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Abstract—Thisworkinvestigateslocalandglobalmeasures
ofdisorderinlarge-scaledirectednetworksofdouble-integrator
systemsconnectedoveramulti-dimensionaltorus. Wequantify
theseperformancemeasuresinsystemssubjectedtodistributed
disturbancesusinganH2 normwithoutputscorresponding
tolocalstateerrorsordeviationsfromtheglobalaverage.
Weconsidertwodirecteduni-directionalstatefeedbackinter-
connectionsthatcorrespondtorelativepositionandrelative
velocityfeedbackinvehiclenetworkapplications.Our main
resultrevealsthatabsolutestatefeedbackplaysacriticalrole
insystemrobustnesswhenlocalstatemeasurementsareuni-
directional.Specifically,ifabsolutemeasurementsofeitherstate
variableareavailable,thensystemswithuni-directionalrelative
feedbackperformas wellastheirsymmetricbi-directional
counterpartsbuthavetheadvantageofreducedcommunication
requirements. Howeverintheabsenceofabsolutefeedback
theirperformanceisworse;infact,itisimpossibletomaintain
stability(i.e.afiniteH2norm)withuni-directionalstatemea-
surementsforarbitrarilylargenetworks.Numericalexamples
illustratethetheory.

I.INTRODUCTION

Synchronizationperformanceofnetworkedsystemscan
describesystemattributessuchasefficiencyandrobustness.
Measuresofsuchperformancequantifyingcoherence(e.g.
statedeviationfromtheaverage)anddegreesofdisorder(e.g.
statedeviationsfromthoseofthenearestandfarthestagents)
[1]havebeenwidelystudiedinthecontextofcoupled
linearoscillators(double-integratordynamics)andfirstorder
consensusnetworks,seee.g.[1]–[7].

Disorderisameasureofsystemrobustnessthathasbeen
showntodependonthenetworkinterconnectionstructure
andnetworksize,whichcanbemeasuredeitherintermsof
thenumberofagents[1],[8]–[14]orthespatialdimension
ofagentinteractions[1],[9],[12]–[14].Fornetworksof
secondorderintegratorswithundirected,staticfeedbackin-
terconnections,bothlongandshortrangedisordercangrow
unboundedlywithnetworksizewithoutabsolutemeasure-
mentsofboththepositionandvelocitystates[1].Dynamic
feedbackwithundirectedinterconnectionsandatleastone
typeofabsolutestatemeasurementcanuniformlyboundthe
statedeviationfromtheaveragewithrespecttonetwork
size[9],[10].Scalingofmeasuresofdisorderwithnetwork
sizehasbeeninvestigatedfordirectedfirstorderconsensus
networkscontrolledbystaticfeedbackinone[8],[11]and
multiple[12]–[14]spatialdimensionsaswellasindirected
1-dimensionaldouble-integratornetworks[8],[15].
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Improvedscalingofthesemeasuresweredemonstratedin
1-dimensionalvehiclestringswithdirectednearest-neighbor
interactions[8],andrecentworkhasshownthatmoregeneral
directedfeedbackinterconnectionscanreducedisorderin
doubleintegratornetworks[3].However,asintheundirected
case,coherencecannotbeachievedwithoutabsolutestate
measurements[16].Thescalingofdisorder measuresin
double-integratorsystemsovermultiplespatialdimensions
withdirectedfeedbackinterconnectionhasyettobeinves-
tigated.
Inthispaper,wetakeasteptowarddeterminingwhether

ornotadirectedfeedbackstructurecanimprovehowperfor-
mancescaleswithrespecttonetworksizebyconsideringuni-
directionalfeedbackinnetworkswitharbitrarybutfinitespa-
tialdimension.Moreprecisely,wecomparetheperformance
ofanetworkofagents withdouble-integratordynamics
anddirecteduni-directionallocalstatemeasurementsdefined
overamulti-dimensionaltorustothatofthenetworkwith
symmetricbi-directionallocalstatemeasurementsstudiedin
[1].Thesemodelsrepresent,forexample,spatiallyinvariant
vehiclenetworkswherecomparibleperformanceinsystems
withdirecteduni-directionalfeedbackstructureswouldbe
desirableduetothereducedsensing/communicationrequire-
ments.Performanceofthenetworkisevaluatedintermsof
bothalocalmeasurequantifyingthevarianceofanagent’s
positionerrorwithrespecttoitsnearestpredecessorand
aglobalmeasuredescribingthevarianceofeachagent’s
positiondeviationfromthenetworkaverage(dispersion
ofconsensuserror). Wecomputethesemeasuresusingan
H2normofthesystemsubjectedtodistributedstochastic
disturbancesforsystemoutputsdefinedtoyieldthedesired
measures.Wethenextendthescalinglawsin[1]tothecase
ofdirecteduni-directionalfeedback.
Weexploitthespatialinvarianceoftheinterconnection
structuretodefinethefeedbacklawsandtheperformance
outputsintermsofcircularconvolutionoperatorsbasedon
themachinaryusedin[1].Afterestablishingthenecessary
andsufficientconditionforinput-outputstability,weprovide
theclosed-formsolutionfortheH2normofthesystemfor
generalfeedbacklawsandperformanceoutputs.Thenwe
focusonthespecialcaseofdirecteduni-directionalfeed-
backwhichemploys‘look-ahead’statemeasurements.For
networkswithabsolutemeasurementsofvelocity,weprovide
asufficientconditionunderwhichtheH2norm(perfor-
mancemeasure)forasystemwithuni-directionalfeedback
lowerboundstheH2normofsystemswithsymmetricbi-
directional(‘look-ahead/look-behind’)feedbackforany
finitenetworksizeandspatialdimension.Thisboundgen-
eralizesrecentresultssuggestingthatdirectedfeedbackcan



