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PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL
DATA ON RIEMANNIAN MANIFOLDS AND SPHERES

By Xiongtao Dai∗† and Hans-Georg Müller†

University of California, Davis

Functional data analysis on nonlinear manifolds has drawn re-
cent interest. Sphere-valued functional data, which are encountered
for example as movement trajectories on the surface of the earth,
are an important special case. We consider an intrinsic principal
component analysis for smooth Riemannian manifold-valued func-
tional data and study its asymptotic properties. Riemannian func-
tional principal component analysis (RFPCA) is carried out by first
mapping the manifold-valued data through Riemannian logarithm
maps to tangent spaces around the time-varying Fréchet mean func-
tion, and then performing a classical multivariate functional princi-
pal component analysis on the linear tangent spaces. Representations
of the Riemannian manifold-valued functions and the eigenfunctions
on the original manifold are then obtained with exponential maps.
The tangent-space approximation through functional principal com-
ponent analysis is shown to be well-behaved in terms of controlling
the residual variation if the Riemannian manifold has nonnegative
curvature. Specifically, we derive a central limit theorem for the mean
function, as well as root-n uniform convergence rates for other model
components, including the covariance function, eigenfunctions, and
functional principal component scores. Our applications include a
novel framework for the analysis of longitudinal compositional data,
achieved by mapping longitudinal compositional data to trajectories
on the sphere, illustrated with longitudinal fruit fly behavior patterns.
Riemannian functional principal component analysis is shown to be
superior in terms of trajectory recovery in comparison to an unre-
stricted functional principal component analysis in applications and
simulations and is also found to produce principal component scores
that are better predictors for classification compared to traditional
functional functional principal component scores.

1. Introduction. Methods for functional data analysis in a linear func-
tion space (Wang, Chiou and Müller 2016) or on a nonlinear submanifold
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(Lin and Yao 2017) have been much studied in recent years. Growth curve
data (Ramsay and Silverman 2005) are examples of functions in a linear
space, while densities (Kneip and Utikal 2001) and longitudinal shape pro-
files (Kent et al. 2001) lie on nonlinear manifolds. Since random functions
usually lie in an intrinsically infinite dimensional linear or nonlinear space,
dimension reduction techniques, in particular functional principal compo-
nent analysis, play a central role in representing the random functions (Pe-
tersen and Müller 2016a) and in other supervised/unsupervised learning
tasks. Methods for analyzing non-functional data on manifolds have also
been well developed over the years, such as data on spheres (Fisher, Lewis
and Embleton 1987), Kendall’s shape spaces (Kendall et al. 2009; Hucke-
mann, Hotz and Munk 2010), and data on other classical Riemannian man-
ifolds (Cornea et al. 2017); for a comprehensive overview of nonparamet-
ric methods for data on manifolds see Patrangenaru and Ellingson (2015).
Specifically, versions of principal component analysis methods that adapt to
the Riemannian or spherical geometry, such as principal geodesic analysis
(Fletcher et al. 2004) or nested spheres (Huckemann and Eltzner 2016), have
substantially advanced the study of data on manifolds.

However, there is much less known about functional data, i.e., samples
of random trajectories, that assume values on manifolds, even though such
data are quite common. An example is Telschow, Huckemann and Pier-
rynowski (2016), who considered the extrinsic mean function and warping
for functional data lying on SO(3). Examples of data lying on a Euclidean
sphere include geographical data (Zheng 2015) on S2, directional data on S1

(Mardia and Jupp 2009), and square-root compositional data (Huckemann
and Eltzner 2016), for which we will study longitudinal/functional versions
in Section 4. Sphere-valued functional data naturally arise when data on a
sphere have a time component, such as in recordings of airplane flight paths
or animal migration trajectories. Our main goal is to extend and study
the dimension reduction that is afforded by the popular functional princi-
pal component analysis (FPCA) in Euclidean spaces to the case of samples
of smooth curves that lie on a smooth Riemannian manifold, taking into
account the underlying geometry.

Specifically, Riemannian Functional Principal Component Analysis
(RFPCA) is shown to serve as an intrinsic principal component analysis
of Riemannian manifold-valued functional data. Our approach provides a
theoretical framework and differs from existing methods for functional data
analysis that involve manifolds, e.g., a proposed smooth principal compo-
nent analysis for functions whose domain is on a two-dimensional manifold,
motivated by signals on the cerebral cortex (Lila, Aston and Sangalli 2016),
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nonlinear manifold representation of L2 random functions themselves ly-
ing on a low-dimensional but unknown manifold (Chen and Müller 2012),
or functional predictors lying on a smooth low-dimensional manifold (Lin
and Yao 2017). While there have been closely related computing and ap-
plication oriented proposals, including functional principal components on
manifolds in discrete time, a systematic approach and theoretical analysis
within a statistical modeling framework does not exist yet, to the knowl-
edge of the authors. Specifically, in the engineering literature, dimension
reduction for Riemannian manifold-valued motion data has been considered
(Rahman et al. 2005; Tournier et al. 2009; Anirudh et al. 2015), where for
example in the latter paper the time axis is discretized, followed by multi-
variate dimension reduction techniques such as principal component analysis
on the logarithm mapped data; these works emphasize specific applications
and do not provide theoretical justifications. The basic challenge is to adapt
inherently linear methods such as functional principal component analysis
(FPCA) to curved spaces.

RFPCA is an approach intrinsic to a given smooth Riemannian mani-
fold and proceeds through time-varying geodesic submanifolds on the given
manifold by minimizing total residual variation as measured by geodesic dis-
tance on the given manifold. Since the mean of manifold-valued functions
in the L2 sense is usually extrinsic, i.e., does not lie itself on the manifold
in general, for an intrinsic analysis the mean function needs to be carefully
defined, for which we adopt the intrinsic Fréchet mean, assuming that it is
uniquely determined. RFPCA is implemented by first mapping the manifold
valued trajectories that constitute the functional data onto the linear tan-
gent spaces using logarithm maps around the mean curve at a current time
t and then carrying out a regular FPCA on the linear tangent space of log-
mapped data. Riemannian functional principal component (RFPC) scores,
eigenfunctions, and finite-truncated representations of the log-mapped data
are defined on the tangent spaces and finite-truncated representations of
the data on the original manifold are then obtained by applying exponential
maps to the log-mapped finite-truncated data. We develop implementation
and theory for RFPCA and provide additional discussion for the important
special case where the manifold is the Euclidean sphere, leading to Spherical
Principal Component Analysis (SFPCA), in Section 2 below, where also es-
timation methods are introduced. SFPCA differs from principal component
analysis on spheres (e.g., Jung, Dryden and Marron 2012; Huckemann and
Eltzner 2016), as these are not targeting functional data that consist of a
sample of time-dependent trajectories.

Theoretical properties of the proposed RFPCA are discussed in Sec-
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tion 3. Proposition 1 states that the residual variance for a certain finite-
dimensional time-varying geodesic manifold representation under the geodesic
distance is upper bounded by the L2 residual variance of the log-mapped
data. The classical L2 residual variance can be easily calculated and pro-
vides a convenient upper bound of the residual variance under the geodesic
distance. A uniform central limit theorem for Riemannian manifold-valued
functional data is presented in Theorem 1. Corollary 1 and Theorem 2 pro-
vide asymptotic supremum convergence rates of the sample-based estimates
of the mean function, covariance function, and eigenfunctions to their popu-
lation targets under proper metrics, and the convergence rate for the sample
FPC scores to their population targets is in Theorem 3. We also provide a
consistency result for selecting the number of components used according
to a criterion that is analogous to the fraction of variance explained (FVE)
criterion in Corollary 3. Proofs are in the Appendix and the Supplementary
Materials.

An important application for SFPCA is the principal component analysis
for longitudinal compositional data, which we will introduce in Section 4,
where we show that longitudinal compositional data can be mapped to func-
tional trajectories that lie on a Euclidean sphere. We demonstrate a specific
application for longitudinal compositional data in Section 5 for behavioral
patterns for fruit flies that are mapped to S4, where we show that the pro-
posed SFPCA outperforms conventional FPCA. A second example concerns
a sample of flight trajectories from Hong Kong to London, which are func-
tional data on S2. In this second example SFPCA also outperforms more
conventional approaches and illustrates the interpretability of the proposed
RFPCA. For the flight trajectory example, we demonstrate that the FPC
scores produced by the RFPCA encode more information for classification
purposes than those obtained by the classical FPCA in an L2 functional
space. These data examples are complemented by simulation studies re-
ported in Section 6.

