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ABSTRACT

Longitudinal data are often plagued with sparsity of time points where measurements are
available. The functional data analysis perspective has been shown to provide an effective
and flexible approach to address this problem for the case where measurements are sparse
but their times are randomly distributed over an interval. Here we focus on a differ-
ent scenario where available data can be characterized as snippets, which are very short
stretches of longitudinal measurements. For each subject the stretch of available data is
much shorter than the time frame of interest, a common occurrence in accelerated longi-
tudinal studies. An added challenge is introduced if a time proxy that is basic for usual
longitudinal modeling is not available. This situation arises in the case of Alzheimer’s
disease and comparable scenarios, where one is interested in time dynamics of declining
performance, but the time of disease onset is unknown and chronological age does not
provide a meaningful time reference for longitudinal modeling. Our main methodological
contribution to address these challenges is to introduce conditional quantile trajectories
for monotonic processes that emerge as solutions of a dynamic system. Our proposed
estimates for these trajectories are shown to be uniformly consistent. Conditional quan-
tile trajectories are useful descriptors of processes that quantify deterioration over time,
such as hippocampal volumes in Alzheimer’s patients. We demonstrate how the proposed
approach can be applied to longitudinal snippets data sampled from such processes.
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1. INTRODUCTION

When adopting the functional approach for the analysis of longitudinal data, a com-
mon assumption is that the observations originate from a smooth underlying process.
This assumption is justified, for example, when the observations correspond to biological
mechanisms which are known to vary smoothly, and in this case modeling longitudinal
data with functional data analysis (FDA) approaches has been highly successful (Brum-
back and Bracke 1998; Staniswalis et al. 1998; Rice and Wu 2001; Rice 2004; Guo 2004;
Jiang and Wang 2011; Coffey et al. 2014; Wang 2003; Wang et al. 2005). A common
methodological challenge in longitudinal studies, however, is that many such studies lack
complete and densely spaced observations over time. Some authors have explored prob-
lems relating to incomplete functional data (Yao et al. 2005; Delaigle and Hall 2013; Kraus
2015; Liebl and Kneip 2016; Delaigle and Hall 2016). These methods involve estimation of
the covariance function of the underlying random functions or of transition probabilities
in a Markov chain, either by pooling or stitching observed fragments. In this paper, we
consider a new quantile based approach, which may be used when dealing with a severe
type of sparseness that substantially differs from previous approaches.

Some data generated in longitudinal studies exhibit an extreme form of sparseness.
We refer to such data as snippet data, often originating from accelerated longitudinal
designs (Galbraith et al. 2014). Such data can be characterized as very short longitudinal
measurements relative to the domain of interest. A design of this type is attractive to
practitioners across the social and life sciences since it minimizes the length of time over
which one needs to gather data for each subject; they are especially useful in situations
where data collection is invasive, difficult or expensive, as is for example the case when
studying Alzheimer’s disease.

Snippet data may be viewed as being generated by observing each subject for a short

window around some random time 7. An illustration of how snippets originate is shown



in the left panel of Figure 1. Of particular interest is the case where the subjects’ entry
times are not informative, which is often the case in studies where, for example, time

since disease onset plays a decisive role but is unknown.
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Figure 1: A simulated trajectory with an example of a longitudinal snippet at time T
(left) and log-hippocampal volume snippet data, where age is the only available time
reference (right). Subjects classified as having normal cognitive function are colored in
blue, while those with impaired cognitive function are colored in red.

Typical methods for dealing with snippet data resulting from accelerated longitudinal
studies involve parametric models (Raudenbush and Chan 1992; Ford et al. 2012; Baskin-
Sommers et al. 2015; Stanik et al. 2013; Galla et al. 2014; Brault et al. 2011), however
these do not allow the recovery of the underlying functional dynamics, which has not
been systematically studied so far. For snippet data where an absolute time scale such
as age of subjects is not informative, functional completion methods based on stitching
or pooling segments are not valid. The covariance function is also not estimable, and
this precludes most functional and longitudinal models, including those in Yao et al.
(2005), Kraus (2015), and Liebl and Kneip (2016). Figure 12 in the Supplement clearly
demonstrates why the covariance function cannot be estimated in the snippet case, even

when the observed time is informative, in contrast to the usually considered sparse case



where measurements are randomly located over the entire domain.

The focus of this paper is to flexibly estimate quantile dynamics of the underlying
smooth process, including the difficult case where the subjects’ available entry times T;
such as age are not necessarily useful, a situation which arises when measuring deteriora-
tion since an unknown onset of disease or degradation event in degradation experiments.
There exists substantial literature on parametric and nonparametric methods for quantile
and conditional quantile estimation (Fan et al. 1996; Hall and Miiller 2003; Koenker 2005;
Koenker and Bassett 1978; Koenker et al. 1994; Li et al. 2007; Wei and He 2006; Yu and
Jones 1998). While these methods and their extensions are applicable in simpler scenarios
where full curves are observed for each subject, to our knowledge estimation of quantile
trajectories based on snippet data has not yet been considered. To be specific, we note
that obtaining cross-sectional quantile trajectories, conditional on T, is not meaningful in
this context since there is no guarantee of proper alignment of snippets.

Under the scenario where T; is not necessarily useful and the underlying process is
monotonic, Abramson and Miiller (1994) and Vittinghoff et al. (1994) found that one
can still obtain trajectory information over time as long as information about local level
and slope is known for each subject. Specifically, Abramson and Miiller suggested that
data in this form can be viewed as bivariate observations of level and slope at some
random, unobserved time. Formally, one may write X; = f(T;) and Z; = f'(T;) + ¢;, for

2 < oo, where f is

i =1,...,n, with i.i.d. noise ¢; satisfying E(¢) = 0 and E(e?) = o
a fixed, strictly monotonic function and one observes (X;, Z;). The key observation that
was simultaneously made in Vittinghoff et al. (1994) is that for a monotonic function,
there exists a function g that relates the slope to the level, i.e., f'(t) = g(f(¢)), where
g(x) = E(Z]|X = x) and we can use the available snippet data to estimate this function

using scatterplot smoothers (Fan and Gijbels 1996). These approaches reflect that due to

the short time span of snippet data, the available data do not carry information beyond



local level and slope. To extract this local information, one can apply a simple linear least
squares fit to the data in each snippet and extract slope and mean estimates.

A key assumption in Abramson and Miiller (1994); Vittinghoff et al. (1994) was that
one has measurements from a fixed function f, which is the target and corresponds to a
population mean function. However, in addition to the mean function, individual dynam-
ics are of paramount interest, for example in accelerated longitudinal studies. To target
individual dynamics, we assume that observations come from realizations of a stochastic
process, and aim to estimate functionals of the conditional distribution of slopes, rather
than only the mean function. The proposed methods combine known results for con-
ditional quantile estimation with the underlying smoothness assumptions and dynamics
that are the foundation of functional data analysis. This leads to the concept of condi-
tional quantile trajectories, which can be consistently estimated from snippet data under
regularity assumptions.

The organization of this paper is as follows. In Section 2 we introduce the proposed
dynamic model, while Section 3 covers estimation procedures. Our main theoretical results
are discussed in Section 4. Simulations and an application to Alzheimer’s disease are

discussed in Sections 5 and 6, respectively.

