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Abstract - This paper compares three different dc-dc topologies, 
i.e. boost converter, three-level flying capacitor multilevel 
converter (FCMC) and one-cell switching tank converter (STC) 
for a 100 kW electric vehicle power electronic system. This 
bidirectional dc-dc converter targets 300 V - 600 V voltage 
conversion. Total semiconductor loss index (TSLI) has been 
proposed to evaluate topologies and device technologies. The boost 
converter and one-cell STC have been fairly compared by utilizing 
this index. The simulation results of a 100 kW one-cell STC 
working at zero current switching (ZCS) mode have been 
provided. A 100 kW hardware prototype using 1200 V 600 A SiC 
power module has been built. The estimated efficiency is about 
99.2% at 30 kW, 99.13% at half load, and 98.64% at full load. The 
power density of the main circuits is about 42 kW/L. 

I. INTRODUCTION 

In electric vehicle systems, a high DC bus voltage is needed 

to be interfaced with a three-phase inverter to drive the electric 

motors or generators [1]–[3]. To step up the relatively low 

battery voltage to this higher DC busbar voltage, a dc-dc 

converter is often applied. Typical voltage ratings are 300 V 

input battery and 650 V DC bus [4]. This dc-dc converter not 

only regulates the bus voltage, but also protects the battery from 

over/under voltage, excessive charge/discharge currents [4]–

[6]. A recent report from U.S. Department of Energy [7] 

estimates that by 2025, the power density of the electric traction 

drive system is supposed to exceed 100 kW/L based on 100 kW 

power level. This indicates the importance of a proper topology 

and optimized device and passive component design. 

Traditional boost converter is a widely studied solution for 

this application. A 40 kW bidirectional dc-dc converter based 

on boost topology is designed in [8] with 6 kW/L power density 

working at 20 kHz switching frequency. However, it suffers 

from low efficiency and bulky reactive components. Also based 

on boost converter, a 3-phase interleaved converter with 

discrete inductors achieves a power density of 30.8 kW/L and 

97.9% efficiency [9]. But the total inductor core volume is as 

bulky as about 1.3 Liters. To overcome this issue, constant 

frequency quasi square wave zero voltage switching (ZVS) 

converter is studied [10]. But it is inefficient at light load. 

Variable-frequency boundary mode quasi square wave ZVS 

control is applied in a 200 kW Si IGBT based prototype [4] to 

further increase the peak efficiency to 98%. However, the 

power density is only 6 kW/L. A 150 kW, 8.6 L interleaved 

boost dc-dc converter is designed with multiple DC sources 

[11]. But the power density is 17.44 kW/L, which is still low 

considering the above presented U.S. Department of Energy 

2025 goal. Another commonly investigated topology for this 

application is flying capacitor multilevel converter (FCMC) 

[1][12]–[16]. Over 97% efficiency at 30 kW continuous 

operation is claimed in [1] by using FCMC with around 8.612 

kW/L power density. However, it is difficult to realize a 

compact design considering the separate locations of the DC-

side resonant inductor and AC-side resonant capacitor. SiC 

MOSFET power modules have shown better performance 

compared with Si counterparts in high-power, high-frequency 

applications [17]–[20]. 1200 V 100 A SiC MOSFET power 

modules from Cree have been applied in a 60 kW dc-dc 

converter, which can achieve 20 kW/L power density [21]. But 

75 kHz hard-switching operation doesn’t fully utilize their 

advantages, which degrades overall 98.7% peak efficiency. 

These days, resonant switched capacitor converters are 

investigated for their modularity, high power density and high 

efficiency [15][22]–[25]. But the high-power applications of 

this group of topologies are not so well investigated, which 

needs to be compared fairly with other topologies. 