2. Functional principal component analysis for random trajec-
tories on a Riemannian manifold.

2.1. Preliminaries. We briefly review the basics of Riemannian geometry
essential for the study of Riemannian manifold-valued functions; for further
details, see, e.g., Chavel (2006). For a smooth manifoldM with dimension d
and tangent spaces TpM at p ∈M, a Riemannian metric onM is a family
of inner products gp : TpM× TpM→ R that varies smoothly over p ∈ M.
Endowed with this Riemannian metric, (M, g) is a Riemannian manifold.
The geodesic distance dM is the metric on M induced by g. A geodesic is a
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locally length minimizing curve. The exponential map at p ∈M is defined as
expp(v) = γv(1) where v ∈ TpM is a tangent vector at p, and γv is a unique
geodesic with initial location γv(0) = p and velocity γ′v(0) = v. If (M, dM)
is a complete metric space, then expp is defined on the entire tangent space
TpM. The exponential map expp is a diffeomorphism in a neighborhood of
the origin of the tangent space; the logarithm map logp is the inverse of expp.
The radius of injectivity injp at p ∈M is the radius of the largest ball about
the origin of TpM, on which expp is a diffeomorphism (Figure 1, left panel).
If N is a submanifold of M with Riemannian metric hp : TpN × TpN → R,
(u, v) 7→ gp(u, v) for u, v ∈ TpN induced by g, then (N , h) is a Riemannian
submanifold of (M, g).

We consider a d-dimensional complete Riemannian submanifold M of a
Euclidean space Rd0 for d ≤ d0, with a geodesic distance dM onM induced
by the Euclidean metric in Rd0 , and a probability space (Ω,A, P ) with sam-
ple space Ω, σ-algebra A, and probability measure P . With X = {x : T →
M | x ∈ C(T )} denoting the sample space of all M-valued continuous func-
tions on a compact interval T ⊂ R and B(V) the Borel σ-algebra of a space
V, the M-valued random functions X(t, ω) are X : T × Ω→M, such that
X(·, ω) ∈ X . Here ω 7→ X(·, ω) and X(t, ·) are measurable with respect to
B(X ) and B(M), respectively, with B(X ) generated by the supremum met-
ric dX : X × X → R, dX (x, y) = supt∈T dM(x(t), y(t)), for investigating the
rates of uniform convergence. In the following, all vectors v are column vec-
tors and we write X(t), t ∈ T , forM-valued random functions, ‖·‖E for the
Euclidean norm, and H = {v : T → Rd0 ,

∫
T v(t)T v(t)dt < ∞} for the am-

bient L2 Hilbert space of Rd0 valued square integrable functions, equipped
with the inner product 〈v, u〉 =

∫
T v(t)Tu(t)dt and norm ‖v‖ = 〈v, v〉1/2 for

u, v ∈ H.

2.2. Riemannian functional principal component analysis. As intrinsic
population mean function for the M-valued random function X(t), we con-
sider the intrinsic Fréchet mean µM(t) at each time point t ∈ T , where

(1) M(p, t) = E[dM(X(t), p)2], µM(t) = arg min
p∈M

M(p, t),

and we assume the existence and the uniqueness of the Fréchet means
µM(t). The mean function µM is continuous due to the continuity of the
sample paths of X, as per Proposition 2 below. One could consider an
alternative definition for the mean function, µG = arg minµ F (µ), where
F (µ) = E[

∫
T dM(X(t), µ(t))2dt], which coincides with µM under a conti-

nuity assumption; we work with µM in (1), as it matches the approach in
functional PCA and allows us to investigate uniform convergence. The goal
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of RFPCA is to represent the variation of the infinite dimensional object X
around the mean function µM in a lower dimensional submanifold, in terms
of a few principal modes of variation, an approach that has been successful
to represent random trajectories in the Hilbert space L2 (Castro, Lawton
and Sylvestre 1986; Ramsay and Silverman 2005; Wang, Chiou and Müller
2016).

Given an arbitrary system of K orthonormal basis functions, ΨK = {ψk ∈
H | ψk(t) ∈ TµM(t), 〈ψk, ψl〉 = δkl, k, l = 1, . . . ,K}, δkl = 1 if k = l and 0
otherwise, with values at each time t ∈ T restricted to the d-dimensional
tangent space TµM(t), which we identify with Rd0 for convenience, we define
the K dimensional time-varying geodesic submanifold
(2)

MK(ΨK) := {x ∈ X , x(t) = expµM(t)(
K∑
k=1

akψk(t)) for t ∈ T | ak ∈ R}.

Here MK(ΨK) plays an analogous role to the linear span of a set of basis
functions in Hilbert space, with expansion coefficients or coordinates ak.

In the following we suppress the dependency ofMK on the basis functions.
With projections Π(x,MK) of an M-valued function x ∈ X onto time-
varying geodesic submanifolds MK ,

Π(x,MK) := arg min
y∈MK

∫
T
dM(y(t), x(t))2dt,

the best K-dimensional approximation to X minimizing the geodesic pro-
jection distance is the geodesic submanifold that minimizes

(3) FS(MK) = E

∫
T
dM(X(t),Π(X,MK)(t))2dt

over all time-varying geodesic submanifolds generated by K basis functions.
As the minimization of (3) is over a family of submanifolds (or basis

functions), this target is difficult to implement in practice, except for simple
situations, and therefore it is expedient to target a modified version of (3)
by invoking tangent space approximations. This approximation requires that
the log-mapped random functions

V (t) = logµM(t)(X(t))

are almost surely well-defined for all t ∈ T , which will be the case if trajec-
tories X(t) are confined to stay within the radius of injectivity at µM(t) for
all t ∈ T . We require this constraint to be satisfied, which will be the case



FUNCTIONAL DATA ON RIEMANNIAN MANIFOLDS 7

for many manifold-valued trajectory data, including the data we present in
Section 5. Then V is a well-defined random function that assumes its values
on the linear tangent space TµM(t) at time t. Identifying TµM(t) with Rd0 ,

we may regard V as a random element of H, the L2 Hilbert space of Rd0
valued square integrable functions, and thus our analysis is independent of
the choice of the coordinate systems on the tangent spaces. A practically
tractable optimality criterion to obtain manifold principal components is
then to minimize

(4) FV (VK) = E(‖V −Π(V,VK)‖2)

over all K-dimensional linear subspaces VK(ψ1, . . . , ψK) = {
∑K

k=1 akψk |
ak ∈ R} for ψk ∈ H, ψk(t) ∈ TµM(t), and k = 1, . . . ,K. Minimizing (4)
is immediately seen to be equivalent to a multivariate functional principal
component analysis (FPCA) in Rd0 (Chiou, Chen and Yang 2014).

Under mild assumptions, the L2 mean function for the log-mapped data
V (t) = logµM(t)(X(t)) at the Fréchet means is zero by Theorem 2.1 of
Bhattacharya and Patrangenaru (2003). Consider the covariance function
G of V in the L2 sense, G : T × T → Rd20 , G(t, s) = cov(V (t), V (s)) =
E(V (t)V (s)T ), and its associated spectral decomposition,
G(t, s) =

∑∞
k=1 λkφk(t)φk(s)

T , where the φk ∈ H : T → Rd0 are the or-
thonormal vector-valued eigenfunctions and λk ≥ 0 the corresponding eigen-
values, for k = 1, 2, . . . . One obtains the Karhunen-Loève decomposition (see
for example Hsing and Eubank 2015),

(5) V (t) =

∞∑
k=1

ξkφk(t),

where ξk =
∫
T V (t)φk(t)dt is the kth Riemannian functional principal com-

ponent (RFPC) score, k = 1, 2, . . . . A graphical demonstration of X(t),
V (t), and φk(t) is in the right panel of Figure 1. In practice, one can use
only a finite number of components and target truncated representations of
the tangent space process. Employing K ∈ {0, 1, 2, . . . } components, set

(6) VK(t) =

K∑
k=1

ξkφk(t), XK(t) = expµM(t)

(
K∑
k=1

ξkφk(t)

)
,

where for K = 0 the values of the sums are set to 0, so that V0(t) = 0 and
X0(t) = µM(t). By classical FPCA theory, VK is the best K-dimensional
approximation to V in the sense of being the minimizing projection Π(V, VK)
for (4). The truncated representation XK(t), t ∈ T of the originalM-valued
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random function is well-defined for K = 0, 1, . . . if M is complete, by the
Hopf–Rinow theorem (see, e.g., Chavel 2006). We note that these definitions
are independent of the choice of coordinate system on TµM(t).

Fig 1. Left panel: Two tangent vectors v (red and blue arrows) in the tangent ball (yellow)
centered at p (black dot) with radius injp, and their geodesics {expp(tv) | t ∈ [0, 1]} (red and
blue lines). Right panel: Two trajectories X(t) (red and blue solid curves), corresponding
tangent vectors V (t) at t = 0, 1 (arrows), and the first two eigenfunctions (red dotted, φ1,
and blue dotted, φ2) mapped onto M by the exponential maps. The red trajectory has a
large score on φ1, while the blue one has a large score on φ2. The mean function is the
black curve.

To quantify how well XK approximates X, in analogy to Petersen and
Müller (2016a), we define for K = 0, 1, . . . the residual variance as

(7) UK = E

∫
T
dM(X(t), XK(t))2dt,

and the fraction of variance explained (FVE) by the first K components as

(8) FVEK =
U0 − UK

U0
.

A commonly used criterion for choosing the number of included components
K∗ is to select the smallest K such that FVE exceeds a specified threshold
0 < γ < 1 of variance explained,

(9) K∗ = min {K : FVEK ≥ γ} .