improveperformance[3].Wethenshowthatlocalandglobal
measuresofdisorderscaleidenticallyinsystemswithuni-
directionalandsymmetricbi-directionalfeedbackifatleast
onetypeofabsolutestate(positionorvelocity)feedbackis
employed.Conversely,intheabsenceofabsolutevelocity
measurementsweprovethatitisimpossibletomaintainthe
input-outputstabilitywithuni-directionalrelativeposition
andvelocityfeedbackasthenetworksizeincreasesfor
arbitraryspatialdimension,whichisconsistentwiththe
observationsfor1-dimensionalcyclicnetworks[17]–[20].
Wenotethatasimilarresultmorerecentlyappearedin[21].
Thisconditionrepresentsanimportantdifferencebetween
theuni-directionalandthesymmetricbi-directionalfeedback
structures,asthelattermaintainsthestabilityforarbitrarily
largespatiallyinvariantnetworks[1].
Ourresultshighlightatrade-offbetweenperformanceand

stabilityinlarge-scalenetworkswithuni-directionalfeed-
back;whileachievingcomparableperformancewithreduced
communicationcanbefavorable,itcomesatthecostof
degradationofstabilityforcertainfeedbackinterconnection
structures.Numericalexamplesconfirmthetheoreticalre-
sultsregardingperformancescalingwithrespecttonetwork
sizeandthelossofstabilityforarbitrarilylargenetworks
withoutabsolutevelocityfeedback.
Theremainderofthispaperisorganizedasfollows.

SectionII-Adefinesthenotationandprovidesthemathe-
maticalbackgroundusedthroughoutthepaper.SectionII-B
presentsthesystemmodelsandSectionII-Cpresentsthe
feedbackpolicies.SectionII-Ddescribestheperformance
measures.SectionsIIIprovidestheconditionsfortheinput-
outputstabilityofthesystem,theclosed-formsolutionfor
theH2normaswellasadescriptionofhowperformance
scaleswithrespecttonetworksizeanddimension.Section
IVpresentsnumericalexamplessupportingthetheoretical
results.SectionVconcludesthepaper.

II.PROBLEMFORMULATION

A.PreliminariesandNotation

Weconsidersystemsconnectedoverthe d-dimensional
torusZdN =ZN×···×ZN definedasthed-foldcartesian
productofthe1-dimensionaltorusZN ={0,1,...,N−1}.
AnarrayAisdefinedasthemappingA:ZdN → C

p×q

wherepandqarescalarsandAk denoteseachofthe
arrayelementscorrespondingtothespatial multi-index
k=(k1,...,kd)∈ Z

d
N. Wedenotevector-valuedarrays

(q=1)withalower-caseletter.Forexample,theposition
statex(t)isanarraywhoseelementsxk(t)∈R

drepresent
thepositionofthekthsystemindspatialdimensions.
AdditionisperformedmoduloN forindicesk,l∈ZdN,
i.e.m=k+lwithmi=(ki+li)N fori=1,...,d.
Themulti-dimensionalcircularconvolutionofthearrays
Aandhyieldsanarrayzwithelementsgivenby

zk=

l∈ZdN

Ak−lhl. (1)

Weequivalentlywrite(1)as z= Ah,whereAdenotes
thecircularconvolutionoperatorassociatedwitharrayA

actingonarrayh.Themulti-dimensionalDiscreteFourier
Transform(DFT)ofAisdefinedby

Ân:=

k∈ZdN

Ake
−j2πN n·k, (2)

where (·)denotesthescalarproduct,n ∈ ZdN isthe
wavenumberandÂnistheFouriersymbolofA.Itisawell-
knownfactthattheDFTdiagonalizesacircularconvolution
operator[1],so

ẑn=Ân̂hn ∀n∈ZdN.

IfÂnisasquarematrix,thentheeigenvaluesofthecircular
convolutionoperatorAaretheunionoftheeigenvaluesof
allÂn,i.e.σ(A)=∪n∈ZdNσ(̂An),whereσ(·)denotesthe
spectrumofitsargument.
Theadjoint(conjugatetranspose)ofanoperator(matrix)

QisdenotedbyQ∗.E{·}denotestheexpectedvalueof
arandomvariableand ·H2 denotestheH2normofa
linearsystem.Thezeroandidentityoperators(matrices)are
denotedbyO(0)andI(I),respectively.Tdenotesanarray
withidenticalnon-zeroelements,i.e.Tk=Tl=0forall
k,l∈ZdN,and1denotesthearraywithelements1k=I
forallk∈ZdN.Thearrows and repsectivelydenote
theleftandrightlimitstoarealnumber.O(·)denotesthe
approximationorder.