Since different topologies use various voltage rating devices, 

it is challenging to compare the semiconductor die area usage 

among topologies. Dr. B. Jayant Baliga proposed a device-level 

index called figure of merit in [26], but it fails to evaluate the 

total device power loss among different topologies by using 

only on-resistance and the total gate charge. Total switching 

device power is defined in [27] using the product of switch 

voltage and current stresses as the evaluation method. But it is 

not able to indicate the optimized die area for different 

topologies. Relative total semiconductor chip area is proposed 

in [28], but it does not consider the relationship between total 

die area and the total device power loss. 

This paper will compare three dc-dc converter topologies and 

possible device candidates for this high-power electric vehicle 

application by using the proposed total semiconductor loss 

index. By utilizing SiC MOSFET power modules, a 100 kW 

300 V – 600 V one-cell STC prototype is built with ZCS 

achieved. The topology comparison, simulation and theoretical 

results, the designed prototype will be presented. 

II. TOPOLOGY COMPARISON 

Fig. 1 shows the investigated three topologies, i.e. 

conventional boost converter, three-level flying capacitor 

multilevel converter (3-level FCMC) and one-cell switched 

tank converter (STC) with resonant inductor on the AC side. To 

evaluate the inductor and capacitor design differences, the 

corresponding resonant inductor current and voltage 
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waveforms are shown in Fig. 2. The resonant capacitor voltage 

and current waveforms are presented in Fig. 3. 

Multiple topologies such as boost converter, FCMC could 

achieve relatively high efficiency by selecting specific 

semiconductor die areas at the same power rating. But different 

from the boost converter, the FCMC and STC topologies utilize 

the devices with lower voltage rating. Thus, how to evaluate 

these topologies needs to be deliberated. To evaluate device 

technologies on converter topologies and relate the device 

power loss with the total die area usage so that minimal device 

power loss with an optimized die area can be achieved, the total 

semiconductor loss index (TSLI) is defined in Eq. (1). 
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Where, Pcond, Psw are total device conduction and switching 

loss. Adie_total is total die area of the converter devices. Pcond, Psw 

 

(a) Boost converter 

 

(b) Three-level flying capacitor multi-level converter 

 

(c) One-cell switched tank converter 

Fig. 1: Three investigated dc-dc converters 
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Fig. 2: Comparison of inductor current and voltage 
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Fig. 3: Comparison of capacitor current and voltage 

ICF

QF2

0

1

t
Ts/2 3Ts/2 2TsTs

Ts/2 3Ts/2 2Ts

Ts

0 t

ICS

VCF

VCS

0

0

0

Ts/2 3Ts/2 2Ts

Ts

Ts/2 3Ts/2 2TsTs

t

Ts/2 3Ts/2 2TsTs

t

t

DC bias=Vin

DC bias=Vin

QS2

0

1

t
Ts/2 3Ts/2 2TsTs



3 

 

are the functions of total die area. Pcond
*, Psw

* are the 

corresponding loss normalized by output power Po. Normalized 

switching loss is further categorized into gate charge induced 

switching loss PGate_charge
*, turn-on and turn-off switching loss 

Pturn_on
*, Pturn_off

*. 

In the ZCS operation, the switching loss could be estimated 

by the Coss discharged induced turn-on loss. So, the TSLI can 

be further shown in Eq. (2). 
* * *

_ _ arg _ _( ) ( ) ( )  
osscond die total Gate ch e die total C die totalTSLI P A P A P A      

(2) 

From Eq.(6.211) in [26], the device conduction loss is 

negatively proportional to the active die area. Hence, the device 

conduction loss can be expressed as Eq. (3) shows. 

  (3) 

Where, N is the number of active switches, IRMS_S(i) is the 

switch RMS current, Rds(on) is the switch on-resistance. 

αi(ξi,VB(i)) is the product of on-resistance and die area, 

determined by the device technology dependent coefficient ξi 

and the voltage rating VB(i). κi is the die cutting factor ranging 

from 0 to 1, reflecting different cutting strategies for the dies 

used by specific switches. The sum of each κi equals to 1. 