2. DYNAMIC MODELING OF THE DISTRIBUTION OF DECLINE RATES

2.1. Basic Model

We assume that the observed snippets are generated by an underlying random process
Y, which is defined on some domain 7y and is (k + 1)-times continuously differentiable
for a k > 1. Let J be the range of Y restricted to 7y. Measurements are generated by
observing Y;(T;) and Y/(T;) at some random and potentially unobserved subject-specific
time T;, where T is independent of Y. Denote these observations as X; = Y;(7;) and
Z; =Y/(T;) for i = 1,...,n. For the development of the basic concept, we assume that

X, and Z; are given, but when these quantities are not directly observable, one will need to
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use surrogates for level and slope of the snippets, which can be obtained by least squares
line fits to the observed snippet data for each subject. Further assume that T; ~ fr for
some density fr on Ty, and that (X;, Z;, T;) have a joint distribution and are independent
of (Xj,Z;,T;) for i # j. A core feature of our model is that the conditional distribution
of the slope given the level can be expressed in a way that does not explicitly depend on
T, which means that we may view the distribution of the rate of decline as a function of

the current level without knowledge of the observation time, i.e.,
F(zle) =PY'(T) <z |Y(T)=2)=P(Z <z | X =), (1)

is determined by the relationship between level and slope, while bypassing 7.

This approach is an extension of previous ideas in Abramson and Miiller (1994) and
Vittinghoff et al. (1994), where the focus was on estimation of the mean, rather than the
conditional distribution. It should be emphasized that our assumption does not imply
that the derivative Y/(T) does not depend on T'; rather we change the frame of reference
from conditioning on time to conditioning on level. Monotone processes lend themselves

nicely to this perspective. Noting that if Y is monotonic and differentiable we have
P(Y'(T) <z | V(D))= P(Y'(Y '(Y(T))) < 2 | Y(T)), (2)

so that 7" only comes into the conditional distribution via Y (7).

For our application to Alzheimer’s hippocampal volume data we find this type of
model to be appropriate, and there is evidence that the distribution of decline rates
conditioned on level is independent of age. This is because upon segmenting the dataset
according to level and age, and comparing within each level segment the distribution
of slopes Z for different ages (see Figure 11 in the Supplement) we find that there is

no obvious relationship. We also find that when fitting a linear model with slope as



response and level as predictor, there is no evidence from an F test that adding age
as an additional predictor improves the regression relation, indicating that the level is
sufficient in modeling the mean slope. We obtain similar results when fitting parametric
quantile regression models for various quantiles. While we focus on the scenario where the
conditional distribution F'(z|x) does not depend on T, we describe in Section 3 how one
can incorporate dependence on the observation time T for situations where 7' is available.
Rather than only aiming at the conditional mean, our goal is to target the distribution
of slopes at a given level, which provides insights into the distributional dynamics of
the process. Ultimately we target the conditional quantile trajectories of the process
Y, which describe the probabilistic time dynamics given a starting point and provide a
more comprehensive reflection of the underlying dynamics than the conditional expected
trajectories alone. The assumption that the observed snippets result from realizations of
an underlying stochastic process makes it possible to model subject-specific variation.
For a concrete example of a process which satisfies (1), simple calculations show that
smooth monotonic functions with random components are included. For a specific exam-
ple, consider the model Y (t) = af(bt + ¢) + d where f(-) is a fixed monotone function,
and (a, b, ¢,d) is a random vector with some joint distribution. Examining the conditional
probabilistic behavior of this process at a randomly and independently selected time T,

and again using the notation X = Y (T'), we find

F(zla) =P(Y'(T) <z | Y(T) = x)

= P(abf'(bT +¢) < 2z | Y(T) = 2)

_p (abf’ (f—l GY(T) - g)) <. |Y(T) = x)
eforlr (o929

so that F'(z|x) is seen to depend on T' through X = Y(T'), whence the model in (1) is



appropriate.

2.2.  Conditional Quantile Trajectories
The conditional distribution in (1) provides insight into the instantaneous probabilistic
dynamics of a process and provides information about where subjects generally are headed
in the immediate future, given that they are at a certain level, not only in the mean but
in distribution. In data applications it is additionally of interest to infer how the process
behaves over a longer period of time, beyond the time 7" where the snippet is recorded.
Since our goal is to model snippet data in the case where the observed time scale is
not informative, taking cross-sectional quantiles from the original snippet data (i.e. con-
ditioning on 7") is not meaningful for quantifying decline or growth. Instead we focus on a
class of quantile models that are based on a given starting level. For this, if full functional
trajectories are available, the ideal target would be the cross-sectional distribution of Y

for some amount of time s after Y(7') = z. Define
Gi(yle) = P(Y(T +5) <y | Y(T) = ), (3)

as the distribution of Y (T'+ s) for a given starting value Y (7') = x. Taking the a-quantile

for all s € T gives the cross-sectional a-quantile trajectory
Goa(T + 5) = G (a2). (4)

The cross-sectional quantile, when estimable, is a useful tool for data analysis and mod-
eling. Selection of the initial value Y (T') = x may vary depending on applications. For
example, if information about the baseline status is known, a natural choice would be
to model quantile trajectories conditional on starting at baseline. Another interesting

method would be to choose individual-specific initial values. Such a model could give



practitioners guidance in assessing or ranking individuals which are observed at a certain
level and can potentially aid in prediction of an individual’s future trajectory. The con-
tinuation time s may be interpreted as the time, in the same units as the original data,
that has elapsed since the observation time 7" where the process was recorded at level
Y(T) = z. In the examples given above, these would be time since baseline and time
since observed, respectively.

While the cross-sectional quantile trajectory ¢, is a powerful model, we note that
its estimation explicitly depends on observing Y (7 + s). In the case of snippet data, the
available domain of s where Y (T + s) is observed is very small, making this quantile tra-
jectory an infeasible target. This motivates our proposal to instead utilize the conditional
distribution in (1) to assess the long term behavior of the decline process after a random
starting time 7'. To this end, we introduce longitudinal quantile trajectories. For a given

0 < a < 1, define instantaneous a-quantiles for a level z as

fa(x) = F71<a|x)7 (‘5)

where F'(z|x) is defined as in (1).

The function &, describes the a-quantile of the conditional distribution of slopes given
a level, providing information about the instantaneous rate of decline for the case where
trajectories are monotone falling. A simple, yet useful way to utilize and visualize &, ()
is to define a class of trajectories that at all times follow the a-quantile of slope given the
current level, thus representing a constant quantile of degradation, for example median
degradation. Accordingly, given 0 < a < 1, we define a trajectory z,, as the solution to

an autonomous differential equation

dzo.(T + s)

ds = La(2aa(T + 5)), (6)



with initial condition z, . (7" + 0) = z. We then refer to the solution function z, . (T + )
as the longitudinal a-quantile trajectory and note that it depends only on x and « and
specifically does not depend on the random time 7.