B.Double-IntegratorSystemsoverthed-DimensionalTorus

WeconsiderM :=NdidenticalsystemsdefinedoverZdN
eachhavingdouble-integratordynamicsgivenby

v̇k=−uk+wk, (3)

vk=̇xk ∀k∈ZdN,

wherexk∈R
d,vk∈R

d,uk∈R
dandwk∈R

drespectively
denotetheposition,velocity,controlinputandanexogenous
localdisturbance.Thecontrolinputisoftheform

uk=goxk+fovk+

l∈ZdN

Gk−lxl+

l∈ZdN

Fk−lvl, (4)

wherego,fo≥0arethefeedbackgainsassociatedwiththe
measurementsofstateswithrespecttoanabsolutereference
frame(absolutefeedback).Thecircularconvolutionsofthe
stateswiththefeedbackarraysG :ZdN → Rd×d and
F:ZdN → R

d×ddefinefeedbacklawsbasedonrelative
statemeasurements(relativefeedback).
Combining(3)and(4)yields

ẋ
v̇
=
O I
−A −B

x
v
+
O
I
w, (5)

whereA=goI+GandB=foI+F.Here,GandFare
thecircularconvolutionoperatorsassociatedwiththearrays
GandF,respectively.
Remark1:Sincethefeedbacklawsin(5)aredetermined

bycirculantoperators,thefeedbacklawsareinvariantto
thespecificlocationk∈ZdN,i.e.(5)describesaspatially
invariantsystem[1],[22].



Assumptions:Thefollowingstandardassumptions[1]will
beimposedonGandFthroughoutthepaper.Notethatfor
clarityofexpositionwestatethemonlyintermsofG.
(A1)Thefeedbacklawssatisfytheproperty

k∈ZdN

Gk=0,

whichimpliesthatT∈ker(G).
(A2)Ifd≥2,thefeedbacklawsaredecoupledinspatial
coordinates,i.e.theinteractionsintheithspatialcoordinate
onlydependonthestatemeasurementsinthatspatialcoordi-
nate,fori=1,...,d.Thisresultsindiagonalarrayelements
Gk.Inadditionsettingthenon-zeroentriesofGktobeequal
leadsto

Gk=gkI, gk∈R.

ThisconditionalsoimpliesthattheFouriersymbolofGis
ascalarmatrix

Ĝn=̂gnI.

Therefore,byaslightabuseofnotationwewillrefertoĝn
astheFouriersymbolofG.
(A3)If(A2)holds,thediagonalentriesofeacharrayelement
Gk=gkIsatisfytheproperty

gk
>0, k1=···=kd=0

≤0,otherwise.

Forspatiallyinvariantsystems,(A1)-(A3)generalizethe
propertiesofacirculantweightedgraphLaplacianmatrixto
systemswitharbitraryspatialdimension.
Undertheseassumptions,GandFcanbespecifiedto

definefeedbacklawsbasedonrelativestatemeasurements.
Inthissetting,ifgo =0 (fo =0),thenthesystem
issaidtohaveabsoluteposition(velocity)feedback.If
go=0 (fo=0),thenweassumethesystemhasrelative
position(velocity)feedback.Ifnorelativeposition(velocity)
feedbackisused,thenweassumego=0 (fo=0).

C.FeedbackPolicies

Weareinterestedinexaminingtheeffectofdirected
communicationontheperformanceoflarge-scalenetworks
bycomparingsystemswithuni-directionalandsymmetricbi-
directionalfeedback.Inparticular,wewillinvestigatehow
theperformancescaleswithnetworksize. Wenextdefine
thetwofeedbackpoliciesandthenspecifythepeformance
measuresofinterestinthesubsequentsubsection.
Bi-directionalFeedback:Inthiscommunicationstructure,

eachagentemploysalook-ahead/look-behindpolicy,in
whichtheinformationflowineitherdirectionisequally
weighted.Forexample,ifd=1,thisfeedbackintercon-
nectionisattainedthroughthecontrolinput

uk=goxk+fovk+
1

2
[γg(xk−xk+1)+γg(xk−xk−1)

+γf(vk−vk+1)+γf(vk−vk−1)],

whereγg,γf ≥ 0arecontrolgainsandthefactorof
1
2

providesanormalizationofweightswithrespecttotheuni-
directionalfeedbackdescribedinthefollowingsubsection.

Ford≥1,thearrayassociatedwiththecorrespondinglocal
symmetricbi-directionalfeedbackoperatorQisgivenby

Qk=






dI, k1=···=kd=0

−12I, ki=±1,kj=0forj=i

0, otherwise,

(6)

suchthattheoperatorsGandFin(5)aregivenby

G=γgQ, F=γfQ. (7)

Thisfeedbacklawwasstudiedextensivelyin[1],[9].
Uni-directionalFeedback: Fordirectedcommunication,

weconsideruni-directional(look-ahead)feedback. For
d=1,theassociatedcontrolinputisgivenby

uk=goxk+fovk+γg(xk−xk+1)+γf(vk−vk+1).

Ford≥1,thearrayassociatedwiththecorrespondinglocal
uni-directionalfeedbackoperatorRisgivenby

Rk=






dI, k1=···=kd=0

−I, ki=−1,kj=0forj=i

0, otherwise.

(8)

Inthiscase,theoperatorsGandFin(5)aregivenby

G=γgR, F=γfR. (9)

ThefollowingpropositionabouttheFouriersymbolsofQ
andRwillbeusedinthesubsequentresults.
Proposition1:TherespectiveFouriersymbolsq̂nand̂rn

ofthecircularconvolutionoperatorsQandRdefinedby(6)
and(8)aregivenby

r̂n=

d

i=1

1−ej
2π
N ni , q̂n=

d

i=1

1−cos
2π

N
ni .(10)

Proof: SinceQcanbedecomposedasQ=R+R∗

2 ,it
holdsthatq̂n=Re(̂rn)forn∈Z

d
N.Usingthedefinitionof

theDFTgivenin(2)leadstoR̂n= d−
d
i=1e

j2πN ni I.