Common choices for the FVE threshold γ are 0.9 or 0.95 in finite sample
situations or γ increasing with sample size for asymptotic considerations.
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2.3. Spherical functional principal component analysis. An important
special case occurs when random trajectories lie on M = Sd, the Euclidean
sphere in Rd0 for d0 = d + 1, with the Riemannian geometry induced by
the Euclidean metric of the ambient space. Then the proposed RFPCA spe-
cializes to spherical functional principal component analysis (SFPCA). We
briefly review the geometry of Euclidean spheres. The geodesic distance dM
on the sphere is the great-circle distance, i.e. for p1, p2 ∈M = Sd

dM(p1, p2) = cos−1(p1
T p2).

A geodesic is a segment of a great circle that connects two points on
the sphere. For any point p ∈ M, the tangent space TpM is identified by
{v ∈ Rd0 | vT p = 0} ⊂ Rd0 , with the Euclidean inner product. Letting
‖·‖E be the Euclidean norm in the ambient Euclidean space Rd0 , then for a
tangent vector v on the tangent space TpM, the exponential map is

expp(v) = cos(‖v‖E)p+ sin(‖v‖E)
v

‖v‖E
.

The logarithm map logp :M\{−p} → TpM is the inverse of the exponential
map,

logp(q) =
u

‖u‖E
dM(p, q),

where u = q− (pT q) p, and logp is defined everywhere with the exception of
the antipodal point −p of p on M. The radius of injectivity is therefore π.
The sectional curvature of a Euclidean sphere is constant.

2.4. Estimation. Consider a Riemannian manifold M and n indepen-
dent observations X1, . . . , Xn, which are M-valued random functions that
are distributed as X, where we assume that these functions are fully ob-
served for t ∈ T . Population quantities for RFPCA are estimated by their
empirical versions, as follows. Sample Fréchet means µ̂M(t) are obtained by
minimizing Mn(·, t) at each t ∈ T ,

(10) Mn(p, t) =
1

n

n∑
i=1

dM(Xi(t), p)
2, µ̂M(t) = arg min

p∈M
Mn(p, t).

We estimate the log-mapped data Vi by V̂i(t) = logµ̂M(t)(Xi(t)), t ∈ T ;

the covariance function G(t, s) by the sample covariance function Ĝ(t, s) =
n−1

∑n
i=1 V̂i(t)V̂i(s)

T based on V̂i, for t, s ∈ T ; the kth eigenvalue and eigen-

function pair (λk, φk) of G by the eigenvalue and eigenfunction (λ̂k, φ̂k) of
Ĝ; and the kth RFPC score of the ith subject ξik =

∫
T Vi(t)φk(t)dt by
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ξ̂ik =
∫
T V̂i(t)φ̂k(t)dt. The K-truncated processes ViK and XiK for the ith

subject Xi are estimated by

(11) V̂iK(t) =
K∑
k=1

ξ̂ikφ̂k(t), X̂iK(t) = expµ̂M(t)

(
K∑
k=1

ξ̂ikφ̂k(t)

)
,

where again for K = 0 we set the sums to 0. The residual variance UK as
in (7), the fraction of variance explained FVEK as in (8), and the optimal
K∗ as in (9) are respectively estimated by

ÛK =
1

n

n∑
i=1

∫
T
dM(Xi(t), X̂iK(t))2dt,(12)

F̂VEK =
Û0 − ÛK

Û0

,(13)

K̂∗ = min{K : F̂VEK ≥ γ}.(14)

Further details about the algorithms for implementing SFPCA can be
found in the Supplementary Materials. Sometimes functional data X(t) are
observed only at densely spaced time points and observations might be con-
taminated with measurement errors. In these situations one can presmooth
the observations using smoothers that are adapted to a Riemannian mani-
fold (Jupp and Kent 1987; Lin et al. 2016), treating the presmoothed curves
as fully observed underlying curves.

3. Theoretical properties of Riemannian Functional Principal
Component Analysis. We need the following assumptions (A1)–(A2) for
the Riemannian manifoldM, and (B1)–(B6) for theM-valued process X(t).

(A1) M is a closed Riemannian submanifold of a Euclidean space Rd0 , with
geodesic distance dM induced by the Euclidean metric.

(A2) The sectional curvature of M is nonnegative.

Assumption (A1) guarantees that the exponential map is defined on the en-
tire tangent plane, and thus that XK(t) as in (6) is well-defined, while the
curvature condition (A2) implies that geodesics starting from the same point
tend to converge, so that the geodesic distance between XK(t) and X(t) is
bounded by the Euclidean distance of their tangent vectors. These assump-
tions are satisfied for example by Euclidean spheres Sd. For the following
recall M(p, t) and Mn(p, t) are defined as in (1) and (10).

(B1) Trajectories X(t) are continuous for t ∈ T almost surely.
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(B2) For all t ∈ T , µM(t) and µ̂M(t) exist and are unique, the latter almost
surely.

(B3) Almost surely, trajectories X(t) lie in a compact set St ⊂ BM(µM(t), r)
for t ∈ T , where BM(µM(t), r) ⊂M is an open ball centered at µM(t)
with radius r < inft∈T injµM(t).

(B4) For any ε > 0,

inf
t∈T

inf
p: dM(p,µM(t))>ε

M(p, t)−M(µM(t), t) > 0.

(B5) For v ∈ TµM(t)M, define gt(v) = M(expµM(t)(v), t). Then

inf
t∈T

λmin(
∂2

∂v2
gt(0)) > 0,

where λmin(A) is the smallest eigenvalue of a square matrix A.
(B6) Let L(x) be the Lipschitz constant of a function x, i.e. L(x) =

supt6=s dM(x(t), x(s))/|t− s|. Then E(L(X)2) <∞ and L(µM) <∞.

Smoothness assumptions (B1) and (B6) for the sample paths of the ob-
servations are needed for continuous representations, while existence and
uniqueness of Fréchet means (B2) are prerequisites for an intrinsic analy-
sis that are commonly assumed (Bhattacharya and Patrangenaru 2003; Pe-
tersen and Müller 2016b) and depend in a complex way on the type of mani-
fold and probability measure considered. Assumptions (B4) and(B5) charac-
terize the local behavior of the criterion function M around the minima and
are standard for M-estimators (Bhattacharya and Lin 2017). Condition (B3)
ensures that the geodesic between X(t) and µM(t) is unique, ensuring that
the tangent vectors do not switch directions under small perturbations of the
base point µM(t). It is satisfied for example for the sphereM = Sd, if the val-
ues of the random functions are either restricted to the positive quadrant of
the sphere, as is the case for longitudinal compositional data as in Section 4,
or if the samples are generated by expµM(t)(

∑∞
k=1 ξkφk(t)) with bounded

eigenfunctions φk and small scores ξk such that supt∈T |
∑∞

k=1 ξkφk(t)| ≤ r.
In real data applications,(B3) is justified when theM-valued samples cluster
around the intrinsic mean function, as exemplified by the flight trajectory
data that we study in Subsection 5.2.

The following result justifies the tangent space RFPCA approach, as the
truncated representation is found to be well-defined, and the residual vari-
ance for the optimal geodesic submanifold representation bounded by that
for the classical FPCA on the tangent space.
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Proposition 1. Under (A1), XK(t) = expµM(t)(VK(t)) is well-defined
for K = 1, 2, . . . and t ∈ T . If further (A2) is satisfied, then
(15)

min
MK

∫
T
dM(X(t),Π(X,MK)(t))2dt ≤

∫
T
dM(X(t), XK(t))2dt ≤ ‖V − VK‖2 .

The first statement is a straightforward consequence of the Hopf-Rinow
theorem, while the inequalities imply that the residual variance using the
best K-dimensional time-varying geodesic manifold approximation under
geodesic distance (the left hand term) is bounded by that of the geodesic
manifold produced by the proposed RFPCA (the middle term), where the
latter is again bounded by the residual variance of a linear tangent space
FPCA under the familiar Euclidean distance (the right hand term). The
r.h.s. inequality in (15) affirms that the tangent space FPCA serves as a
gauge to control the preciseness of finite-dimensional approximation to the
processes under the geodesic distance. An immediate consequence is that
UK → 0 as K → ∞ for the residual variance UK in (7), implying that
the truncated representation XK(t) is consistent for X(t) when the sec-
tional curvature of M is nonnegative. The l.h.s. inequality gets tighter as
the samples X(t) lie closer to the intrinsic mean µM(t), where such closeness
is not uncommon, as demonstrated in Section 5. The r.h.s. inequality is a
consequence of the Alexandrov–Toponogov theorem for comparing geodesic
triangles.

Asymptotic properties for the estimated model components for RFPCA
are studied below.

Proposition 2. Under (A1) and (B1)– (B4), µM(t) is continuous,
µ̂M(t) is continuous with probability tending to 1 as n→∞, and

(16) sup
t∈T

dM(µ̂M(t), µM(t)) = op(1).

