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Abstract: In various functional regression settings one observes i.i.d. samples
of paired stochastic processes (X,Y) and aims at predicting the trajectory of
Y, given the trajectory X. For example, one may wish to predict the future
segment of a process from observing an initial segment of its trajectory. Com-
monly used functional regression models are based on representations that are
obtained separately for X and Y. In contrast to these established methods, of-
ten implemented with functional principal components, we base our approach on
a singular expansion of the paired processes X,Y with singular functions that
are derived from the cross-covariance surface between X and Y. The motivation
for this approach is that the resulting singular components may better reflect
the association between X and Y. The regression relationship is then based on
the assumption that each singular component of Y follows an additive regression
model with the singular components of X as predictors. To handle the inherent

dependency of these predictors, we develop singular additive models with smooth



backfitting. We discuss asymptotic properties of the estimates as well as their

practical behavior in simulations and data analysis.
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1. Introduction

In various regression settings one observes i.i.d. samples of paired stochastic
processes (X, Y'), and is interested in predicting the trajectory of Y, given
the trajectory X. An example of such a function to function regression
problem from nephrology, which will be explored further as an illustration
of our methods, features longitudinal profiles of various blood proteins,
where one wishes to predict the profile of one protein given the profile of
another.

We assume here that both predictors X and responses Y are square
integrable random functions on domains S, resp. T, with E(||X|]?) < oo,
E(|IY]|*) < oo, and our goal is to regress Y on X. Predictors X(-) are
defined on a compact domain S and response functions Y'(-) on a compact

domain 7. Key quantities are the mean functions

px(s) = EX(s), () = EY(8), (L1)



as well as the auto-covariance and cross-covariance functions

Gxx(s1,82) = cov(X(s1), X(s2)), (1.2)
Gyy(ti,t2) = cov(Y(t1),Y(t2)),

Gxy(s,t) = cov(X(s),Y(t)), s,81,8 €S, t,t1,t2€T.

We denote centered processes by X¢(s) = X(s) — px(s), Y(t) = Y(t) —
py(t), s €S, t € T.The commonly used linear functional regression model

for regressing Y on X is

E(Y(®)|X) = /ﬁstXc teT, (1.3)

with a smooth and square integrable regression parameter function § (Ram-
say and Silverman (2005); Morris (2015); Wang et al. (2016)). A popular
implementation of this model, as well as the simpler functional linear model
with scalar response E(Y|X) = puy + [¢ 3(s)X(s) ds, is through functional
principal component (FPC) expansions of both X and Y (Cardot et al.

(2003); Yao et al. (2005); Hall and Horowitz (2007)) that are given by

S) = ZnXk(pXk(s)v Yc(t) = Z nYmeYm(t)? (14)

where ©xg, ¢yr, K > 1, are the orthonormal eigenfunctions of the auto-
covariance operators of X and Y, respectively, and {xi = [ X(s)@xk(s)ds,

Sy = fT (t)dyr(t)dt are the functional principal components of X and



Y. Under certain regularity conditions, it can be shown that 3(s,t) in (?7)

can be represented as a limit,

o0

3.ty = S5 Bl o) (1.5)

k=1 m=1 Eln%]

An inherent drawback of functional principal component (FPC) based re-
gression approaches is that they do not take into account the relationship
between correlated processes X and Y. While for any regression model with
functional predictors some form of dimension reduction is needed, for which
the FPC approach provides a convenient approach, the dimension reduction
afforded by FPCs is likely suboptimal for regression. More specifically, the
eigenbasis of X that is used in (?7) for the dimension reduction step may
not provide an efficient representation of the regression parameter func-
tion 3, as it ignores the dependency between X and Y. Other functional
regression models such as functional additive models (FAM) (Miiller and
Yao (2008)) that utilize the FPCs of the predictor processes share the same
weakness.

This motivates us to investigate an additive flexible model that uses
singular components instead of principal components as arguments for the
additive functions. Functional singular components are based on a func-
tional singular value decomposition (Yang et al. (2011)) and thus are de-

rived from the cross-covariance G xy rather than the auto-covariance Gxx



as is the case for FPCs. Using singular components of predictor processes
X as arguments for additive modeling is expected to yield more informative
representations (Zhang and Wang (2016)). The price to be paid is that the
singular components for predictor processes must be considered to be de-
pendent. This is in contrast to FPCs, which are always uncorrelated and are
independent in the Gaussian case. If the predictor FPCs are independent,
this makes it possible to implement FAM in a series of simple smoothing
steps (Miller and Yao (2008)).