Note that &, is the gradient function relating the slope to the level. Defining longi-
tudinal quantile trajectories in this way sidesteps 7', which is unknown. This approach
can be contrasted with the previous strategy (Abramson and Miiller 1994; Vittinghoff
et al. 1994) for estimating the conditional mean function pu, (7" + s), which is the function

satisfying
dpo (T + )
ds

=EY'(T+s) | Y(T) = po(T +5)), (7)
with initial condition p, (T 4 0) = z. It is straightforward to estimate the a-quantile
trajectories iteratively, using simple numerical integration techniques, such as Euler’s
method, to solve the defining autonomous differential equation (6).

While in general, longitudinal and cross-sectional quantile trajectories z, , and ¢, do
not coincide, due to basic differences in their definitions, Proposition 1 below demonstrates
that in many cases z,, and ¢,, will coincide under some smoothness and uniqueness

assumptions. Denoting the space of k + 1-times continuously differentiable functions for

k> 1 by C**!, we assume

(A1) The cross-sectional a-quantile trajectories g, . satisfy ¢, € C*¥*1(T) and are mono-
tone in s.
(A2) There exists a function h € C*(J), where J is the range of Y restricted to T, so

that ¢, is the solution to an autonomous differential equation

Ao (T + s)

= (T + 5)).

(A3) The cross-sectional quantiles are unique: Gy(y) = P(Y(T +s) <y | Y(T) = z) is



strictly monotone in y for all s € T.

Assumptions (A1) and (A2) ensure that the cross-sectional quantile may be represented by
an autonomous differential equation, i.e., that the slope of the conditional cross-sectional
quantile only depends on the level. This is a natural assumption in view of (1). Assump-
tion (A3) ensures that cross-sectional quantiles are well defined.
Proposition 1. If the process Y satisfies (A1), (A2), and (A3), then a-quantile cross-
sectional trajectories and a-quantile trajectories coincide, i.e., qo(T + 8) = za.(T +
s) forall s € T.

The implication is that under the above smoothness and autonomy assumptions we
may target z,, and interpret it as a cross-sectional quantile, which cannot be directly

targeted, as discussed above.

3. ESTIMATION

3.1 Estimation of Conditional Distributions and Quantiles

The task of estimating z,, can be decomposed into three steps. First, we estimate the
conditional distribution F'(z|x). Next we use this estimate to obtain an estimate of the
instantaneous conditional quantile function &,, according to (5). Finally, this estimate of
&, is employed as gradient function in an autonomous differential equation as per (6), and
then this equation is solved numerically. The details are as follows.

The data in our application is of the form (X;, Z;) for ¢ = 1,...,n, where the snippet
data are generated as follows. First, for the ith subject, a random mechanism selects the
underlying trajectory Y; and an independent random time 7;. The ¢-th subject’s time
course is measured in a window [T; — A, T; + A] for a small A > 0, situated around
the random time T;, where the observations in the window are generated by a second
independent random mechanism as Y;; = Y;(T};) +e;;, for T;; € [T; — A, T;+ A} C T, with

independent measurement errors e;;. An illustration of this is in Figure 1. For subject i
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with n; measurements Yj; at times 7};, j = 1, ..., n,;, one may use the empirical estimators
X; = ni Z Yi; and Z; = Blu where (Bou Blz) = argmin(ﬁmﬁli) Z?;l(yij — Boi — fﬁz‘Tz‘j)Q for
level and slope. Alternatively, if the in-snippet measurements are dense, one can use more
sophisticated techniques such as local polynomial regression for estimating level and slope.

The estimation of conditional distribution functions and conditional quantiles has
been widely studied in the literature (Hall et al. 1999; Li and Racine 2008; Roussas 1969;
Samanta 1989; Ferraty et al. 2006; Horrigue and Said 2011). There are several methods
by which one can estimate the conditional distributions F'(z|z) defined in (1). If 7" is
known, one can include it as an additional predictor, aiming at F'(z|z,T).

Writing the conditional distribution function as F(z|z) = E(1(Z < z) | X = z) and
assuming a linear predictor and a link function g, one option is to model the conditional

distribution parametrically as
F(zlz) = E(1(Z < 2) ‘ X =12)=g " (Bo+ i1 + Be2). (8)

Flexibility can be increased by making use of a generalized additive model F(z|x) =
E(l(Z < 2) | X =) = g 'ap + fi(z) + f2(z)), where fi and f, are assumed to be
smooth with [ f; = [ fo = 0. In these straightforward approaches, the shape of the c.d.f.
is determined by the link function g. Dependence on T and additional covariates can be
easily accommodated by including these covariates in the linear predictor, making this
approach appealing for some applications.

We adopt here a more flexible nonparametric alternative provided by kernel estimators

(Roussas 1969; Samanta 1989),
_ i Hiy (2 = Zi) K (2 — X))

F(z]z) = S Ry (7 — X) ; (9)

where H is a smooth distribution function, scaled with a bandwidth hgy, Hj, (u) =

11



H(u/hy) and K is a kernel function, scaled with a bandwidth hg, Kj,,. (v) = h' K (u/hx),
and generally chosen as a smooth and symmetric probability density function. Sev-
eral variants of this estimator have been studied, especially the case where the distri-
bution function H is chosen as the uniform, which leads to the special case F(z|z) =
Yo W Zi < 2)Kp(z — X5) />0 Kp(x — X;) (Hall et al. 1999; Li and Racine 2008; Fer-
raty et al. 2006; Horrigue and Said 2011).

Given estimators F'(z|z) (9) of F'(z|x) one can easily construct an estimate of &,
o(x) = inf{z : F(z]z) > al. (10)

For the estimation of z, (T 4 t) we first obtain &,(z) in (10) as a plug-in estimate for

£x(7) in (6), and then solve the resulting differential equation using numerical methods.

3.2 Numerical Integration of the Differential Equation
The final estimation step is using an estimate of &, to produce an estimate of z,,. To
estimate the solution of (6) we may use one of several iterative procedures such as Euler’s
method or the Runge-Kutta method, along with a uniformly consistent quantile estimate.
We first discuss a numerical approximation to the solution z, (7 + s) and then study its
estimation. To simplify notation, in all of the following we assume that T = 0, without
loss of generality, as z,, does not depend on 7. Then our target becomes z, . (s) for
s € T = (0, 7], where

— = = &alzaa(9)), (11)

with initial condition z,,(0) = = to guarantee that the a quantile trajectory starts at
the stipulated level z, and again with &, (z) as the a-quantile of the distribution of Y'(7T')
given Y(7T) = x.

An approximating solution to z,.(-) is given by {s;,¥(s;)}, i = 0,...,m, for some

12



m € N, where these quantities are found iteratively, using the rule

77ZJ(30) =T, Si41 =58+ 57 77/}(51‘-1-1) = %U(Sz) + 5@(1/)(&), 57 504)7 (12)

where ¢ is a small time increment. In the case of Euler’s method, we have ®(1(s;),d,&,) =

€a(1(s;)), while the Runge-Kutta approximation uses
1
(I)(l/}<81)7 57 ga) = a(kl + 2k2 + 2]{?3 -+ k?4),

with k1 = &a(¥(s:)), ko = &a(¥(8i) +0k1/2), ks = La((si) +0k2/2), ka = &a(W(s:) +0ks/2).