Under additional assumptions (B5) and (B6), the consistency in (16)
of the sample intrinsic mean µ̂M(t) as an estimator for the true intrin-
sic mean µM(t) can be strengthened through a central limit theorem on
Cd(T ), where Cd(T ) is the space of Rd-valued continuous functions on T .
Let τ : U → Rd be a smooth or infinitely differentiable chart of the form
τ(q) = logp0(q), with U = BM(p0, r0), p0 ∈ M, and r0 < injp0 , identi-

fying tangent vectors in Rd. Define chart distance dτ : τ(U) × τ(U) → R
by dτ (u, v) = dM(τ−1(u), τ−1(v)), its gradient T (u, v) = [Tj(u, v)]dj=1 =

[∂dτ (u, v)/∂vj ]dj=1, Hessian matrix H(u, v) with (j, l)th element Hjl(u, v) =

∂2d2τ (u, v)/∂vj∂vl, and Λ(t) = E[H(τ(X(t)), τ (µM(t)))].
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Theorem 1. Suppose that µM(t) and X(t) are contained in the domain
of τ for t ∈ T , the latter almost surely, and (A1) and (B1)–(B6) hold. Then

(17)
√
n[τ(µ̂M)− τ(µM)]

L−→ Z,

where Z is a Gaussian process with sample paths in Cd(T ), mean zero, and
covariance Gµ(t, s) = Λ−1(t)GT (t, s)Λ−1(s), where
GT (t, s) = E[T (τ(X(t)), τ (µM(t)))T (τ(X(s)), τ (µM(s)))T ], and all quanti-
ties are well-defined.

Remark 1. The first condition in Theorem 1 is not restrictive, since it
holds at least piecewise on some finite partition of T . More precisely, due to
the compactness guaranteed by (A1), (B3), and Proposition 2, there exists
a finite partition {Tj}Nj=1 of T such that µM(t) and X(t) are contained in
BM(µM(tj), rj), for t ∈ Tj , tj ∈ M and rj < injµM(tj), j = 1, . . . , N < ∞.
One can then define τ = τj := q 7→ logµM(tj)(q) for t ∈ Tj and apply
Theorem 1 on the jth piece, for each j.

Corollary 1. Under (A1) and (B1)–(B6),

(18) sup
t∈T

dM(µ̂M(t), µM(t)) = Op(n
−1/2).

Remark 2. The intrinsic dimension d is only reflected in the rate con-
stant but not the speed of convergence. Our situation is analogous to that
of estimating the mean of Euclidean-valued random functions (Bosq 2000),
or more generally, Fréchet regression with Euclidean responses (Petersen
and Müller 2016b), where the speed of convergence does not depend on the
dimension of the Euclidean space, in contrast to common nonparametric
regression settings (Lin et al. 2016; Lin and Yao 2017). The root-n rate is
not improvable in general since it is the optimal rate for mean estimates in
the special Euclidean case.

An immediate consequence of Corollary 1 is the convergence of the log-
mapped data.

Corollary 2. Under (A1) and (B1)–(B6), for i = 1, . . . , n,

(19) sup
t∈T
‖V̂i(t)− Vi(t)‖E = Op(n

−1/2).

In the following, we use the Frobenius norm ‖A‖F = tr(ATA)1/2 for any
real matrices A, and assume that the eigenspaces associated with positive
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eigenvalues λk > 0 have multiplicity one. We obtain convergence of covari-
ance functions, eigenvalues, and eigenfunctions on the tangent spaces, i.e.,
the consistency of the spectral decomposition of the sample covariance func-
tion, as follows.

Theorem 2. Assume (A1) and (B1)–(B6) hold. Then

sup
t,s∈T

∥∥∥Ĝ(t, s)−G(t, s)
∥∥∥
F

= Op(n
−1/2),(20)

sup
k∈N
|λ̂k − λk| = Op(n

−1/2),(21)

and for each k = 1, 2, . . . with λk > 0,

sup
t∈T
‖φ̂k(t)− φk(t)‖E = Op(n

−1/2).(22)

Our next result provides the convergence rate of the RFPC scores and is
a direct consequence of Corollary 2 and Theorem 2.

Theorem 3. Under (A1) and (B1)–(B6), if λK > 0 for some K ≥ 1,
then for each i = 1, . . . , n and k = 1, . . . ,K,

|ξ̂ik − ξik| = Op(n
−1/2),(23)

sup
t∈T
‖V̂iK(t)− ViK(t)‖E = Op(n

−1/2).(24)

To demonstrate asymptotic consistency for the number of components
selected according to the FVE criterion, we consider an increasing sequence
of FVE thresholds γ = γn ↑ 1 as sample size n increases, which leads to a
corresponding increasing sequence of K∗ = K∗n, where K∗ is the smallest
number of eigen-components that explains the fraction of variance γ = γn.
One may show that the number of components K̂∗ selected from the sample
is consistent for the true target K∗ for a sequence γn. This is formalized
in the following Corollary 3, which is similar to Theorem 2 in Petersen
and Müller (2016a), where also specific choices of γn and the correspond-
ing sequences K∗ were discussed. The proof is therefore omitted. Quanti-
ties U0, UK , K

∗, Û0, ÛK , K̂
∗ that appear below were defined in (7)–(9) and

(12)–(14).

Corollary 3. Assume (A1)–(A2) and (B1)–(B6) hold. If the eigenval-
ues λ1 > λ2 > · · · > 0 are all distinct, then there exists a sequence 0 < γn ↑ 1
such that

(25) max
1≤K≤K∗

∣∣∣∣∣ Û0 − ÛK
Û0

− U0 − UK
U0

∣∣∣∣∣ = op(1),
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and therefore

(26) P (K̂∗ 6= K∗) = o(1).

4. Longitudinal compositional data analysis. Compositional data
represent proportions and are characterized by a vector y in the simplex

CJ−1 = {y = [y1, . . . , yJ ] ∈ RJ | yj ≥ 0, j = 1, . . . , J ;

J∑
j=1

yj = 1},

requiring that the nonnegative proportions of all J categories sum up to one.
Typical examples include the geochemical composition of rocks or other data
that consist of recorded percentages. Longitudinal compositional data arise
when the compositional data for the same subject are collected repeatedly
at different time points. If compositions are monitored continuously, each
sample path of longitudinal compositional data is a function y : T → CJ−1.
Analyses of such data, for example from a prospective ophthalmology study
(Qiu, Song and Tan 2008) or the surveillance of the composition of antimicro-
bial use over time (Adriaenssens et al. 2011), have drawn both methodologi-
cal and practical interest, but as of yet there exists no unifying methodology
for longitudinal compositional data, to the knowledge of the authors.

A direct application of standard Euclidean space methods, viewing longi-
tudinal compositional data as unconstrained functional data vectors (Chiou,
Chen and Yang 2014), would ignore the non-negativity and unit sum con-
straints and therefore the resulting multivariate FPCA representation moves
outside of the space of compositional data, diminishing the utility of such
simplistic approaches. There are various transformation that have been pro-
posed over the years for the analysis of compositional data to enforce the
constraints, for example log-ratio transformations such as log(yj/yJ) for
j = 1, . . . , J − 1, after which the data are treated as Euclidean data (Aitchi-
son 1986), which induces the Aitchison geometry on the interior of the sim-
plex CJ−1. However, these transformations cannot be defined when some of
the elements in the composition are zeros, either due to the discrete and
noisy nature of the observations or when the true proportions do contain
actual zeros, as is the case in the fruit fly behavior pattern data that we
study in Subsection 5.1 below.

We propose to view longitudinal compositional data as a special case of
multivariate functional data under constraints, specifically as realizations of
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a compositional process over time,
(27)

Y (t) ∈ {[Y1(t), . . . , YJ(t)] ∈ RJ | Yj ∈ L2(T ), Yj(t) ≥ 0,
J∑
j=1

Yj(t) = 1},

where the component functions will also be assumed to be continuous on
their domain T . To include the entire simplex CJ−1 in our longitudinal
compositional data analysis, we apply square root transformations to the
longitudinal compositional data Y (t) = [Y1(t), . . . , YJ(t)], obtaining

(28) X(t) = [X1(t), . . . , XJ(t)] = [Y1(t)
1/2, . . . , YJ(t)1/2].

A key observation is that the values of X(t) lie on the positive quadrant of
a hypersphere SJ−1 for t ∈ T , as Xj(t) ≥ 0 and

∑J
j=1Xj(t)

2 = 1. There
is no problem with zeros as with some other proposed transformations for
compositional data. It is then a natural approach to consider a spherical ge-
ometry for the transformed data X(t). A square-root transformation and the
spherical geometry for non-longitudinal compositional data were previously
considered by Huckemann and Eltzner (2016). Now, since X(t) assumes its
values on a quadrant of the sphere SJ−1, processes X(t) fall into the frame-
work of the proposed SFPCA, as described in Subsection 2.3.

Concerning the theoretical properties of SFPCA of longitudinal compo-
sitional data, the conditions on the Riemannian manifold M needed for
RFPCA are easily seen to be satisfied, due to the geometry of the Euclidean
sphere and the positive quadrant constraint. We conclude

Corollary 4. Under (B1) and (B4)–(B6), Propositions 1 and 2, The-
orems 1–3, and Corollaries 1–3 hold for the Spherical Functional Principal
Component Analysis (SFPCA) of longitudinal compositional data X(t) in
(28).