Theresultisthenobtainedbyinvoking(A2),i.e.R̂n=̂rnI.

D.PerformanceMeasures

Wenowdefinesystemoutputsthatallowustoquantify
localandglobalmeasuresofsystemdisorderthroughthe
input-outputH2normofasystemoftheform(5)forthe
twofeedbackinterconnectionstructures(7)and(9).These
measuresweredetailedin[1]forsystemswiththefeedback
interconnectionstructure(7)butwerepeattheirdefinitions
hereforcompleteness.
Sincewefocusonspatiallyinvariantsystems,itisconve-
nienttodefineanodalperformancemeasureoftheform

Pk:=lim
t→∞

E{y∗k(t)yk(t)}, (11)

whereykistheperformanceoutputgivenbythecircular
convolution

yk=

l∈ZdN

Ck−lxl ∀k∈Z
d
N. (12)



Here,weassumethatCk satisfiesassumptions(A1)and
(A2).Dueto(A1),theconsensus modesof(5)willbe
unobservablefromthesystemoutput

y= C O
x
v
, (13)

whereCrepresentstherespectivecircularconvolutionop-
eratorassociatedwiththeoperationin(12). Wedenotethe
input-outputsystemdefinedby(5)and(13)byH.Inthis
workwelimittheanalysistoperformancemeasuresbased
solelyontheposition,whichiscommonforcoordination
[1],[9]andphasesynchronization[4],[5]applications.
Forwhitenoisedisturbanceinputswwithunitcovariance,
thesquaredH2normofHquantifiesthesteady-statevari-
anceoftheoutput[4]

H 2
H2=limt→∞

E{y∗(t)y(t)}, (14)

wheneverH isinput-outputstable.Sincetheperformance
outputofeachsystemykisalsospatiallyinvariant,itis
sufficienttodivide(14)bythenetworksizetorecovereach
system’smeasurePk,i.e.

Pk=
1

M
H 2

H2,

wherewerecallthatM =Nd.
1)LocalError:Thismeasurequantifiesthesteady-state

varianceofthedeviationofeachagent’spositionfromthat
ofitspredecessor.Ford=1,thecorrespondingoutputfor
eachsystemis

yk=xk−xk+1.

Thesystemoutput(13)ford≥1canbeobtainedusingthe
rightshiftoperatoralongdimensioni,namelyDisuchthat

(Dix)(k1,...,ki,...,kd):=x(k1,...,ki+1,...,kd),

andspecifying

C=






I−D1

...
I−Dd




⇒

(yk)i=x(k1,...,ki,...,kd)
−x(k1,...,ki+1,...,kd),

i=1,...,d.
(15)

Thelocalmeasureofdisorderforeachsystematlocationk
isthengivenby

Ploc=lim
t→∞

E
d

i=1

(yk)
∗
i(yk)i . (16)

2)DeviationfromtheAverage:Thismeasurequantifies
thesteady-statevarianceofthedeviationofeachsystem’s
positionfromtheaveragepositionofallofthesystems.
Thereforeeachsystem’soutputgivestheconsensuserror

yk=xk−
1

M
l∈ZdN

xl. (17)

Inthiscase,theoutputoperatorCbecomes

C=I−
1

M
J, (18)

whereJdenotesthecircularconvolutionoperatorassociated
withthearray1.Thecorrespondingperformancemeasureof
theform(11)quantifiestheglobaldegreeofdisorderinthe
networkandwillbedenotedbyPdavforeachsystem.

III.DISORDERINLARGE-SCALEUNI-DIRECTIONAL
NETWORKS

Inthissection,wefirstprovideconditionsfortheinput-
outputstabilityofH. Wethenderivetheclosed-formso-
lutionofitsH2norm,forthecaseinwhichthedirected
feedbackoperatorsAandB(satisfying(A1)-(A3))in(5)
andthedirectedoutputoperatorC(satisfying(A1)and(A2))
in(13)arecircularconvolutionoperators.Theseresultsfor
directednetworkscanbeusedtorecoverthosein[1],which
dealwiththespecialcaseofundirectedfeedback.
Thenwefocusontheuni-directionalfeedbackstructure

describedin(9)andthespecificperformancemeasuresPloc
andPdavdefinedthroughtheoutputsin(15)and(17). We
investigatethesemeasuresundervariouscombinationsof
absoluteandrelativefeedbackandestablishupperbounds
ontheH2normofH asafunctionofnetworksizeand
spatialdimension.Inparticular,weprovidesufficientcondi-
tionsunderwhichtheuni-directionalandthesymmetricbi-
directionalfeedbackprovidethesameperformancescaling.
Furthermore,forcertaincaseslackingabsolutevelocity
feedbackweshowthatuni-directionallocalmeasurements
cannot maintainstabilitywithfinitecontrolgainsinany
numberofspatialdimensionsifthenetworksizeisarbitrarily
large.