To study the convergence of the numerical solution {s;,(s;)}, consider

[me(S* - 5) - Za,x(S*)]/(S if 0 7& 0

£a(2a,0(5%)) if § =0,

A(3*7 Za,a:(s*)’ 67 50‘) =

for a pair (s*, zo.2(s*)). The local discretization error at (s*, z,..(s*)) is given by

LDE(S*> Za,:c(S*)a 5) = A(S*7 Za,x(S*)v 57 504) - (I)(Za,x(S*)’ 57 604)' (13)

For —oco < a; < ag < oo, the integration procedure defined by ® is of order ¢ for
an integer ¢ > 1 on [ay,as), if LDE(s, 244,0) = O(d9) for all s € [a1,a2], 2za. € R
and for all g € Cf(range z,|[a1, as]), where C{[cy, o] denotes the set of real functions
that are ¢ times continuously differentiable with bounded g¢-th derivative on [¢y, ¢o], for
—00 < ¢ < ¢ < 00. It is well known that Euler’s method achieves order ¢ = 1, while the
Runge-Kutta approximation achieves order ¢ = 4 (Gragg 1965).

Of course, the function &,(x) is unknown and must be estimated from the data. We

plug in an estimate &,(x) on the right hand side of equation (6) and then carry out
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the numerical integration as described above. This leads to the estimating differential
equation

— = ga(ga,x(s))’ (14)

for s € T = (0, 7], with initial condition %, ,(0) = z. Using the numerical integration
outlined above in (12) for this differential equation gives the numerical solution {s;, QZJ(SZ)}
We establish below that under regularity conditions, one obtains uniform consistency for
12 as an estimator of z,, with the corresponding rate depending on the convergence rate

of the integration procedure and on the uniform convergence rate of the estimator &,(z).

4. THEORETICAL RESULTS

Our main result is Theorem 2 on uniform consistency of an arbitrary estimate ¢ of Zax
given noiseless observations of Y(T') and Y'(T'), obtained through numerical integration.
Theorem 1 provides consistency for the estimator F(z|x) and the associated estimator &,.
In particular, we show that F (z|x) satisfies the assumptions of Theorem 2 and therefore

leads to a uniformly consistent estimator of z, .. We require the following conditions:

(B1) J = range(Y)|Ty = [c1, o) and Z = range(Y')|Ty = [di, ds], where Ty is the time
interval over which measurements are taken.

(B2) fx(x), the marginal density of X, and fx z(x, z), the joint density of (X, Z), satisfy

0<m < ingfx(x) < sup fx(z) < M; < oo,
Te

zeJ
0<me < inf fxz(z,2) < sup  fxz(z,2z) < My < 00
€T, 2€EZ T€J, 2€Z

for some constants my, mo, My, M.

(B3) With F09)(x, 2) = %, where F(z,z) is the two-dimensional c.d.f. of (X, Z),
F*Pi+p) (3 2) exists and is bounded for (i, ) = (1,0),(1,1),(2,0) and p > 2. Addition-

ally, fx(z)is p+ 1 times continuously differentiable.
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(B4) The conditional quantiles are unique, i.e., F'(z|z) is a strictly monotone function of
z in a neighborhood of &,(z).

(B5) H'(u) = K(u) and K is a symmetric, compactly supported kernel which is (p + 1)-
times continuously differentiable, is of bounded variation, and satisfies [uK (u)du = 0

and [w?K(u)du < co.

(B6) The bandwidth hy = hy = hy, satisfies (i) 2 — 0 asn — oo, (ii) h, = o((*B2)1/4),

n

and (iii) The series Y > exp{—rnh;} is convergent for all x > 0.

Assumptions (B1) - (B3) are standard assumptions regarding the smoothness and
boundedness of the distributions when applying smoothing (Ferraty et al. 2006; Hansen
2008; Samanta 1989). Assumption (B/) guarantees that the target quantiles are unique
by stipulating that the conditional c.d.f. must not be flat near the @ quantile. Finally,

assumptions (B5) and (B6) are typical assumptions for kernel estimators.

Theorem 1. Under conditions (B1) - (B6), we have that the estimator &,, defined at

(10) and obtained by inverting F(z|z) in (9) satisfies

y B logn
igg\fa(w) —&(@)] = 0, (hnﬂ/ e ) (15)

sup |, (z) = (@) = o,(1). (16)

zeJ

For the proof of Theorem 1, one shows first that the estimator F'(z|z) is well-behaved,
whence the estimated driving function &, of the autonomous differential equation in (14)
and its derivative are seen to be consistent. For the following main result, Theorem 2, we

need additional assumptions.

(C1) Assume that one has a continuously differentiable function &, satisfying

sup |6 (2) — &a(@)] = Op(Ba),  sup|€,(x) — &, ()] = 0p(1)

zeJ zeJ
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for a sequence (3, with 5, — 0, nf, — oo as n — oo.

(C2) The function ®(y, 4, &,) defining the numerical integration method (12) is continuous
in its first two arguments on G = {(, 9, &) : [2az(s) —y| < 7,0 < s < 7,6 < &} for some
given v > 0, &y > 0 and satisfies |®(y1,8, &) — P(ya,6,a)| < Ll€a(y1) — Ealys)] for some
L > 0 and for all y1,y2,0 € G.

(C3) The integration method is of order ¢, i.e., the local discretization error satisfies

[LDE(s,y,0)] = |A(s,y,6,) = D(y,6,&a)| = O(67)

for s € 7,0 <80,y = 2zax(s).

Assumption (C1) is satisfied under the conditions of Theorem 1 and ensures consis-
tency of the gradient function estimate which drives estimation; the condition on the
derivative is needed to control the remainder in the local estimation error. Assumptions
(C2) - (C3) deal with the smoothness and convergence of the numerical integration proce-

dure. We note that both the Euler and Runge-Kutta methods satisfy these requirements.

Theorem 2. For an estimator &, of £, which satisfies (C1) and an integration procedure
which satisfies (C2), (C3), we have that the numerical solution 1) of the initial value

problem (14) satisfies

Sup [1h(5) = Zaw(s)] = O(88) + Op(B), (17)
se
where 6, = |T|/n is the step size used in the integration procedure and |T| = 7T is the

length of the interval T .
Theorems 1 and 2 imply that under regularity conditions, one can estimate z,, using
the joint kernel described in (9) setting f = é and a well-behaved numerical integration

procedure to obtain a uniform convergence rate of O(64) + O, (h,, + 1;’%)
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5. FINITE SAMPLE PERFORMANCE

We demonstrate the utility of our conditional quantile methods using a variety of exam-
ples in a simulation setting. In our first example, we generate snippets from a process
and compare the resulting estimates to the true conditional quantile trajectories z, .
Additionally, we consider two real data sets with complete trajectories, for which we
can visually assess the quality of our estimates. We find that even after reducing the
datasets to snippets and ignoring the observation time, we are able to recover meaningful

trajectories that describe the conditional distribution of outcomes.