5. Data applications.

5.1. Fruit fly behaviors. To illustrate the proposed SFPCA based longi-
tudinal compositional data analysis, we consider the lifetime behavior pat-
tern data of D. melanogaster (common fruit fly, Carey et al. 2006). The be-
havioral patterns of each fruit fly was observed instantaneously 12 times each
day during its entire lifetime, and for each observation one of the five behav-
ioral patterns, feeding, flying, resting, walking, and preening, was recorded.
We analyzed the behavioral patterns in the first 30 days since eclosion for
n = 106 fruit flies with uncensored observations, aiming to characterize and
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represent age-specific behavioral patterns of individual fruit flies. For each
fruit fly, we observed the behavioral counts [Z1(t), . . . , Z5(t)] for the five be-
haviors at time t ∈ T = [0, 30], where the time unit is day since eclosion,
and

∑5
j=1 Zj(t) = 12 is the constrained total number of counts at each time

t, with 0 ≤ Zj(t) ≤ 12 for each j and t. Since the day-to-day behavioral
data are noisy, we presmoothed the counts Zj(t) of the jth behavior pat-
tern over time for j = 1, . . . , 5, using a Nadaraya–Watson kernel smoother
(Nadaraya 1964; Watson 1964) with Epanechnikov kernel and a bandwidth
of five days. The smoothed data were subsequently divided by the sum
of the smoothed component values at each t, yielding a functional vector
Y (t) = [Y1(t), . . . , Y5(t)], with Yj(t) ≥ 0 for all j and t and

∑5
j=1 Yj(t) = 1

for t ∈ T , thus corresponding to longitudinal compositional data.
Following the approach described in Section 4, we model the square-root

composition proportions X(t) = [Y1(t)
1/2, . . . , Y5(t)

1/2] with SFPCA. The
trajectories X(t) and the fitted trajectories for 12 randomly selected fruit
flies by SFPCA with K = 5 components are demonstrated in Figure 2,
and the mean function and the first five eigenfunctions of the correspond-
ing SFPCA in Figure 3. While resting and walking behaviors were often
observed, flying and preening occurred more rarely. SFPCA with K = 5
components explains 81.7% of total variation and is seen to provide a rea-
sonable fit to the data. The eigenfunctions obtained from SFPCA have a
natural interpretation: The first eigenfunction corresponds to the overall
contrast of resting and moving (mainly flying and walking) over all days of
observation; the second eigenfunction is a contrast of all behaviors in the
early (0–15 days) and the late (16–30 days) periods; and the third eigen-
function mainly reflects the intensity of the feeding behavior in the first 25
days.

The fraction of variance explained by the first K components (FVE) as
in (13) for SFPCA and for L2 FPCA is in Table 1, where L2 FPCA is con-
ventional multivariate FPCA (Ramsay and Silverman 2005), which ignores
the compositional constraints. The proposed SPFCA has larger FVE given
any number of included components K. It is seen to be more parsimonious
than L2 FPCA and it respects the compositional constraints, in contrast to
conventional FPCA. To explain 95% of total variation, 14 components are
needed for SFPCA, but 18 for L2 FPCA.

Table 1
FVE (%) by the first K components for the fruit fly data.

K 1 2 3 4 5 10 15 20 25

SFPCA 51.7 66.7 73.1 78.3 81.7 91.8 96.4 98.4 99.2
L2 FPCA 48.8 62.9 68.3 71.5 77.3 87.5 92.7 96.4 98.0
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Dependent Surveillance–Broadcast (ADS–B) receivers. For each flight we set
the takeoff time to be time 0 and the landing time to be time 1, excluding
taxi time. To obtain smooth curves from the occasionally noisy data, we
pre-smoothed the longitude–latitude data using kernel local linear smooth-
ing with a very small bandwidth and then mapped the longitude–latitude
trajectories onto a unit sphere S2. Trajectory data of this kind on geograph-
ical spaces corresponding to the surface of the earth that may be approxi-
mated by the sphere S2 have drawn extensive interest in computer science
and machine learning communities (Zheng 2015; Anirudh et al. 2017). The
preprocessed flight trajectories are visualized in Figure 4, indicating that
the flight trajectories from the three airlines overlap and are thus not easy
to discriminate. We apply RFPCA in the SFPCA version to summarize and
represent the flight trajectories, and to predict the operating airline based
on the RFPC scores as predictors.

Fig 4. Flight trajectories from Hong Kong to London, colored by airline (red, British
Airways; green, Cathay Pacific; blue, Virgin Atlantic), with the mean trajectory (bold
black).

The estimated mean function and the first three modes of variation ob-
tained by SFPCA are shown in Figure 5, where the kth mode of variation is
defined as expµM(t)(3

√
λkφk(t)) for k = 1, 2, 3. The first mode of variation

(red) corresponds to the overall direction of deviation from the mean func-
tion (northeast vs southwest), and has roughly constant speed. We connect
the second (green) and the third (blue) modes of variation and the mean
function using thin gray lines at a regular grid of time in order to display
speed information in the corresponding eigenfunctions. Both the second and
the third eigenfunctions represent a cross from the northeast to the south-
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west at approximately one third of the trip, but they incorporate different
speed information. The second eigenfunction encodes an overall fast trip
starting to the north, while the third encodes a medium speed start to the
south and then a speed up after crossing to the north. The FVE for RFPCA
using the first K = 3 eigenfunctions is 95%, indicating a reasonably good
approximation of the true trajectories.

Fig 5. The mean function (black) and the first three modes of variation defined as
expµM(t)(3

√
λkφk(t)), k = 1, 2, 3 (red, green, and blue, respectively) produced by SFPCA.

The second and the third modes of variation were joined to the time-varying mean func-
tion at a regular grid of time points to show the “speed” of the eigenfunctions. Both the
second and the third eigenfunctions represent a cross from the northeast to the southwest
at approximately one third of the trip, but they incorporate different speed information as
shown by the thin gray lines. The first three eigenfunctions together explain in total 95%
and each explain 72.9%, 13.2%, and 8.9%, respectively, of total variation.

We next compared the FVE by SFPCA and L2 FPCA for K = 1, . . . , 10
under the geodesic distance dM, as summarized in Table 2. Here SFPCA
was applied on the spherical data on S2, while L2 FPCA was based on the
latitude–longitude data in R2. Again SFPCA has higher FVE than the con-
ventional L2 FPCA for all choices of K, especially small K, where SFPCA
shows somewhat better performance in terms of trajectory recovery.

Table 2
The FVE (%) by the first K components for the proposed SFPCA and the L2 FPCA for

the flight data.

K 1 2 3 4 5 6 7 8 9 10

SFPCA 72.9 86.1 95.0 96.3 97.0 97.7 98.3 98.7 99.0 99.2
L2 FPCA 71.2 84.9 94.6 96.1 96.8 97.4 98.1 98.4 98.8 99.1
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We also aimed to predict the airline (BAW, CPA, and VIR) from an ob-
served flight path by feeding the FPC scores obtained from either the pro-
posed SFPCA or from the traditional L2 FPCA into different multivariate
classifiers, including linear discriminant analysis (LDA), logistic regression,
and support vector machine (SVM) with radial basis kernel. For each of
200 Monte Carlo runs, we randomly selected 500 flights as training set for
training and tuning and used the rest as test set to evaluate classification
performance. The number of components K for each classifier was either
fixed at 10, 15, 20, 25, 30, or selected by five-fold cross-validation (CV). The
results for prediction accuracy are in Table 3. The SFPCA based classifiers
performed better or at least equally well as the L2 FPCA based classifiers
for nearly all choices of K and classifier, where among the classifiers SVM
performed best.

Table 3
A comparison of airline classification accuracy (%) from observed flight trajectories,

using the first K components for SFPCA and L2 FPCA (columns), with K either fixed
or chosen by CV, for various classifiers (rows). All standard errors for the accuracies are
below 0.12%. The numbers in parenthesis are the number of components chosen by CV. S

stands for SFPCA and L for L2 FPCA; LDA, linear discriminant analysis; MN,
multinomial logistic regression; SVM, support vector machine.

K = 10 K = 15 K = 20 K = 25 K = 30 K chosen by CV
S L S L S L S L S L S L

LDA 76.9 75.8 79.6 78.4 81.9 81.5 82.7 82.5 83.5 82.3 83.2 (28.0) 82.2 (26.2)
MN 78.5 76.0 81.8 79.4 83.8 82.7 84.6 84.0 85.2 83.6 84.8 (27.5) 83.7 (25.7)

SVM 82.3 80.9 84.3 82.5 86.3 85.2 86.1 86.2 86.3 85.7 86.2 (24.6) 85.8 (25.0)

6. Simulations. To investigate the performance of trajectory recovery
for the proposed RFPCA, we considered two scenarios of Riemannian mani-
folds: The Euclidean sphereM = S2 in R3, and the special orthogonal group
M = SO(3) of 3 × 3 rotation matrices, viewed as a Riemannian submani-
fold of R3×3. We compared three approaches: The Direct (D) method, which
directly optimizes (3) over all time-varying geodesic submanifolds MK and
therefore serves as a gold standard, implemented through discretization; the
proposed RFPCA method (R) and the classical L2 FPCA method (L), which
ignores the Riemannian geometry. In the direct method, the sample curves
and time-varying geodesic submanifolds are discretized onto a grid of 20
equally-spaced time points, and a quasi-Newton algorithm is used to max-
imize the criterion function (3). We used FVE as our evaluation criterion,
where models were fitted using n = 50 or 100 independent samples.