A.Input-OutputStability

Inthissubsection,wederiveconditionsfortheinput-
outputstabilityofH.Wefirstprovideaconditionforthecase
ofanycirculantoutputoperatorCsatisfyingassumptions
(A1)and(A2),andthenrestatethisconditionforthespecific
casesofPlocandPdav.
Webeginbystatingaresultfrom[23],whichprovidesa

generalizationoftheRouth-Hurwitzstabilitycriteriontoa
secondorderpolynomialwithcomplexcoefficients.
Proposition2(Lemma4,[23]):Therootsofacomplex-
coefficientpolynomialp(s)=s2+βs+α,whereα,β∈C,
satisfyRe(s)<0ifandonlyiftheinequalities

Re(β)>0 and

Re(α)Re(β)
2
+Im(α)Im(β)Re(β)−Im(α)

2
>0

simultaneouslyhold.
Thefollowingpropositionprovidesthenecessaryand

sufficientconditionfortheinput-outputstabilityofH.The
proofbuildsupon(Corollary3,[22]).
Proposition3:SystemHdefinedby(5)and(13)isinput-

outputstableifandonlyiftheinequalities

Re(̂bn)>0 and (19a)

Θn:=Re(̂an)Re(̂bn)
2

(19b)

+Im(̂an)Im(̂bn)Re(̂bn)−Im(̂an)
2
>0



simultaneously hold for all non-zero wavenumbers
n=0,n∈ZdN suchthat̂cn=0.
Proof: TakingtheDFTofthearraysonbothsidesof

(5)and(13),onecanobtainnsubsystemsoftheform

˙̂xn
˙̂vn
=

0 I

−Ân −B̂n

x̂n
v̂n
+
0
I
ŵn,

ŷn= Ĉn 0
x̂n
v̂n
, n∈ZdN. (20)

DuetoAssumption(A2),eachsubsystemcanbedecom-
posedintoiidenticalsubsystems

(̇̂xn)i
(̇̂vn)i

=
0 1

−̂an −̂bn

(̂xn)i
(̂vn)i

+
0
1
(̂wn)i,

(̂yn)i= ĉn 0
(̂xn)i
(̂vn)i

,i=1,...,d. (21)

Denotingthetransferfunctionoftherealizationin(20)by
Ĥn(s)andthatoftherealizationin(21)bŷhn(s)leadsto

Ĥn(s)=̂hn(s)Iandĥn(s)=
ĉn

s2+b̂ns+̂an
, (22)

whereweusedthefactthat(21)isincontrollablecanonical
form.Sinceallofthe modesassociated with(20)are
controllable,thepolesofH(s)arepreciselygivenbythe
unionofthepolesofĤn(s)forallwavenumbersn∈Z

d
N

suchthat̂cn=0,i.e.theyaredeterminedbytheobservable
modes.SinceCksatisfiesAssumption(A1),wecanusethe
definitionoftheDFTin(2)toobtain

Ĉ0=

k∈ZdN

Ck=0,

whichimpliesthatĉ0 =0duetoAssumption(A2),i.e.
theoutputoperatorChasazeroFouriersymbolatn=0.
Thereforeitissufficienttoconsideronlyn=0.
Thendisregardingthemultiplicities,thepolesofH(s)
arepreciselygivenbythepolesofĥn(s)forallnon-zero
wavenumbersn=0,n∈ZdN suchthatĉn=0.Invoking
Proposition2,thepolessatisfyRe(s)<0ifandonlyif
theinequalitiesin(19)simultaneouslyhold.
TheinterpretationofProposition3isasfollows.Sincethe

outputoperatorCsatisfies(A1),theconsensusmodesof(5)
associatedwiththewavenumbern=0(whichareunstable
intheabsenceofabsolutefeedback[8])areunobservable
fromtheoutput.Therefore,theinput-outputstabilityofHis
equivalenttothestabilityoftheobservablemodesassociated
withthenon-zerowavenumbers.ThenextLemmaspecializes
thisresulttothecasesofPlocandPdav.
Lemma1:Considertheoutput matrices(15)and(18)
associatedwiththeperformancemeasuresPlocandPdav.
SystemH definedby(5)and(13)isinput-outputstableif
andonlyiftheinequalitiesin(19)simultaneouslyholdfor
alln=0,n∈ZdN.
Proof: WefirstconsiderPloc.Using(15)wegetQ=

1
2C
∗C[1]therefore|̂cn|

2=2̂qn.Thenforanynsuchthat
n=0,weobservefrom(10)that̂qn>0,whichimplies
ĉn=0.ForPdav,̂cn=1foranyn=0[1].Inbothcases
ĉn=0foralln=0,soProposition3yieldstheresult.

TABLEI:Insystemswithuni-directionalfeedback,asymptoticscalingsof
upperboundsonperformancemeasureswithrespecttonetworksizeM in
finitespatialdimensiond.Quantitiesareuptoamultiplicativefactorthat
isindependentofM,γgorγf.

Ploc Pdav
abs.pos.&abs.vel.

fo≥
γg
γf
,γf=0

1
max{γg,γf}

1

rel.pos.&abs.vel.

fo≥
γg
γf
,γf=0

1/γg
1
γg






M d =1

ln(M) d=2

1 d≥3

abs.pos.&rel.vel.
(γg=0)

1/γf
1
γf






M d =1

ln(M) d=2

1 d≥3

abs.pos.&rel.vel.
(γg=0)

+∞ +∞

rel.pos.&rel.vel. +∞ +∞

B.PerformanceScalingwithrespecttoNetworkSize

Inthissubsectionwepresenttheclosed-formsolutionfor
theH2normofH. Wethenderivecorrespondingscaling
boundsforthecaseofuni-directionalfeedback,inanalogy
withthosereportedin[1]forsymmetricbi-directionalfeed-
back.
Wefirstdiscussthegeneralsettingwithcirculantdirected
feedbackoperatorsAandB(satisfying(A1)-(A3))anda
circulantdirectedoutputoperatorC(satisfying(A1)and
(A2)).
Lemma2:SupposethatsystemHdefinedby(5)and(13)

isinput-outputstable.ThenitsH2normisgivenby

H 2
H2=

d

2
ĉn=0,

n=0,n∈ZdN

|̂cn|
2Re(̂bn)

Θn
, (23)

whereΘnisgivenby

Θn=Re(̂an)Re(̂bn)
2
+Im(̂an)Im(̂bn)Re(̂bn)−Im(̂an)

2
.