According to Eq.(6.211) in [26], when the die area is 

enlarged, the input capacitance increases, which means larger 

gate current is needed to charge the input capacitor and thus 

increases the gate charge induced switching loss, which is 

presented in Eq. (4). 

 (4) 

Where, fs is the switching frequency. Qg is the total gate 

charge. Vgs is the difference of the maximum and minimum 

gate-source voltages. βi is the total gate charge per die area, 

dependent on the device technology. Besides, turn-on and turn-

off switching losses are explained in Eq. (5) and (6), 

respectively. The turn-on energy Eon and turn-off energy Eoff are 

functions of turn-on and turn-off drain current. 

  (5) 

  (6) 

The output capacitance Coss discharge induced turn-on 

switching loss is part of the total turn-on switching loss. From 

Page 409 in [26], the gate-drain capacitance Cgd increases with 

the die area. From Eq.(6.174), (6.175), (6.178) in [26], the 

drain-source capacitance Cds is positively proportional to the 

junction area. Thus, Coss (equal to Cgd + Cds) discharge induced 

turn-on switching loss is positively related to the die area. The 

Coss induced turn-on switching loss is shown in Eq. (7). 

 (7) 

Where, Vds is drain-source voltage. γi is the device output 

capacitance per die area, which is dependent on the device 

technologies as well. For a specific circuit topology, when the 

output power and switching frequency are fixed, theoretically it 

is possible to derive an optimum die area for each switch to 

achieve the minimized total device power loss. In other words, 

when the total device power loss is the same between two 

topologies under specific conditions, the one with smaller total 

die area can achieve more efficient die utilization. These two 

different evaluation perspectives based on the above SLI 

parameter can provide more comprehensive understandings 

between the total device power loss and semiconductor die area. 

In this comparison, the boost converter is assumed to 

operate at continuous conduction mode and the inductor current 

ripple is 30% of its average current. Thus, the device turn-on 

and turn-off losses are considered. 3-level FCMC and one-cell 

STC are designed to operate at ZCS mode and the device power 

loss of these two is the same. Coss losses are included in the 

switching losses of the switches in the one-cell STC. 

Since the voltage rating of the switches in the boost 

converter is twice the voltage stress (2×600 V), only the dies 

with 1200 V voltage rating are considered, which are S4103 and 

CPM2-1200-0025B. The turn-on and turn-off power loss of 

S4103 are derived from the switching energy vs. drain current 

curve in the datasheet of Rohm 1200 V SCT3022KL SiC 

MOSFET since it shares the same on-resistance and current 

rating information with the S4103 die. While the turn-on and 

turn-off power loss of CPM2-1200-0025B are derived from the 

switching energy vs. drain current curve in the datasheet of Cree 

1200 V C2M0025120D SiC MOSFET since it shares the 

similar on-resistance and current rating information with the 

CPM2-1200-0025B die. 

Total semiconductor power loss is compared in Fig. 4. With  
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Fig. 4: TLSI comparison between one-cell STC and boost 

converter with different SiC dies 
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the same total die area, one-cell STC achieves lower total 

semiconductor power loss compared with boost converter due 

to higher switching loss of the boost converter. 

Compared with 3-level FCMC, one-cell STC can achieve 

better device clamping and allow the converter to be designed 

in a more compact way because the inductor is on the AC side. 

Thus, one-cell STC is selected in this paper. 

TSLI can also reflect the relationship between the total device 

power loss and the output power. Fig. 5(a) and (b) show the 

TSLI vs. the total converter die area with different output power 

of boost converter and one-cell STC, respectively, at 100 kHz 

switching frequency. Based on the TSLI comparison results in 

Fig. 4, the Cree 1200 V CPM2-1200-0025B SiC die performs 

best in boost converter and the Cree 900 V CPM3-0900-0010A 

SiC die works most effectively in the one-cell STC topology. 