We briefly review the Riemannian geometry for the special orthogonal
group M = SO(N). The elements of M are N × N orthogonal matrices
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with determinant 1, and the tangent space TpM is identified with the col-
lection of N×N skew-symmetric matrices. For p, q ∈M and skew-symmetric
matrices u, v ∈ TpM, the Riemannian metric is 〈u, v〉 = tr(uT v) where tr(·)
is the matrix trace; the Riemannian exponential map is expp(v) = Exp(v)p
and the logarithm map is logp(q) = Log(qp−1), where Exp and Log denote
the matrix exponential and logarithm; the geodesic distance is dM(p, q) =∥∥Log(qp−1)

∥∥
F

. For N = 3, the tangent space TpM is 3-dimensional and
can be identified with R3 through (Chavel 2006) ι : R3 → TpM, ι(a, b, c) =
[0,−a,−b; a, 0,−c; b, c, 0].

The sample curves X were generated as X : T = [0, 1]→M, X(t) =
expµM(t)(

∑20
k=1 ξkφk(t)), with mean function µM(t) = exp[0,0,1](2t, 0.3π sin(πt), 0)

for M = S2, and µM(t) = exp(ι(2t, 0.3π sin(πt), 0)) for M = SO(3).
For k = 1, . . . , 20, the RFPC scores ξk were generated by independent
Gaussian distributions with mean zero and variance 0.07k/2. The eigen-
functions were φk(t) = 2−1/2Rt[ζk(t/2), ζk((t + 1)/2), 0]T for M = S2 and
φk(t) = 6−1/2ι(ζk(t/3), ζk((t+1)/3), ζk((t+2)/3)) forM = SO(3), t ∈ [0, 1],
where Rt is the rotation matrix from [0, 0, 1] to µM(t), and {ζk}20k=1 is the
orthonormal Legendre polynomial basis on [0, 1]. A demonstration of ten
sample curves, the mean function, and the first three eigenfunctions for
M = S2 is shown in Figure 6.

We report the mean FVE by the first K = 1, . . . , 4 components for the
investigated FPCA methods in Table 4, as well as the running time, based
on 200 Monte Carlo repeats. The true FVEs for K = 1, . . . , 4 components
were 73.5%, 93.0%, 98.1%, and 99.5%, respectively. The proposed RFPCA
method had higher FVE and thus outperformed the L2 FPCA in all scenarios
and for all K, which is expected since RFPCA takes into account the curved
geometry. This advantage leads to a more parsimonious representation, e.g.,
in the M = S2 and n = 100 scenario, the average K required by RFPCA
to achieve at least FVE> 0.95 is one less than that for L2 FPCA. The
performance advantage of RFPCA over L2 FPCA is larger for M = S2

than for M = SO(3), since the former has larger sectional curvature (1
vs 1/8). The Direct method was as expected better than RFPCA (also for
SO(3), which is not explicit in the table due to rounding), since the former
optimizes the residual variation under the geodesic distance, the true target,
while the latter uses the more tractable surrogate residual variation target
(4) for L2 distance on the tangent spaces.

Each experiment was run using a single processor (Intel Xeon E5-2670
CPU @ 2.60GHz) to facilitate comparisons. Both RFPCA and L2 FPCA are
quite fast in the and take only a few seconds, though RFPCA is 1.5–3 times
slower, depending on the Riemannian manifoldM. The Direct method, how-



FUNCTIONAL DATA ON RIEMANNIAN MANIFOLDS 23

ever, was several magnitudes slower than RFPCA, due to the unstructured
optimization problem, while for RFPCA spectral decomposition provides
an effective solution. The slim performance gain for the Direct method as
compared to RFPCA does not justify the huge computational effort.

Fig 6. Left: Ten randomly generated samples (dark blue) forM = S2. Right: The first three
eigenfunctions (red, green, and blue, respectively) multiplied by 0.2 and then exponentially
mapped from the mean function (solid black). Light gray lines connect the mean function
and the eigenfunctions at 10 equally spaced time points. Small dots denote t = 0 and large
dots t = 1.

Table 4
A comparison of mean FVE (%) and running time in the simulation study. D, direct
optimization of (3) through discretization; R, RFPCA; L, L2 FPCA. The standard

errors of the FVEs for all three methods were below 0.32%.

K = 1 K = 2 K = 3 K = 4 Time (seconds)
M n D R L D R L D R L D R L D R L
S2 50 74.3 74.1 71.4 93.0 92.9 89.6 98.1 97.9 93.8 99.5 99.2 97.5 5e3 0.72 0.24

100 74.0 73.8 70.9 92.9 92.8 89.2 98.0 97.9 93.1 99.4 99.2 97.3 1e4 1.01 0.38
SO(3) 50 73.1 73.1 72.2 92.8 92.8 91.6 98.1 98.1 96.3 99.5 99.5 98.1 2e3 3.67 2.46

100 72.9 72.9 71.8 92.6 92.6 91.3 98.0 98.0 96.1 99.5 99.5 97.9 4e3 6.58 4.94

APPENDIX: PROOFS

Proof of Proposition 1. Since M is a closed subset of Rd0 with the
induced Riemannian metric by the Euclidean metric,M is complete. By the
Hopf–Rinow theorem (see, e.g., Chavel 2006), M is geodesically complete,
i.e. for all p ∈M, the exponential map expp is defined on the entire tangent
space TpM. Therefore XK(t) = expµM(t)(VK(t)) is well-defined.

The first inequality in (15) holds by the definition of projection Π. The
second inequality follows from Alexandrov–Toponogov theorem (e.g., Theo-
rem IX.5.1 in Chavel 2006), which states if two geodesic triangles T1 and T2
on complete Riemannian manifolds M1 and M2, where M1 has uniformly
higher sectional curvature thanM2, have in common the length of two sides
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and the angle between the two sides, then T1 has a shorter third side than T2.
This is applied to triangles (X(t), µM(t), XK(t)) on M and (V (t), 0, VK(t))
on TµM(t), identified with a Euclidean space.

For the following proofs we consider the set

(29) K =
⋃
t∈T

BM(µM(t), 2r) ⊂M,

where BM(p, l) is an open dM-geodesic ball of radius l > 0 centered at
p ∈M, and A denotes the closure of a set A. Under(B1) and(B3), K is closed
and bounded and thus is compact, with diameter R = supp,q∈K dM(p, q).
Then µM(t), µ̂M(t), X(t) ∈ K for all t ∈ T . For the asymptotic results we
will consider the compact set K.

Proof of Proposition 2. To obtain the uniform consistency results of
µ̂M(t), we need to show

sup
t∈T

sup
p∈K
|Mn(p, t)−M(p, t)| = op(1),(30)

sup
t∈T
|Mn(µ̂M(t), t)−M(µM(t), t)| = op(1),(31)

and for any ε > 0, there exist a = a(ε) > 0 such that

(32) inf
t∈T

inf
p: dM(p,µM(t))>ε

[Mn(p, t)−M(µM(t), t)] ≥ a− op(1).

Then by (31) and (32), for any δ > 0, there exists N ∈ N such that n ≥ N
implies the event

E ={sup
t∈T
|Mn(µ̂M(t), t)−M(µM(t), t)| ≤ a/3} ∩

{ inf
t∈T

inf
p: dM(p,µM(t))>ε

[Mn(p, t)−M(µM(t), t)] ≥ 2a/3}

holds with probability greater than 1 − δ. This implies that on E,
supt∈T dM(µ̂M(t), µM(t)) ≤ ε, and therefore the consistency of µ̂M.

Proof of (30): We first obtain the auxiliary result

(33) lim
δ↓0

E

[
sup
|t−s|<δ

dM(X(t), X(s))

]
= 0

by dominated convergence, (B1), and the boundedness of K (29). Note that
for any p, q, w ∈ K,

|dM(p, w)2−dM(q, w)2| = |dM(p, w)+dM(q, w)|·|dM(p, w)−dM(q, w)| ≤ 2RdM(p, q)
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by the triangle inequality, where R is the diameter of K. Then

sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

|Mn(p, t)−Mn(q, s)| ≤ sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

|Mn(p, s)−Mn(q, s)|

+ sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

|Mn(p, t)−Mn(p, s)|

≤ 2Rδ +
2R

n

n∑
i=1

sup
|t−s|<δ

dM(Xi(t), Xi(s))

= 2Rδ + 2RE

[
sup
|t−s|<δ

dM(X(t), X(s))

]
+ op(1),

where the last equality is due to the weak law of large numbers (WLLN).
Due to (33), the quantity in the last display can be made arbitrarily close to
zero (in probability) by letting δ ↓ 0 and n → ∞. Therefore, for any ε > 0
and η > 0, there exist δ > 0 such that

lim sup
n→∞

P ( sup
|t−s|<δ
p,q∈K

dM(p,q)<δ

|Mn(p, t)−Mn(q, s)| > ε) < η,

proving the asymptotic equicontinuity of Mn on K×T . This and the point-
wise convergence of Mn(p, t) toM(p, t) by the WLLN imply (30) by Theorem
1.5.4 and Theorem 1.5.7 of van der Vaart and Wellner (1996).