5.1.  Simulation Study
Here we simulate snippet data from an exponential process, which is generated as Y (t) =
exp{—b(t + 1)} where b is a U(.3,.5) random variable and the time domain is t € (0, 10).
The sampling procedure to obtain snippets from this random process is as follows. First, a
sample of n curves Y;(t) are generated. Next, for each sample trajectory Y;, the sampling
time 7; is drawn uniformly and independently over the interval (0.5,9.5). We take the
observation window for Y; to be T; + A, where A = 0.5. Over this observation window,
we uniformly draw N; measurements Y;(7T}1), ..., Y;(T;n,) where N; is a random integer
in {3,4,5}. In order to investigate the effect of noise, we consider several scenarios: (i)
X; = Yi(T;) and Z; = Y/(T;) are perfectly observed; (ii) X; and Z; are not perfectly
observed, as they are taken as intercepts and slopes of linear least squares fits to the
data contained in the snippets, as described in Section 3.1, while Y;(T};) are sampled
noiselessly; (iii) Independent errors ¢;; are added to Y;(7};), where £;; ~ N(0,c?).

Our simulation study examines the effect of sample size, choice of «, and noise level
0. We use estimates (9) with hx = .01 and hy = .001 and Gaussian kernels and vary
the sample size, choosing n = 300, 1000 and 5000. For the quantile levels o we consider

a € {.10,.25,.5,.75,.90} and for the noise levels ¢ = .001,.005, and .01. All estimated
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trajectories are conditioned on a starting level of x = 0.4. As a measure of quality
we consider the average integrated squared error (AISE) when repeating the simulations

N = 1000 times,
1000

5 [ Gauls) = 305 s

where 1)) (s) is the functional estimate of z, ,(s) in the k" replication. The time domain
is chosen to be (0, 8], as after time s = 8 many of the trajectories are flat.

Figure 2 demonstrates that our methods perform quite well for n = 300, especially for
the quantiles away from the tails, while the more extreme quantile trajectories are harder

to estimate, accounting for the larger spread toward the end of the time domain.

\ —— True Trajectory
g _ """" Estimate

Figure 2: Result of a single simulation with sample size n = 300, a € {.10, .25, .5,.75,.90},
and noise scenario (ii) where longitudinal measurements are taken noiselessly from Y;, and
observed levels and slopes are derived from local least squares fits.

The results for the exponential simulation study in Table 1 reveal that, as expected,
performance declines for the more extreme quantiles, as the accuracy in estimating (X;, Z;)
is compromised with higher noise levels. This problem can be mitigated with larger sample

sizes under scenarios where with increasing sample size, snippets shrink, i.e., A — 0, while
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the number of measurements within each snippet increases. For further investigation of
the effect of noise in the measurements of Y;(7};), plots of averaged trajectory estimates

are shown in the Supplement in Figure 13.

Noise Scenario ‘ Sample Size H a=.10 ‘ a=.25 ‘ a = .50 ‘ a=.75 ‘ a = .90

300 0.275 0.078 0.091 0.085 0.132

True X, Z 1000 0.295 0.045 0.047 0.068 0.127
5000 0.299 0.037 0.036 0.063 0.125

300 0.276 0.084 0.095 0.094 0.143

No noise 1000 0.294 0.048 0.063 0.081 0.141
2000 0.297 0.036 0.048 0.076 0.144

300 0.478 0.100 0.101 0.129 0.269

o =.001 1000 0.497 0.067 0.060 0.106 0.243
5000 0.505 0.057 0.045 0.101 0.250

300 2.220 0.654 0.127 1.042 8.471

o =.005 1000 2.189 0.635 0.052 0.827 3.935
5000 2.209 0.634 0.031 0.801 3.603

300 6.817 2.214 0.279 6.072 | 43.322

o=.01 1000 6.682 2.285 0.094 4.137 | 22.555
5000 6.681 2.295 0.033 3.840 18.895

Table 1: AISE scores (x1000) for various scenarios in the exponential simulation, each
with a starting value of = = 0.4.

5.2.  Simulating Snippets from the Berkeley Growth Data

We also investigate the performance of our methods using growth curves from the Berkeley
Growth Study. The Berkeley Growth dataset contains dense growth curves for 39 boys,
with measurements spanning ages one to eighteen. To enlarge our sample size, we generate
synthetic growth curves by first estimating the mean function as well as the first three
eigenfunctions and functional principal component scores for each subject from the original
data, where the first three components accounted for 95% of the variablity. We then
resample from a nonparametric estimate of the distribution of principal component scores
and use these scores to construct an augmented sample of 300 growth curves.

Given these synthetic growth curves, we create artificial snippets by randomly selecting
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two measurements, one year apart, for each subject, which are displayed in the left panel of
Figure 3; the right panel shows a scatterplot of (X}, Z;), along with the gradient functions
€. () estimated from the conditional distribution estimate F'(z|z). Given the level /slope
pairs (X;, Z;), our goal is to estimate the conditional quantile trajectories z, ,(s) for s €
(0,10], e € {.10,.25,.50,.75,.90}, where we condition on the starting level z = 120 (the
length unit is cm). We can easily assess how the estimated a quantile trajectories relate
to the sample of actual simulated trajectories by enforcing that each of the functional

observations pass through the point (0, 120); see Figure 4.

Height
100 120 140 160 180

Y(T)
[

o e

80

T
5 10 15 100 120 140 160 180
t Y(T)

Figure 3: Artificial snippets created from the Berkeley Growth data (left) and correspond-
ing estimates of &, (x) for a € {.10,.25,.50,.75,.90} (right).

Figure 4 demonstrates that the proposed method reflects nonlinearities in the data
quite well, especially as the data that are used in the implementation of the method are
very limited. We emphasize that the age at which the subjects entered the study was not
used in the estimation; the conditional quantile trajectories were solely estimated from
the information in levels and slopes (X;, Z;).

We also use the simulated Berkeley growth curves to assess the quality of the quantile
trajectories in terms of quantile levels o and arguments s under noise. For this, we start
with a sample (X;, Z;) for i = 1,...,300 where X and Z are perfectly observed. Here the
slope Z is found using local linear smoothing on the original full trajectories. We then

construct conditional quantile trajectories z,(s) for a € {.05,...,.95} and s € [0, 10],
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Figure 4: Simulated conditional trajectories (light grey) sharing the same starting level
with the estimated conditional quantile trajectories (blue), which are shown for quantile
levels « € {.10,.25,.50,.75,.90}.

which serve as target quantities. Next, we repeat the following steps N = 25 times: create
a perturbed sample by adding independent Gaussian noise to the slope measurements 7;,
estimate the same conditional quantile trajectories, and evaluate the absolute error for
each o and s. Finally, the 25 absolute errors are averaged. Not unexpectedly, we find that
the central quantiles are fairly robust as compared to the more extreme ones, and remain
valid for larger values of s; for details see Figure 14 in the Supplement. This perturbation
method also provides a practical criterion to assess the reliability of the estimated quantile
trajectories, by adding noise to the data and then re-estimating the quantile trajectories

under different noise levels.