A consequence of the dependence of the singular components is that
fitting a model that is additive in the singular components cannot be im-
plemented in the same fashion as FAM and requires extra scrutiny to take
the dependence of the predictors into account. In recent work of 7, the
overall goal is essentially the same as in the present paper, namely to de-
velop an additive regression model for functional data that is additive in
the singular components of predictor processes. However, while the case
of dependent predictors is briefly mentioned, a crucial assumption for both
theory and implementation in ? is that the predictor components are in-
dependent. Under this assumption, the FAM approach is applicable and
no backfitting or other consideration of dependence of predictor scores is

needed. Contrary to the independence of the FPCs in the Gaussian case,



the independence assumption generally does not hold for singular compo-
nents as predictors, irrespective of the type of predictor process. Even
uncorrelatedness of the singular components cannot be assumed to hold
in general; it requires special conditions that we discuss in more detail in
Section A.1 of the Supplementary Materials and that are unlikely to be
satisfied in general. Therefore, if one aims to develop a model that is ad-
ditive in the singular components, one needs to confront the dependency
issue for the predictors, as we do here. Similar considerations apply when
one considers additive models for the situation where one has more than
one predictor process (Han et al. (2018)).

To take the dependence of the singular predictors properly into account,
we develop a smooth backfitting approach for fitting singular additive mod-

els (SAM). The idea of smooth backfitting was introduced by ? and studied

More recently, ? applied smooth backfitting to an additive model for lon-
gitudinal data. As we do not directly observe the covariates in our model,
which are the singular components, an additional technical challenge is to
assess the effect of estimating the singular components within the frame-
work of smooth backfitting, for which we adapt arguments of 7. Ordinary

backfitting and additive fitting by regression splines have several disad-



vantages. For example, splines require one to fit a very high-dimensional
model, which makes this approach less accessible to theoretical analysis,
while ordinary backfitting requires a strong set of conditions for conver-
gence (including near independence of predictors, the singular components
in our case) and the estimators are not well defined since they are given
as the limit of the ordinary backfitting iteration. The marginal integration
method suffers from the curse of dimensionality. Our smooth backfitting
estimators are defined under much weaker conditions without near inde-
pendence and, importantly, smooth backfitting is amenable to theoretical
analysis for the complex situation that we face since predictors are not
known but must be estimated.

We review Peter Hall’s contributions to functional regression and the
connection of his work to our approach in Section 2, followed by a brief
review of functional singular components and introduction to the singular
additive model (SAM) in Section 3. Estimation of the functional singular
components and additive functions in SAM with smooth backfitting is the
topic of Section 4, with consistency results in Section 5. In Section 6 we
report the results of a simulation study that shows the advantages of using
SAM in comparison to a FPCA based linear model implementation, and

in Section 7 we present a data illustration for a data set from nephrology,



followed by a brief discussion in Section 8. Theoretical derivations and

proofs are provided in an online Supplement.

2. Peter Hall and Functional Regression

We dedicate this article to the memory of Peter Hall. The work we report
here is closely related to his research in functional linear models and func-
tional principal component analysis (FPCA). Peter was a leader in nonpara-
metric statistics, and he contributed to many areas, notably the bootstrap,
the area where he made his name in the earlier stages of his career. In his
later years, he wrote a substantial body of influential papers in Functional
Data Analysis (FDA) and was a major force in the rapid development of this
area since 2006 (Miiller (2016)). His first paper in FDA appeared in 1998,
with a focus on the estimation of modes of the distribution of functional
data (Gasser et al. (1998)).

FDA is among the last research areas in which Peter made seminal con-
tributions before his premature death in early 2016. It was a good fit for
him, as it presents complex theoretical issues at the interface of smooth-
ing, multivariate analysis, functional analysis and stochastic processes in
Hilbert spaces (Hsing and Eubank (2015)), all fields in which Peter had

accumulated substantial experience and a large and sophisticated toolbox.