Proof of (31): Since µ̂M(t) and µM(t) are the minimizers of Mn(·, t) and
M(·, t), respectively, |Mn(µ̂M(t), t) −M(µM(t), t)| ≤ max(Mn(µM(t), t) −
M(µM(t), t),M(µ̂M(t), t) − Mn(µ̂M(t), t)) ≤ supp∈K |Mn(p, t) − M(p, t)|.
Take suprema over t ∈ T and then apply (30) to obtain (31).

Proof of (32): Fix ε > 0 and let a = a(ε) = inf t∈T infp: dM(p,µM(t))>ε[M(p, t)−
M(µM(t), t)] > 0. For small enough ε,

inf
t∈T

inf
p: dM(p,µM(t))>ε

[Mn(p, t)−M(µM(t), t)]

= inf
t∈T

inf
p∈K,

dM(p,µM(t))>ε

[Mn(p, t)−M(µM(t), t)]

= inf
t∈T

inf
p∈K,

dM(p,µM(t))>ε

[M(p, t)−M(µM(t), t) +Mn(p, t)−M(p, t)]

≥ a− sup
t∈T

sup
p∈K

dM(p,µM(t))>ε

|Mn(p, t)−M(p, t)| = a− op(1),
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where the first equality is due to µ̂M(t) ∈ K and the continuity of Mn, the
inequality to (B4), and the last equality to (30). For the continuity of µM,
note for any t0, t1 ∈ T ,

|M(µM(t1), t0)−M(µM(t0), t0)| ≤ |M(µM(t1), t1)−M(µM(t0), t0)|
+ |M(µM(t1), t0)−M(µM(t1), t1)|

≤ sup
p∈K
|M(p, t1)−M(p, t0)|+ 2RE[dM(X(t0), X(t1))]

≤ 4RE[dM(X(t0), X(t1))]→ 0

as t1 → t0 by(B1), where the second inequality is due to the fact that µM(tl)
minimizes M(·, tl) for l = 0, 1. Then by (B4), dM(µM(t1), µM(t0)) → 0 as
t1 → t0, proving the continuity of µM. The continuity for µ̂M is similarly
proven by in probability arguments.

Proof of Theorem 1. The proof idea is similar to that of Theorem 2.1
in Bhattacharya and Patrangenaru (2005). To lighten notations, let Y (t) =
τ(X(t)), Yi(t) = τ(Xi(t)), ν(t) = τ(µM(t)), and ν̂(t) = τ(µ̂M(t)). The
squared distance dM(p, q)2 is smooth at (p, q) if dM(p, q) < injp, due to
the smoothness of the exponential map (Chavel 2006, Theorem I.3.2). Then
dτ (u, v)2 is smooth on the compact set {(u, v) ∈ τ(U) × τ(U) ⊂ Rd × Rd |
dM(τ−1(u), τ−1(v)) ≤ r} and thus T (Y (t), ν(t)) and H(Y (t), ν(t)) are well
defined, by (B3) and since the domain U of τ is bounded. Define

ht(v) = E[dτ (Y (t), v)2],(34)

hnt(v) =
1

n

n∑
i=1

dτ (Yi(t), v)2.(35)

Since ν(t) is the minimal point of (34),

(36) E[Tj(Y (t), ν(t))] = E

[
∂

∂vj
d2τ (Y (t), v)

∣∣∣∣
v=ν(t)

]
=

∂

∂vj
ht(ν(t)) = 0,

for j = 1, . . . , d. Similarly, differentiating (35) and applying Taylor’s theo-
rem,

0 =
1√
n

n∑
i=1

Tj(Yi(t), ν̂(t))
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=
1√
n

n∑
i=1

Tj(Yi(t), ν(t)) +

d∑
l=1

√
n[ν̂l(t)− νl(t)]

1

n

n∑
i=1

Hjl(Yi(t), ν(t)) +Rnj(t),

(37)

where ν̂l(t) and νl(t) are the lth component of ν̂(t) and ν(t), and
(38)

Rnj(t) =
d∑
l=1

√
n[ν̂l(t)− νl(t)]

1

n

n∑
i=1

[Hjl(Yi(t), ν̃jl(t))−Hjl(Yi(t), ν(t))] ,

for some ν̃jl(t) lying between ν̂l(t) and νl(t).
Due to the smoothness of d2τ , (B3), and (B6), for j, l = 1, . . . , d,

(39) E sup
t∈T

Tj(Yi(t), ν(t))2 <∞, E sup
t∈T

Hjl(Yi(t), ν(t))2 <∞,

(40) lim
ε↓0

E sup
t∈T

sup
‖θ−ν(t)‖≤ε

|Hjl(Y (t), θ)−Hjl(Y (t), ν(t))| = 0.

By(B6), we also have limε↓0E sup|t−s|<ε |Hjl(Y (t), ν(t))−Hjl(Y (s), ν(s))| →
0, which implies the asymptotic equicontinuity of n−1

∑n
i=1Hjl(Yi(t), ν(t))

on t ∈ T , and thus

(41) sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

Hjl(Yi(t), ν(t))− E[Hjl(Yi(t), ν(t))]

∣∣∣∣∣ = op(1),

by Theorem 1.5.4 and Theorem 1.5.7 of van der Vaart and Wellner (1996).
In view of (39)–(41) and Proposition 2, we may write (37) into matrix form

(42) [Λ(t) + En(t)]
√
n[ν̂(t)− ν(t)] = − 1√

n

n∑
i=1

T (Yi(t), ν(t)),

where Λ(t) = E[H(Y (t), ν(t))] and En(t) is some random matrix with
supt∈T ‖En(t)‖F = op(1). By (B6), Tj(Yi(t), ν(t)) is Lipschitz in t with a
square integrable Lipschitz constant, so one can apply a Banach space cen-
tral limit theorem (Jain and Marcus 1975)

(43)
1√
n

n∑
i=1

T (Yi, ν)
L−→W,

where W is a Gaussian process with sample paths in Cd(T ), mean 0, and
covariance GT (t, s) = E[T (Y (t), ν(t))T (Y (s), ν(s))T ].
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We conclude the proof by showing

(44) inf
t∈T

λmin(Λ(t)) > 0.

Let φt(v) = logµM(t)(v), ft = φt◦τ−1, and gt(v) = E[dM(X(t), expµM(t)(v))2],
so ht(v) = gt(f(v)). Observe

∂2

∂vj∂vl
ht(v) =

(
∂

∂vj
ft(v)

)T ∂2

∂v2
gt(v)

(
∂

∂vl
ft(v)

)
+

∂

∂v
gt(v)T

∂2

∂vj∂vl
ft(v).

(45)

The second term vanishes at v = ν(t) by (36), so in matrix form

(46) Λ(t) =
∂2

∂v2
ht(ν(t)) =

(
∂

∂v
ft(ν(t))

)T ∂2

∂v2
gt(0)

(
∂

∂v
ft(ν(t))

)
.

The gradient of ft is nonsingular at ν(t) since it is a local diffeomorphism.
Then Λ(t) is positive definite for all t ∈ T by (B5), and (44) follows by
continuity.

Proof of Corollary 1. Note dM(µ̂M(t), µM(t)) = dτ (ν̂(t), ν(t)). By
Taylor’s theorem around v = ν(t),

dτ (ν(t), ν̂(t))2 = [ν̂(t)− ν(t)]T

[
∂

∂v2
d2τ (ν(t), v)

∣∣∣∣
v=ν̃(t)

]
[ν̂(t)− ν(t)],

where ν̃(t) lies between ν̂(t) and ν(t), since d2τ (u, v) and ∂d2τ (u, v)/∂v both
vanish at u = v. The result then follows from Theorem 1, Remark 1, and
Proposition 2.

SUPPLEMENTARY MATERIAL

Supplement to “Principal Component Analysis for Functional
Data on Riemannian Manifolds and Spheres”
(doi: COMPLETED BY THE TYPESETTER; .pdf). In the Supplementary
Materials, we provide proofs of Corollary 2, Theorem 2, and Corollary 4;
algorithms for RFPCA of compositional data; and additional simulations.
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e-prints. arXiv:1608.03012.

Qiu, Z., Song, X. K. and Tan, M. (2008). Simplex mixed-effects models for longitudinal
proportional data. Scandinavian Journal of Statistics 35 577–596.