5.3.  Simulating Snippets from the Six Cities Study of Air Pollution and Growth

The Six Cities Study of Air Pollution and Growth (Dockery et al. (1983)) features 252
subjects, for whom longitudinal measurements of log(FEV1), a measure of respiratory
function, were taken during childhood over the ages of 6 to 18. To extract snippets from

these data, we randomly select a pair of consecutive measurements for each subject. Our
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interest is in estimating quantile trajectories, conditional on a starting value of x = 0.5.
As for the Berkeley growth example, conditional trajectories are found by enforcing that

each longitudinal trajectory passes through the point (0,0.5).

log(FEV1)

0.5

0.0

Figure 5: FEV1 snippets (left) and conditional quantile trajectories (light grey) ex-
tracted from these snippets, where trajectories share the same starting level with
the estimated conditional quantile trajectories (blue), shown for quantile levels a €
{.10,.25, .50, .75, .90} (right).

These simulation studies demonstrate that the proposed methods work well for esti-
mating conditional distributions and quantile trajectories for a particular starting level.
Indeed, the application to the FEV1 data shows that the methodology described in this

paper is suitable for cases where sample sizes are moderate.

6. APPLICATION TO ALZHEIMER'S DATA

It is well established in the Alzheimer’s disease (AD) literature that the volume of the
hippocampus is decreasing more rapidly for those suffering from Alzheimer’s and dementia
than it is under normal aging. The hippocampus is a region in the brain associated with
memory, making hippocampal volume an important biomarker in Alzheimer’s diagnosis
(Mu and Gage 2011). This provides motivation for modeling the hippocampal volume
longitudinally. Here we take the response to be the log hippocampal volume, defined as

the log of the sum of the hippocampal lobe volumes (left and right).
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An unfortunate aspect of AD is that it can only be diagnosed post-mortem. As
such, there is no way of knowing which patients have AD; we can only gain insight via
cognitive tests. The subjects in this study have been classified in a clinical evaluation as
having normal cognitive function, mild cognitive impairment (MCI), or dementia based
on the SENAS (Spanish and English Neuropsychological Assessment Scales) cognitive test
(Mungas et al. 2004). Information regarding the different clinical classifications may be
found in Albert et al. (2011); McKhann et al. (2011); Sperling et al. (2011).

The right panel of Figure 1 displays some important features of the dataset of interest,
which contains measurements of longitudinal hippocampal volumes for 270 subjects whose
ages range from 47 to 96. The snippet characteristics are apparent; with an age range
spanning roughly 42 years, the average range of observations per subject averages only
4.2 years. While there seem to be differences between the normal and impaired groups, it
is difficult to describe these differences in terms of mean decline, as the data cloud shows
no clear patterns. It is not entirely obvious whether there is an overall decrease over time.
Applying our methods we find that in fact, there is a clear difference between the groups
and that the rate of hippocampal atrophy is more dramatic than Figure 1 implies.

It should be noted that there are several subjects with different cognitive classifications
over time. For simplification, we define the impaired subjects as those with at least one
MCI or demented classification and the normal group as having no MCI nor demented
ratings. The difference between the normal and impaired groups is quite pronounced
in Figure 6, where the groups are plotted separately. While the rates of decline are
almost uniformly more severe for the demented group, there seems to be little difference
in the mean trend over time with respect to age. Exploratory analysis shows that neither
level nor local slope, calculated using least squares fits on each subjects’” measurements,
change significantly over chronological age for the demented group. We conclude that

chronological age is not informative.
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Figure 6: LHCV longitudinal measurements for normal and demented cognitive groups
showing a notable difference between groups.

The unavailability of a meaningful absolute time measurement is not unique to AD
studies. For instance when modeling the growth patterns of tumors, the time of interest
would not be age, but rather the typically unknown time that has passed since the incep-
tion of the tumor. In more complete data, one could register the curves based on some
landmark features. With our limited data, however, this is not feasible, and age emerges
as an uninformative time scale. With little information available to register the data, we
therefore need methodology that bypasses age as a covariate. Pooling demented and MCI
subjects, we form a cognitively impaired group and proceed to obtain estimated quantile
trajectories z,, for varying levels of «, based on (9) and Euler’s method. The results
align with intuition and previous scientific findings. Figure 8 shows that the decline rate
is more severe for the demented /MCI groups than it is for the normal group.

Another interesting result is that hippocampus atrophy is accelerating for lower levels,
especially among the demented subjects (see Figure 7 below and Figure 15 in the Sup-
plement). This characteristic implies that the decline of affected subjects is accelerating,
which is a confirmation of what has already been documented in Alzheimer’s studies (see
Sabuncu et al. 2011, in which the authors caution practitioners from ignoring the nonlin-
ear trend in hippocampal atrophy). Figure 8 shows clear differences in distribution for

the two groups, illuminating their differences.
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Figure 7: Median slope field for normal (blue) and demented (red) subjects, along with a
solution trajectory, conditional on x = 1.4

From the discussion in Section 5.2 it is clear that the presence of errors in the Alzheimer
data snippets may result in less reliable quantile trajectory estimates the further « is
away from 0.5. While we find the comparisons between the quantile trajectories between
Alzheimer’s and normal subjects to be instructive, it bears emphasizing that the most
reliable trajectories are the median trajectories, so comparing these may lead to more
robust conclusions. It is also of interest to assess the condition of individual subjects.
The plots in Figure 8 represent estimates of population conditional quantiles, which can
be used to examine the severity of a given subject’s trajectory. These comparisons are
visualized for a small sample of six individuals (three from each cognitive group) in Figure
9, where we examine each subject’s slope relative to the estimated conditional quantile
trajectories z,,., as defined in (11), starting from the subject’s first observation. This
provides a useful assessment of an individual’s trajectory, based on pooling information
from the entire sample. For example, normal Subject A is on a very severe trajectory
relative to the normal cognitive group, while Subject F, though cognitively impaired, is

only on a mildly declining trajectory relative to the rest of the cognitively impaired group.
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Figure 8: Estimated quantile trajectories conditioned on = = 1.2 for normal and de-
mented/MCI groups using the kernel method with bandwidths hy = .1 and hy = .01
and Gaussian kernel (left). From top to bottom, « varies over .75, .50, and .25. The
right panels show the difference in trajectories between groups, along with 90% and 95%
pointwise bootstrap confidence bands for the difference.

We can take our analysis a step further in making somewhat speculative ad hoc predic-
tions about a subject’s future trajectories. The idea is to estimate conditional a quantile
trajectories 2, , for various «, starting from the subject’s last measurement, thus provid-
ing a spectrum of future scenarios for the subject that includes optimistic, median, and
pessimistic cases. For practical implementation it its useful to ensure that the trajectories
align with the subject’s snippet, and that the quantile trajectories are not too far away
from the last observation for the subject. Accordingly, we first determine the quantile on
which the subject is traveling, and then employ quantile trajectories z, , for many values

of a, and then choose o = a(s) to depend on the time difference between the prediction
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Figure 9: A subset of six individual snippets with corresponding z, , trajectories originat-
ing from the first observation point for each subject. Here, a € {.05,...,.95}. The black
dots are actual observations for each subject; each of these subjects has two observations.
The subjects in the top row are from the normal group while the subjects on the bottom
row are from the cognitively impaired group.

and the subject’s last observation, as follows: If a subject’s snippet corresponds to the

level o*, for estimating the o quantile trajectory we define

o + agf*s if s < 5*
afs) = : (18)

o if s > S*

where S* controls how long the prediction trajectory must adhere to the subject’s snip-

pet. In practice, we choose a subject specific S} = %(Tm — T;1) to reflect the length
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Figure 10: a-quantile prediction trajectories where S* is chosen to be half the length of
timespan of the subject’s snippet. The black curves that continue the original observed
data snippet represent estimated a* prediction trajectories, where a* is the estimated
quantile of slopes for each subject, conditioned on their last observation. The black dots
are the subjects’ actual measurements.

of the subject’s snippet. We estimate o* by comparing a subject’s slope Z; to the esti-
mated conditional distribution F'(z|y; ,,), where y;.,, is the subject’s last observation. An
illustration of a(s) can be found in Figure 16 in the Supplement.