FDA presented (and still presents) challenging problems that enabled Peter
and his various collaborators to solve some tough problems. Peter was a
dedicated problem solver and his productivity was phenomenal. He usually
wrote a paper in record time, sometimes substituting the original problem
for one that was solvable, and often deriving results and writing the paper
in one step.

Peter’s major contributions to FDA were in the subareas of FPCA,
functional linear regression and single index models, as well as densities
and modes for functional data and functional classification. In the area of
functional linear models, Peter and his collaborators focused on the case of
a continuous scalar response variable coupled with a functional predictor,
distinguishing between the prediction problem where the goal is to estimate
linear predictors § = [ 3(s)X(s)ds that correspond to projections on re-
gression slope functions ( for the scalar response case and the regression
problem. In the latter, the goal is to estimate the function 8. In this work,
Peter and his collaborators adopted a traditional approach and used FPC
expansions of the predictors to expand the function /5 in the eigenbasis (Cai
and Hall (2006); Hall and Horowitz (2007); Delaigle et al. (2009)).

This led to precise convergence rates and shed light on the differences

between prediction and estimation tasks in well defined scenarios, where



10

prediction was revealed to be an easier task, associated with faster rates of
convergence, relative to the estimation of the regression parameter function
B, a consequence of the smoothing effect of the integral in the predictors 6.

Peter and co-authors contributed also to other aspects of functional
regression models with linear predictors, specifically single index models
(Chen et al. (2011)), predictor component selection (Hall and Yang (2011))
and domain selection for functional predictors (Hall and Hooker (2016)).
Peter’s paper with Yang (Hall and Yang (2017)) is especially relevant for
our approach. In addition to developing theory for the cross-validation
choice of the number of principal components to be included in a functional
regression, this paper contains a nice discussion of the pros and cons of the
FPCA-based implementation of functional linear models, as the FPCs are
only derived from predictor processes and are not influenced in any way by
the responses, which can be a downside.

The method we discuss here is based on singular components that are
derived from the covariance of X and Y and therefore reflect the dependence
between predictor and response processes. Also related to our approach is
the partial least squares method that has been developed for the case of
functional predictors in ?. Partial least squares is notoriously difficult to

analyze, due to its iterative nature, which makes the analysis of the func-
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tional case particularly complex. A point of connection with the singular
additive model that we study here is that partial least squares also aims
to maximize covariance between predictor and response, rather than max-
imizing correlation, as basic linear regression does. This approach has the
major benefit that it avoids the inverse problem associated with functional

linear regression (Yang et al. (2011)).

3. Singular Components and Singular Additive Model

To define the singular components for pairs of random functions (X,Y),
we discuss special linear operators in Hilbert spaces L*(S) and L*(T).
Specifically, singular decompositions are based on auto-covariance opera-
tors Cxx and Cyy and cross-covariance operators Cxy and Cyx as follows

(Gualtierotti (1979); Preda and Saporta (2005); Yang et al. (2011)):
Cxx : La(S) = Lo(S), f > g, g(s) = /S Cox(5,8) F(B)dE, Cox(s.1) = B(X<(s)X°(1)),
Cyy : Lo(T) = Lao(T), [ = g, g(s) = /Tny(s,t)f(t)dt, Cyy(s,t) = E(Y(s)Y*(1)),

Cxy : Lo(T) = La(S), [ = g, g(s) = /TCXY(S,t)f(t)dta Cxy (s, t) = E(X“(s)Y“(t)),

Cyx : La(S) = Lo(T), f— g, g(s) = / Cyx(s,t)f(t)dt, Cyx(s,t) = E(Y(s)X(t)).
S
Here Cy x is the adjoint operator of Cxy , while the compound operators

Axyx = CxyoCyx and Ay xy = CyxoCxy are self-adjoint Hilbert-Schmidt
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operators with Lo-kernels

AXY)((S,t):/Oxy(S,U)ny(U,t)dU:/ny(S,U)ny(t,u)du,(B.l)

T T
Ayxy(s,t):[Sny(S7u)ny(u,t)dU:/Scxy(u,s) ny(u,t)du(?)Q)

The operators Axyx and Ay xy have a discrete spectrum with shared
eigenvalues 02 > g2 > --- > 0 and orthonormal eigenfunctions ¢1, ¢, . ..
for Axyx and 1,19, ... for Ayxy, respectively, which satisfy ¢, =
JikCXy (Yr), k=1,2,.... The ¢; and ®); are the singular functions and
the o; are the singular values, for j > 1.