Rahman, I. U., Drori, I., Stodden, V. C., Donoho, D. L. and Schröder, P. (2005).
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SUPPLEMENTARY MATERIALS

S1. Additional Proofs.

Proof of Corollary 2.

sup
t∈T
‖V̂i(t)− Vi(t)‖E = sup

t∈T
‖logµM(t)(Xi(t))− logµ̂M(t)(Xi(t))‖E

. sup
t∈T
|dM(µ̂M(t), µM(t))|,

where the last inequality is due to (B3) and the fact that logp(q) is contin-
uously differentiable in (p, q) (Theorem I.3.2 in Chavel 2006).

Proof of Theorem 2. Denote G̃(t, s) = 1
n

∑n
i=1 Vi(t)Vi(s)

T . Then

sup
t,s∈T

∥∥∥Ĝ(t, s)−G(t, s)
∥∥∥
F
≤ sup

t,s∈T

∥∥∥Ĝ(t, s)− G̃(t, s)
∥∥∥
F

+ sup
t,s∈T

∥∥∥G̃(t, s)−G(t, s)
∥∥∥
F

≤ 1

n

n∑
i=1

sup
t,s∈T

∥∥∥V̂i(t)V̂i(s)T − Vi(t)Vi(s)T∥∥∥
F

+ sup
t,s∈T

∥∥∥∥∥ 1

n

n∑
i=1

Vi(t)Vi(s)
T −G(t, s)

∥∥∥∥∥
F

(47)

Since supt,s∈T
∥∥Vi(t)Vi(s)T∥∥F < R2, viewing Vi(t)Vi(s)

T as random elements

in L∞(T × T ,Rd2) the second term is Op(n
−1/2) by Theorem 2.8 in Bosq

(2000). For the first term, note∥∥∥V̂i(t)V̂i(s)T − Vi(t)Vi(s)T∥∥∥
F
≤
∥∥∥(V̂i(t)− Vi(t))V̂i(s)T

∥∥∥
F

+
∥∥∥Vi(t)(V̂i(s)− Vi(s))T∥∥∥

F

≤ ‖V̂i(s)‖E‖V̂i(t)− Vi(t)‖E + ‖Vi(t)‖E‖V̂i(s)− Vi(s)‖E
. sup

t∈T
dM(µ̂M(t), µM(t)),

where the second inequality is due to the properties of the Frobenius norm,
and the last is due to Corollary 2 and (B3). Therefore, by Corollary 1 the
first term in (47) is Op(n

−1/2) and (20) follows. Result (21) follows from
applying Theorem 4.2.8 in Hsing and Eubank (2015) and from the fact that
the operator norm is dominated by the Hilbert-Schmidt norm.

To prove (22), Theorem 5.1.8 in Hsing and Eubank (2015) and Bessel’s
inequality imply

(48)
∥∥∥φ̂k − φk∥∥∥ = Op(n

−1/2).

Then note that for any t ∈ T ,

‖φ̂k(t)− φk(t)‖E = ‖
∫

1

λ̂k
Ĝ(t, s)φ̂k(s)ds−

∫
1

λk
G(t, s)φk(s)ds‖E
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= ‖( 1

λ̂k
− 1

λk
)

∫
Ĝ(t, s)φ̂k(s)ds+

1

λk

∫
Ĝ(t, s)(φ̂k(s)− φk(s))

+ (Ĝ(t, s)−G(t, s))φk(s)ds‖E

= Op

(∣∣∣∣ 1

λ̂k
− 1

λk

∣∣∣∣+
∥∥∥φ̂k − φk∥∥∥+ sup

t,s∈T

∥∥∥Ĝ(t, s)−G(t, s)
∥∥∥
F

)
,

which is of order Op(n
−1/2) by (21), (48), and (20). Since the r.h.s. does not

involve t, taking suprema on both sides over t ∈ T concludes the proof.

Proof of Corollary 4. Conditions (A1)–(A2) and (B3) hold for lon-
gitudinal compositional data analysis, while (B2) holds by Theorem 2.1 in
Afsari (2011).

S2. Algorithms for the RFPCA of Compositional Data. The
following Algorithms 1–3 are provided as examples for RFPCA applied to
longitudinal compositional data Z(t) or spherical trajectories X(t). For lon-
gitudinal compositional data Z(t), we initialize by defining X(t) as the com-
ponentwise square root of Z(t), which then lies on a Euclidean sphere Sd.
We assume the trajectories are observed at t = tj = (j − 1)/(m − 1) for
j = 1, . . . ,m, and all vectors are by default column vectors. Very similar
algorithms for SFPCA have also been proposed by Anirudh et al. (2017).

The time complexity for Algorithm 1 is O(nmf(d) + nm2d2 + (md)3),
where f(d) is the cost for calculating a Fréchet mean in Line 2, which is
typically O(nd) or O(nd2) for gradient descent or quasi-Newton type opti-
mizers per iteration, respectively. The most demanding computational step
for the multivariate FPCA is O(nm2d2) for Line 7 and O((md)3) for the
eigendecomposition in Line 8. The computational cost for Algorithm 2 is
O(md) and that for Algorithm 3 is O(nmd).

Algorithm 2: Truncated K-dimensional representations

Data: µ̂M(t), {(ξ̂ik, φ̂k(t))}Kk=1

Result: X̂iK(t), V̂iK(t)
1 for j ∈ {1, . . . ,m} do
2 V̂iK(tj)←

∑K
k=1 ξ̂ikφ̂k(tj)

3 X̂iK(tj)←
cos(‖V̂iK(tj)‖E)µ̂M(t) + sin(‖V̂iK(tj)‖E)‖V̂iK(tj)‖−1E V̂iK(tj)

4 end
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Algorithm 1: Spherical functional principal component analysis
(SFPCA)

Data: Sd-valued trajectories X1(t), . . . , Xn(t)
Result: µ̂M(t), V̂i(t), ξ̂ik, φ̂k(t), λ̂k, for i = 1, . . . , n and k = 1, . . . ,K
// Obtain the intrinsic mean function and tangent vectors

1 for j ∈ {1, . . . ,m} do
2 µ̂M(tj)← arg minp∈Sd n−1 ∑n

i=1[cos−1(pTXi(tj))]
2

3 for i ∈ {1, . . . , n} do

4 V̂i(tj) = u√
uT u

cos−1(µ̂M(tj)
TXi(tj)), where

u = Xi(tj)− (µ̂M(tj)
TXi(tj))µM(tj)

5 end

6 end
// A multivariate FPCA. Vec(A) stacks the columns of A.

7 V̂i ← [V̂i(t1), . . . , V̂i(tm)]T , Ĝ← n−1 ∑n
i=1 Vec(V̂i)Vec(V̂i)

T

8 [ω, Ψ]← Eigen(V̂i), for eigenvalues ω = [ω1, . . . , ωm]T and eigenvectors
Ψ = [ψ1, . . . , ψm]

9 for k ∈ {1, . . . ,K} do

10 Write Φ̂k = [φ̂k(t1), . . . , φ̂k(tm)]T , Vec(Φ̂k)← m1/2ψk, λ̂k ← m−1ωk,

ξ̂ik ← m−1Vec(V̂i)
T Vec(Φ̂k)

11 end

S3. Additional simulations. We conducted an additional simulation
study to investigate the scalability of the RFPCA algorithms to higher di-
mensions d, on the unit sphereM = Sd in Rd+1 for d = 5, 10, 15, 20. Table 5
shows that the RFPCA scales well for larger dimensions in terms of running
time, and its relative disadvantage in speed as compared to the L2 FPCA
becomes smaller as d and n get larger.

The samples were generated in the same fashion as in the main text,
except for the mean function µM(t) = expp0(2(d − 1)−1/2t, . . . , 2(d −
1)−1/2t, 0.3π sin(πt), 0), and eigenfunctions φk(t) = d−1/2Rt[ζk(t/d), . . . , ζk(t/d+

Algorithm 3: Calculate FVE
Data: Outputs from Algorithm 1

Result: F̂VEK
1 Û0 ← n−1 ∑n

i=1

∫
T dM

2(Xi(t), µ̂M(t))dt
2 for i ∈ {1, . . . , n} do

3 Use Algorithm 2 to obtain X̂iK(t)
4 end

5 ÛK ← n−1 ∑n
i=1

∫
T dM

2(Xi(t), X̂iK(t))dt

6 F̂VEK = (Û0 − ÛK)/Û0
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(d − 1)/d), 0]T , where p0 = [0, . . . , 0, 1] and Rt is the rotation matrix from
p0 to µM(t).

Table 5
A comparison of mean running time for Sd. The standard errors are below 2% of the

means.

n = 50 n = 100 n = 200 n = 400
d 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

RFPCA 1.3 1.7 2.1 2.7 1.9 2.6 3.3 4.3 3.1 4.6 5.7 7.4 5.9 7.8 10.5 13.2
L2 FPCA 0.4 0.7 1.0 1.5 0.8 1.2 1.8 2.4 1.4 2.5 3.5 4.4 3.0 4.4 6.3 8.2
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