A demonstration of the predicted quantile trajectories is in Figure 10. For each sub-
ject, we estimate the future trajectory if the subject were to remain at the same quantile
o throughout; this curve is shown in black. Additionally, we estimate a range of o quan-
tile trajectories under the constraint that early in the prediction, each a must be close
to a*. After time S}, the o quantile trajectories are unconstrained. To demonstrate this
prediction method, we use the same six individuals as in Figure 9. This prediction is flex-

ible, allows for uncertainty and pools information from the sample, while simultaneously

28



enforcing a degree of compliance with a subject’s snippet measurements.

7. DISCUSSION

The problem of longitudinal snippet data is encountered in accelerated longitudinal med-
ical or social science studies where obtaining measurements over a long period of time is
often not feasible, due to logistical problems, and more generally, for general functional
data when each subject is observed only over a very brief randomly selected period. For
snippet data one often faces missing information about absolute time, adding to the chal-
lenge of assessing the underlying dynamics. We distill the available sparse slope and level
information to identify a dynamical system that generates the data and infer informa-
tion about the random trajectories by introducing the dynamic conditional a quantile
trajectories. Our approach relies on the monotonicity of the underlying processes, which
makes it possible to adopt the level of the process (in contrast to time) as a reference.
We demonstrate that the conditional quantile trajectories can be consistently estimated
under regularity conditions. Their estimation, given an initial value, is straightforward.
While in our theoretical analysis we have not considered noise in the data snippets,
in various practical applications such noise will be present. This presents an errors-in-
variables problem that could be of interest for future theoretical work (see Wei and Carroll
2009; Ioannides and Matzner-Lober 2009, for the conditional quantile case). While the
focus of this paper is on the key idea of modeling longitudinal snippets with dynamic sys-
tems and the new notion of conditional quantile trajectories, we study the effects of noise
in the observed snippets in simulations in Section 5.2. We note that if the number of in-
snippet measurements increases while the length of the snippets decreases asymptotically,
one can use local polynomial smoothing, for example, to obtain consistent estimators of
level and slope. Under this scenario, measurement errors, while present, will decrease
asymptotically, so that consistency of our approach can still be obtained. Depending on

detailed assumptions, the convergence rate of ¢ in (17) may include additional terms.
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While our methods have been motivated by the challenges posed by an Alzheimer’s
dataset, we note that the proposed dynamic analysis is applicable to degradation studies
or accelerated longitudinal studies when underlying processes are monotonic. The key
observation is that when examining curves over time, in the monotonic case one can
model curves over level. The proposed methods may also prove useful in and can be
easily adapted to the case where (absolute) time is actually available. For example, in
the logistic models described in (8) as well as in the nonparametric settings of (9), age
or any other time variable can be easily included in the model as an additional covariate.
Additionally, our methodology may be used in non-longitudinal settings, where one may
have location and velocity information for objects in astronomy or for drivers and for
the latter wishes to estimate time to arrival to provide GPS guidance, and a-quantile

trajectories emerge as a useful tool to assess underlying dynamics from such snippet data.
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SUPPLEMENT: PROOFS

Proof of Proposition 1: At s = 0 the conditional quantile must be equal to z, i.e.,

Qoz(T+0) =z

This is because the conditional quantile is based on a starting value of Y(T') = x. Next,

since ¢, , is smooth,
dgo:(T +0)
dt

= &al),

i.e., the slope of the cross-sectional quantile trajectory at s = 0 must equal the a-quantile
of slopes at s = 0. From these two facts we have that the slope field that describes the
behavior of ¢,, at s = 0 corresponds to conditional a-quantiles of slopes, since we can
condition on any level z € J. Since the differential equation is autonomous, the starting
time is arbitrary so for all s € T, and for all possible starting levels x, we have that the
conditional cross-sectional quantile must travel on the longitudinal a-quantile trajectory
defined in (6).

Proof of Theorem 1: Equation (16) is a direct consequence of theorems in Ferraty

et al. (2006) and Horrigue and Said (2011).

For (16), by the Implicit Function Theorem, we have

¢ (z) = ~2FED) ((9F(z‘x)>1

ox 0z 2= (T)
and _
of] . aFJK<Z|ZE) 8FJK(z|x)
fa(x) N ox % 0z z=€a(x) ’
OF (z,z)

Using the convention that F9)(z,2) = where F(z,z) is the two-dimensional

Oxizl

c.d.f. of (X, Z), this leads to
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Fx (@) FUO(x, 2) — fx(2)F2O(x, 2) fx(x)

ele) = 75 (0)P TG e
_ PO, 2) 4 e) - POV, 2) ()
fx.z(x, 2) fx(x) 2=6a(a)

where fx(x) is the marginal p.d.f. of X and fx z(z,2) is the joint p.d.f. of (X, Z).

Applying the same method to the estimator, we have

é/ (m) = Z?:l H(ZihZZ)KaiTXZ) 22;1 K’(I;Xi) - 22;1 H(Z;Zi)K,W;Xi) 22;1 K(Ifhxi)
o Z?:l K(Z_th)K(z_th) Z?:l K(m_hX) e

_ PO ) fi(x) — FEO(, 2) fx (w)
fX,Z(xv Z)fx($)

N

z=Ea(T)

where
X

~ 1 - Z—Zi T —
FeO(z,2) = WZH( h I ( h )
=1

~ 1 n Z_Zi .CU—X,L
P02 = LS Ak
i=1

Frale,?) = 5 SO R(ETIKES D)

i=1
n

) = S K(C )

=1

o) = oy SRS
Lemma: Under the conditions of Theorem 1, we have
(i) supger [ fx () = fx ()] = 0p(1)
(ii) sup,es | fy (@) = i (2)] = 0p(1)
(iii) Sup,ezsuP.cz [ fxz(w,2) = fxz(x,2)| = 0,(1)
(iv) sup,e gz sup.ez [FO0 (2, 2) — FOO(x, 2)] = 0,(1)

(v) sup,ezsupez [FO0 (2, 2) — FEO(z, 2)] = 0,(1)
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Proof of Lemma: Items (i)-(iii) follow immediately from Hansen (2008), while (iv) follows
from Samanta (1989). Proving (v) involves only a slight modification of the proof to (iv).