Proof: SincetheH2normofH isinvarianttothe
changeofbasisthatyields(20)[1],itisgivenby

H 2
H2=

ĉn=0,

n=0,n∈ZdN

Ĥn
2
H2=d

ĉn=0,

n=0,n∈ZdN

ĥn
2
H2,

whereweused(22)andthefactthatunobservablemodes
havenocontribution.Basedontherealizationofĥngiven
in(21),onecansolvetheassociatedLyapunovequation

0 1

−̂an −̂bn

∗
φ̂11 φ̂12
φ̂∗12 φ̂22

+
φ̂11 φ̂12
φ̂∗12 φ̂22

0 1

−̂an −̂bn
=
−̂c∗n̂cn0
0 0

andusethefactthat ĥn
2
H2
=φ̂(n)22.SolvingtheLyapunov

equationleadstoφ̂(n)22=|̂cn|
2Re(̂bn)
2Θn

andsummingoverall
oftheobservablemodesyieldstheresult.
Lemma2indicatesthattheH2normdependsonboththe

realandtheimaginarypartsoftheFouriersymbolsofA
andB.Thisisincontrasttothecaseinwhichthefeedback
structureisundirected,wherethetermswiththeimaginary
partsdonotexist.
Remark2:IfthefeedbackoperatorsAandBhaveeven
symmetry,i.e.ifAk =A−kandBk =B−kforallthe



non-zeroentriesofthearraysAandB,thenthefeedback
isundirectedandFouriersymbolŝanand̂bnarereal.Then
(23)reducestotheresultin[1]

H 2
H2=

d

2
ĉn=0,

n=0,n∈ZdN

|̂cn|
2

ân̂bn
. (24)

Thefollowinglemmaprovidestwosufficientconditions
underwhichtheH2normofthesystemwithuni-directional
feedbackdescribedby(9)respectivelylowerboundsor
equalstheH2 normofthesystem withsymmetricbi-
directionalfeedbackdescribedby(7).Atleastoneofthese
conditionscanbesatisfiedforanyfinitenetworksizein
arbitraryspatialdimensiongivenabsolutemeasurementsof
atleastonestatevariable(positionorvelocity).
Lemma3:ConsiderthesystemHdefinedby(5)and(13).

LetHQ andHR respectivelydenotethesystemsthathave
thefeedbacklawsdefinedby(7)and(9).Then

1) HR
2
H2
≤ HQ

2
H2
ifthefollowinginequalityholds

γf fo+γf

d

i=1

1−cos
2π

N
ni −γg≥0, (25)

forallnon-zerowavenumbersn=0,n∈ZdN suchthat
ĉn=0.
2) HR

2
H2
= HQ

2
H2
ifγg=0.

Proof:WefirstconsiderthestabilityofHR,whichhas

ân=go+γĝrn andb̂n=fo+γf̂rn.

ItholdsthatRe(̂rn)=q̂n=
d
i=1 1−cos

2π
Nni dueto

(10)inProposition1andweseebyinspectionthat̂qn>0
foralln=0,n∈ZdN.Recallingthat

Θn=(go+γĝqn)(fo+γf̂qn)
2 (26)

+γgIm(̂rn)
2
[γf(fo+γf̂qn)−γg],

weobservethatΘn>0foralln=0,n∈Z
d
N suchthat

ĉn=0ineithercaseof(25)orγg=0(sinceabsoluteor
relativefeedbackisusedforeachstatevariable).Combining
thiswiththefactthatRe(̂bn)>0forn=0,weobserve
that(19)issatisfiedforalln=0,n∈ZdN suchthat̂cn=0,
henceHR isinput-outputstablebyProposition3.Setting
Im(̂an)=Im(̂bn)=0in(19)directlyleadstotheinput-
outputstabilityofHQ,whichhasreal̂anand̂bn.
Thenonecanrewrite(23)as

HR
2
H2=

d

2
ĉn=0,

n=0,n∈ZdN

|̂cn|
2(fo+γf̂qn)

Θn
.

Similarly,(24)reducesto

HQ
2
H2=

d

2
ĉn=0,

n=0,n∈ZdN

|̂cn|
2

(go+γĝqn)(fo+γf̂qn)
.

