability
of large-scale networks if the relative state measurements
are uni-directional. Additionally a well-tuned uni-directional
feedback structure can provide the same performance scaling
with network size as the symmetric bi-directional feedback,
with the advantage of requiring less sensing/communication.
As a direction of future work, we will consider the perfor-
mance scaling of bi-directional interactions with non-equal
weights (a directed feedback structure), which has been
shown to improve the transient behavior [24] but degrade
string stability [20] in vehicle platoons.
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