Thus, in the below evaluation, these two SiC dies are selected 

for the corresponding topologies. In different output power, the 

boost converter inductor current ripple is maintained as 30% the 

average current [29]. As the output power increases, the TSLI 

of both the two topologies decreases, which indicates smaller 

total device loss at the same converter die area usage. 

Besides, the proposed TSLI can be also used to present the 

impact of the switching frequency on the total device power 

loss. Fig. 6(a) and (b) illustrate the TSLI vs. the total converter 

die area with different switching frequency of boost converter 

and one-cell STC, respectively, at 100 kW output power. When 

the switching frequency increases, the TSLI of both the two 

topologies increases as well, which indicates larger total device 

power loss at the same converter die area usage. 

III. THEORETICAL ANALYSIS AND SIMULATION 

The theoretical efficiency and power loss breakdown are 

estimated in Fig. 7. The conduction loss has been calculated 

 

(a) Boost converter TSLI vs. die area with different Po 

 

(b) One-cell STC TSLI vs. die area with different Po 

Fig. 5: TSLI vs. die area with different output power 
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(a) Boost converter TSLI vs. die area with different fs 

 

(b) One-cell STC TSLI vs. die area with different fs 

Fig. 6: TSLI vs. die area with different switching frequency 
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(a) Estimated efficiency vs. output power 

 

(b) Theoretical power loss breakdown 

Fig. 7: Theoretical efficiency and power loss breakdown 
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considering two additional aspects. One is the fact that on-

resistance increase with the temperature rise. The other is the 

deadtime induced switch RMS current increase. 

A 300 V 600 V 100 kW one-cell STC operated at ZCS is 

simulated in PLECS. The simulation results are shown in Fig. 

8 with the switching frequency tuned to 96 kHz and the 

deadtime set as 300 ns. From Fig. 8(b), the switch current Id 

decreases to zero before the drain-source voltage Vds starts to 

rise. Thus, ZCS turn off has been achieved. 

A prototype has been built as shown in Fig. 9. Fig. 9(a) shows 

the 3-D layout model designed in Solidworks. The resonant 

tank is on the left-hand side, which is composed of three 

polypropylene film resonant capacitors, one soft-ferrite core 

inductor with one-turn copper foil winding. The SiC power 

module is mounted on a water-cooling heatsink. The right-hand 

side presents the DC capacitors and the 2-layer DC busbar, 

which includes Vin, Vo and ground DC busbars. An assembled 

100 kW prototype is shown in Fig. 9(b). The power density has 

been measured as around 42 kW/L. 

IV. CONCLUSION AND FUTURE WORK 

This paper utilizes a resonant switched capacitor based one-

cell switched tank converter in a 300 V – 600 V 100 kW 

variable voltage converter for the electric vehicle applications. 

The topology has been proved to be more efficient and compact 

compared with boost converter and three-level flying capacitor 

multilevel converter. A new index called total semiconductor 

loss index has been proposed to evaluate topologies and device 

technologies at customized output power and switching 

frequency. The one-cell STC can achieve lower device power 

loss with the same die area usage compared with boost 

converter. In other words, the one-cell STC utilizes smaller die 

area with lower device manufacturing costs at the same device 

power loss. The theoretical efficiency and power loss 

breakdown analysis has been conducted. The simulation results 

 

(a) Simulated inductor and switch current 

 

(b) Simulated switch voltage and current to show ZCS 

 

(c) Simulated resonant, input and output capacitor voltage 

and current waveforms 

Fig. 8: Simulation results of one-cell STC at ZCS operation 
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(a) 3-D prototype model built in Solidworks 

 

(b) Assembled 100 kW prototype 

Fig. 9: 3-D and assembled real prototypes 
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at the ZCS operation are presented. The estimated efficiency is 

about 99.2% at 30 kW, 99.13% at half load, and 98.64% at full 

load. Both the 3-D and real protypes have been presented, 

which shows a power density of around 42 kW/L. More design 

details and test results will be presented in future publications. 
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