Next, define the numerator in (19) as
p(z,2) = FOO(x,2) fie(2) = FEO(z, 2) fx (x)

and similarly for (20)

Blw,2) = FOO (2, 2) fie(x) = F®O(, 2) fx (),
as well as the respective denominators
Q(x7 Z) = fX,Z(x7 Z)fX<x>7 q~(37, Z) = fX,Z('Tu Z)fx<l’)

The lemma implies that

supsup [p(z, z) — p(x, 2)| = 0p(1),
zeJ z€Z

supsup g(z, 2) — d(z, 2)] = o,(1).
reJ z€Z

Writing

we obtain from the lemma

Sup sup Q(xa Z) . 1’ = sup sup q(l’,Z) - Q(l', Z)
zeJ 2€Z |4\, Z) zeJ z€2 Q(l‘a Z)
< SUPge7 SUP.cz |(j<x7 Z) B q(:z;, Z)| _ Op(l).
mime
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Now

sup sup p(l’,Z) _p($az = supsup ([E,Z) —p(x,z) :Op(]->‘
ze€J z€Z Q(‘Ta Z) Q<w7 Z) reJ 2€2 Q<w7 Z)
Since %b:@m — ¢! (z) and %|z=£a(aﬁ) = ¢/ (z), we have that

€a() = &, (2) + 0,(1),

uniformly in x.

Proof of Theorem 2: First we discuss the existence of unique solutions of the equations

dzczl_a;@ = Calzan(s)) zan(0) =z (21)
and
dzczl_ﬂ;(s) = 0(30n(s)),  Zaw(0) =ux. (22)

for s € T = [0,7}] for some 0 < T} < oco. By the assumptions of the theorem, we have
that the functions &, and éa are continuously differentiable over J. It is well known that
under these conditions unique solutions exist for both (21) and (22).

As we are interested in the quantity sup,.r|1(s) — za.(s)|, that is, the supremum
difference between the target and its estimate using &, and some integration procedure,

SUp [10(s) = Zaa(5)] < sup|P(s) — Zae(s)] + 5up [Zaa(5) = 2a(s)]
seT seT seT (23)

=51+ 5.

For bounding S; note that 1; is the numerical approximation of Z,,. Since the inte-
gration procedure is assumed to be of order g, it follows that S; = O(d4) (see the proof
of the theorem in Abramson and Miiller (1994)).

As for Sy, consider a sequence of m starting points s; = % fori=1,...,m and
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the following initial value problems with different starting levels:

eslS) ¢ (oon(s)) zaals)) =7 5255
ds ’ ’
dze.z(8) 2y
D an()) zaalsi) =7, 52
S

Denote the solutions of these equations as 2z, .(S; zi1) and z,.(S; zi2), respectively. These
solutions depend continously on the initial conditions z;; and z;; and so there exists a

constant C'; > 0 such that

1202 (Sit1; 2i1) — Zaw(Sit1; zi2)| < Ch|zin — 2| (25)

for © = 1,...,m. This controls the difference between two solutions with different initial

conditions. Next consider a third initial value problem

Torld) _ ¢ (aunls)). Fanls) =5 s2 s (26)

and denote the solution to this equation as Z, ,(s; Z;). Next we bound the quantity

SUp  |2a.2(8: %) — Zax(s; Zi)].
8;<s<sit1

By a Taylor expansion, and noting that at the starting time s;, the two functions z,, and

Za,r are the same at z;,

Za,m(s; 22) - 211,33(3; 22) = Zcx,m(si; gz) - Ea,m<5i; Ez)

+ (5 = 80) (204 (86 Zi) — 2, (545 2i))
(s — 54)*

-+ T(’Zg,x<gﬂ 21) - 2g,m<€7 Zl))?
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for some ¢ € (s;, s), which leads to

C > C -
SUP |20 (8; Zi) = Zaa(s: )| < ﬁlﬁa(%)—&(%)Hﬁ;(@ﬂupIﬁg(w)—fg(ﬂﬁ)b, (27)

§;<8<8it1 zeJ

for 0 < i < m and constants Cy, C5, Cy > 0.

Combining this with (25) to get an overall upper bound, note that for s > s;,

Za,a:(s) - ga,m(s; Za,r(si»a Zoz,z(s) - Za,:c<5; Za,m(si))‘ (28>
Then for 0 < i < m, we have

sup |Za,a:<3) - 2a,:z:<5)| S sup |Ea,:ﬂ<5; Za,:c(si)) - Za,$(3; 2a,z(si>>|
8i<8s<i+1 8;<8<Sit1

+ sup |Za,z(3§ me(si)) - Zoz,z(s? 50&@(31')” (29>

8;<8<Sit1

B _
< OP <_n + Clyza,x(si) - Za,x(si)la
m
where the O, terms are uniform in ¢. If we choose m = n,

Bn

|2a,x(3i+l) - Za,x(5i+l)| S Op (F) + Ol|za,x(3i) - ga,x(si)l'

Since the two functions 2, , and Z,, have the same initial condition of = at time sy = 0,

SUP |Za0(51) = Zaw(8i)] = Op(Bn),

1<i<n
and therefore

sup |2a,x(3) - za7:v(s)| = Op(ﬁﬂ)»

8i<8<8i+1
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which, since this result is uniform in ¢, implies

SUD [Za,0(5) = Zaa(8)| = Op(Bn).-
s€T

SUPPLEMENT: ADDITIONAL MATERIALS
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Figure 11: Empirical c.d.f. estimates based on splitting the demented subjects into four
level groups, and further splitting into two age groups. Splits are based on quantiles so
that the sample sizes in the comparisons are all equal. The overall empirical c.d.f. is shown
in black, while the empirical c.d.f.s segmented by age are colored. This demonstrates that
the assumption in (1) is reasonable. This is also confirmed with Kolmogorov-Smirnov
tests, which do not reject for any level segment.

42



Height
80 100 120 140 160 180 200

Height
80 100 120 140 160 180 200

Figure 12: A comparison between sparse longitudinal data (top) and snippet data (bot-
tom) showing a few longitudinal observations (left) and full sample design plots (right).
Data were simulated based on the first three functional principal components of Berkeley
Growth curves. Design plots are based on 300 sparse or snippet trajectories, respectively.
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Figure 13: Average of 1000 simulation replications, each with a sample size of 300, where
longitudinal measurements were taken with no noise (top left), noisy with ¢ = .001 (top
right), noisy with o = .005 (bottom left), and noisy with ¢ = .01 (bottom right).
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Figure 14: Mean absolute error for the noise exploration with the Berkeley growth data
after adding independent Gaussian error has been added to slope measurements. Here
the noise added has standard deviations o of 0.01 (upper left), 0.1 (upper right), 1 (lower
left), and 2 (lower right). We find that the largest errors occur near s = 7, which is likely
attributable to the fact that the median age at this time is 14.5, a time of rapid growth
for many boys, during which growth is more nonlinear than in other periods.
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Figure 15: A low quantile comparison between normal and impaired subjects starting
from x = 1.2. Here a = .05 and 90% and 95% pointwise bootstrap confidence bands are
included for the difference between normal and impaired subjects.
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Figure 16: A demonstration of a(s) for v € {.05,...,.95}, starting from o* = 0.3 and
with S* = 2.
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