Finallytheinequalityin(25)leadsto

|̂cn|
2(fo+γf̂qn)

Θn
≤

|̂cn|
2

(go+γĝqn)(fo+γf̂qn)
, (27)

foralln=0,n∈ZdN suchthat̂cn=0.Summationover
suchnyieldsthefirstresult.Ifγg=0,equalityholdsin
(27)dueto(26).Thisleadstothesecondresult.
Lemma3providesasufficientconditionunderwhichuni-

directionalfeedbackperformsatleastaswellassymmetric
bi-directionalfeedbackinfinitespatialdimension,forany
circulantoutputoperatorC(satisfying(A1)and(A2)).Al-
thoughachievingequalorbetterperformancewithasmaller
numberofrelativestatemeasurementsiscounterintuitive,
thisispossiblethroughwelltunedgains,forexampleusing
thosethatsatisfytheinequality(25)inLemma3.However,
incertaininstancesuni-directionalfeedbackcannotperform
betterthansymmetricbi-directionalfeedback,e.g.ifthesign
ofthisinequalityisreversed.Itmustbeemphasizedthatwith
appropriategainselection,uni-directionalfeedbackcanbe
preferableduetoonlyrequiringsingledirectionalsensing.
Wenextemploythisresulttoestablishupperboundson
PlocandPdav,whichwetheninvoketospecifyhowthe
performancescaleswiththenetworksizeM.Theasymptotic
scalingsoftheperformancemeasuresforthesystemswith
uni-directionalfeedbackaresummarizedinTableI.
Theorem1:Considerthesystem withuni-directional
feedback,namelyHR.Then,theupperboundsontheper-
formancemeasureshavethefollowingasymptoticscalings
infinitespatialdimensiondasN→∞.

1)Supposethatabsolutevelocityfeedbackispresent,i.e.
fo=0.Thenforγf=0andfo≥

γg
γf
,

a)AbsolutePositionandAbsoluteVelocityFeedback

Ploc∼
1

max{γg,γf}
,

Pdav∼1,

b)RelativePositionandAbsoluteVelocityFeedback

Ploc∼1/γg,

Pdav∼
1

γg






M d=1

ln(M) d=2

1 d≥3

.

2)Absolute(butnorelative)Position(go =0andγg=0)
andRelativeVelocityFeedback

Ploc∼1/γf,

Pdav∼
1

γf






M d=1

ln(M) d=2

1 d≥3

.

Herethequantitiesaregivenuptoamultiplicativefactor
thatisindependentofM,γgorγf.
Proof: Itisshownin[1]thattheupperboundsgiven

aboveholdforHQ,i.e.thesystemwithsymmetricbi-
directionalfeedbackgivenby(7). Westartbyprovingthe
firstresult.RecallfromtheproofofLemma1thatĉn=0
foralln=0 inthecaseofPlocandPdav.Therefore,
weinvokethefirstresultofLemma3foralln=0.By
assumptionfo≥

γg
γf
,whichimpliesthat(25)issatisfied



foralln=0,n∈ZdN becausethesumtermispositivefor
suchn.ThisyieldsHR

2
H2
≤ HQ

2
H2
,sotheupper

boundsonPlocandPdavalsoholdforHR.Thesecond
resultfollowsfromasimilarargumentandthesecondresult
ofLemma3,since HR

2
H2
= HQ

2
H2
ifγg=0.

Remark3:Intheabsenceofabsolutevelocityfeedback,
i.e.iffo=0,satisfying(25)forgivenγg=0andlarge
wavenumbersnrequiresthatγf→ ∞ asN→ ∞.Inthis
case,thescalinglawsofTheorem1donotnecessarilyhold.
Aswedemonstratenextforthesystemwithuni-directional

feedback,lackofabsolutevelocitymeasurementsinsystems
withrelativepositionandvelocityfeedbackleadstoinsta-
bility(i.e.infiniteH2norm)inanarbitrarilylargenetwork
connectedoveramulti-dimensionaltorus.
Theorem2:Considerthesystem withuni-directional
feedback,namelyHR andtheperformancemeasuresPloc
andPdav.Supposethatfo=0andγg=0,i.e.thesystem
eitherhas

1)Absolute(withrelative)PositionandRelativeVelocity
Feedback,or
2)RelativePositionandRelativeVelocityFeedback.

Infinitespatialdimensiond,ifgo,γgandγf arefinite,
thenthereexistsafiniteN̄ >0suchthatforallN>N̄,
HR isunstable,i.e.doesnothaveafiniteH2norm.
Proof:Forabsolute(withrelative)positionandrelative

velocityfeedback,using(10)onecanwrite(26)as

Θn=goγ
2
f

d

i=1

1−cos
2π

N
ni

2

+γgγ
2
f

d

i=1

1−cos
2π

N
ni

3

+γg

d

i=1

sin
2π

N
ni

2

γ2f

d

i=1

1−cos
2π

N
ni −γg.(28)

Considerthewavenumbern=(N−1,...,N−1).Then
2π
Nni 2πasN→∞.Therefore,ifweapproximatecos(·)
andsin(·)around2πusingthefirstthreetermsintheTaylor
seriesexpansion,weobtain

cos(2π−δ)≈1−
δ2

2
and sin(2π−δ)≈−δ, δ>0.

Usingtheseexpressionsonecanre-writeΘ(N−1,...,N−1)as

Θ(N−1,...,N−1)≈
γgγ

2
fd
3

8
δ6+γ2fd

2(
go
4
+
γgd

2
)δ4−γ2gd

2δ2.

AsN→∞,δ 0whichleadsto

Θ(N−1,...,N−1)≈−O(δ
2).

Thusforany finite go,γg andγf,thereexistsa
finiteN̄>0suchthatforallN > N̄,itholdsthat
Θ(N−1,...,N−1)<0,i.e.thesecondinequalityin(19)is
violatedforn=(N−1,...,N−1).ThenbyLemma1
HR isunstable,i.e.doesnothaveafiniteH2norm.For
relativepositionandvelocityfeedback,wehavego=0and
thesameargumentholds.
Remark4:

M =Nd
0 200 400 600

P
d
av

0

0.5

1

1.5

2
uni-feedback, d=1
bi-feedback, d=1
uni-feedback, d=2
bi-feedback, d=2
uni-feedback, d=3
bi-feedback, d=3

M =Nd
0 100 200

P
l
oc

0.2

0.4

0.6

0.8

DuetoProposition3,wenotethattheproof
ofTheorem2holdsforanyoutputoftheform(13)suchthat

Fig.1:PdavandPlocasafunctionofthenetworksizeM forrelative
positionandabsolutevelocityfeedback(go=0,fo=1,γg=1and
γf=1

N
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Θ
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2
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).PerformancescalesasthelawsgiveninTheorem1.

Fig.2: Withuni-directionalrelativepositionandvelocity,butnoabsolute
velocityfeedback(go=1,fo=0,γg=1andγf=1),Θn in(28)
cannotremainpositiveforn=(N−1,...,N−1)andfiniteN,which
leadstoinstabilityduetoProposition3.

ĉ(N−1,...,N−1)=0,i.e.themodeswhichbecomeunstable
asthenetworksizegrowsareobservablefromtheoutput.

Systemswithdouble-integrator[17]ormoregenerallinear
dynamics[18]–[20],whichhavedirectedrelativefeedback
definedoverthe1-dimensionaltorus,havebeenshownto
exhibitsimilarinstabilitybehavior.Whileourresultprovides
ageneralizationtothecaseofuni-directionalfeedbackover
amulti-dimensionaltorus,morerecentlyasimilarresultap-
pearedfordirectedbi-directionalmulti-neighborinteractions
overthesamelatticestructure[21].

Theorem2highlightsthelimitationofuni-directional
relativefeedback.Ifrelativepositionfeedbackisused,itis
notpossibletofindasetoffinitecontrolgainsthatstabilizes
arbitrarilylargenetworksinanyfinitenumberofspatial
dimensionunlesstheagentshaveaccesstotheirabsolute
velocity. However,networks withuni-directionalrelative
feedbackcannotonlybestabilizedbutalsoprovidethesame
performancescalingasthatofthesymmetricbi-directional
feedbackusingatleastonetype(positionorvelocity)of
absolutestateinformation,asstatedinTheorem1.Namely,
eitherbyaddingabsolutevelocityfeedbacktothecases
withrelativepositionfeedback,orbyeliminatingrelative
positionfeedbackgiventhatabsolutepositionmeasurements
areavailable. Whileuni-directionalfeedbackcanleadto
instabilityinarbitrarilylargenetworkswithoutabsolutestate
information,accesstoitinpositionorvelocitycombined
withwell-tunedgainscanleadtoafavorablescheme,since
thesameperformancescalingcanbeachievedwithreduced
sensing/communicationrequirements.

Thenextsectionprovidesnumericalexamplesthatillus-
tratetheresultsintheorems1and2.



IV.NUMERICALEXAMPLES

Inthissection,weprovidetwonumericalexamplesthat
confirmthetheorypresentedintheprevioussection.The
firstoneshowstheperformancescalingsinthecaseof
relativepositionandabsolutevelocityfeedback.Thesecond
onedemonstratesthatstabilityislostforfinitenetworksize
ifuni-directionalrelativepositionfeedbackisusedinthe
absenceofabsolutevelocityfeedback.
InFigure1,performance measuresPlocandPdav are

plottedasafunctionofthenetworksizeM.Forrelative
positionandabsolutevelocityfeedbackwiththegainsfo=1
andγg=γf=1,theperformancescalingobeysthelaws
presentedinTheorem1.Itisalsoobservedthattheuni-
directionalfeedbackprovidesbetterperformancecompared
tothatofthesymmetricbi-directionalfeedback,whichis
expectedbasedontheresultofLemma3,i.e.sincethe
controlgainsstrictlysatisfytheinequalityin(25).
WealsoconfirmtheresultofTheorem2byplotting Θn

in(28)forn=(N−1,...,N−1)asafunctionof
N withuni-directionalrelativefeedbackandnoabsolute
velocityinformation(i.e.fo=0)inFigure2.Specifically,
forabsolute(withrelative)positionandrelativevelocity
feedbackwiththegainsgo=1andγg=γf=1andspatial
dimensionsd=1,...,5,Θ(N−1,...,N−1) cannotremain
positiveasNisincreased.Thisleadstoinstabilityforfinite
N duetoProposition3.Asexpected,Θ(N−1,...,N−1)goes
tozeroasN→∞.

V.CONCLUSIONSANDDIRECTIONSFORFUTUREWORK

Wehavestudiedtheasymptoticscalingoflocaland
globalmeasuresofdisorderinalarge-scaledirectednetwork
definedoveramulti-dimensionaltorus.Wehaveconsidered
absoluteaswellasrelativeuni-directionalstatemeasure-
ments.Ourmainresultsshowthatabsolutestateinformation
playsacriticalroleintheperformanceandthestability
oflarge-scalenetworksiftherelativestatemeasurements
areuni-directional.Additionallyawell-tuneduni-directional
feedbackstructurecanprovidethesameperformancescaling
withnetworksizeasthesymmetricbi-directionalfeedback,
withtheadvantageofrequiringlesssensing/communication.
Asadirectionoffuturework,wewillconsidertheperfor-
mancescalingofbi-directionalinteractionswithnon-equal
weights(adirectedfeedbackstructure), whichhasbeen
showntoimprovethetransientbehavior[24]butdegrade
stringstability[20]invehicleplatoons.
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