The singular functions usually will form genuine subspaces of L2, that
might be finite-dimensional, depending on the nature of the relation be-
tween X and Y, with the unexplained parts of the infinite-dimensional
processes X and Y contained in remainder processes vy and vy as in (?7?)
below; these remainder processes are unrelated to the regression relation
to the extent it is determined by Cxy. The decomposition of both pre-
dictor and response processes into a part that is spanned by M singular
functions and a second part that corresponds to the remainder process mo-
tivates to model regression relations between X and Y by using only the
first M singular components, where we make the assumption that M is fi-
nite but unknown. So while the functions X and Y are infinite-dimensional

as is commonly assumed in FDA, the regression relation is assumed to only
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involve finitely many singular components.
If the cross-covariance operators are of rank M, where M < oo, we

obtain the representations (Yang et al. (2011)),

Cxv(f)(t) = or(f,vr)or(t), teS,

Cyx(f) ) = o f, on) Vr(t), teT, (3.3)

|M§ ||M§

whence

sup  cov((u, X), (v,Y)) = oy,

lull=llvl=1
and the maximum is attained at ©w = ¢; and v = ;. Repeating the max-
imization on sequences of orthogonal complements generates the singular
values (01, 09, ...) and associated singular functions u, = ¢g; vp = U, k =

1,2, ..., leading to representations of cross-covariance surfaces
M
Cxy(s,t) = Y oxdr(s)vn(t)
k=1

Cyx(s,t) = Y onthu(s)du(t). (3.4)

The Hilbert-Schmidt theorem then implies the singular decompositions
X(S) = +ZCm¢m +VX()

Y(t) = +ka¢k + vy (1), (3.5)
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where vy € L? is in the kernel of the operator Axyx, a function with
Axyx(vx) = 0, and analogously vy € L? is in the kernel of Ay xy. The
random functions vy and vy are remainder functions with zero means and
zero cross-covariance that are unrelated to the cross-covariance operators
and cannot be represented by the singular functions ¢; and ;.

The singular components of X are ¢, = [ X°(s)pm(s)ds, 1 <m < M,
the coefficients of X with respect to its expansion in the orthonormal func-
tions {@m }1<menr and & = [ V(6 (t)dt, 1 < k < M, the components of
Y with respect to its expansion in the orthonormal functions {¢x}i1<k<ns.

From (77?), one finds

While the remainder processes vx and vy are uncorrelated, vy is uncor-
related with the &, and vy is uncorrelated with the (;, we make the stronger

assumption that vy is independent of Y and vy is independent of X. For

Y = py (1) + 000 E(&k| X)W (t), we obtain E(Y (£)|X) = E(Y (t)| X), while
vx plays the role of an additional error in the predictor that is unrelated
to the response. Like in some errors-in-variables regression approaches it
is then more meaningful to replace the original regression target E(Y|X)
by the target F(Y|X), a model where predictors are not contaminated by

unrelated errors. Here it is fortuitous that denoised predictors X can be
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readily obtained from the data by the singular representation. This pro-
vides the motivation to consider the functional regression model E(V|X)

as our target, which can be written as

M
EY|G,. .-\ Cu) ZNYﬂLZE(kal,---,CM)?/Jk- (3.7)
k=1

We further postulate an additive structure for each response process

singular component. With M included components, this leads to the model

M
Bl Cu) = fro+ D fri(G), k=1,..., M, (3.8)
j=1

where fjo is an unknown constant and fi; for 1 < j < M are unknown

univariate functions, so that

EY()|C,-- ) = py () + > (oo + Y Fii(G))wn(t). (3.9)

M
k=1 Jj=1
Let I;; denote given intervals on which one aims to estimate the com-

ponent functions fi;. The univariate functions f; at (12) are then subject

to the constraints

/ fi(u)p@) du=0, 1<jk< M. (3.10)

which are necessary for identifiability of the fi;, where I = Ij;; X -+ X Ips
and p is the joint density function of ((,...,(y). The constant fig

and the component functions fi; depend on the intervals Ij; and the
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associated constraints in such a way that they differ only by a con-
stant if the intervals and constraints change. Importantly, their sum
J kmLZ?il fx;(¢;) does not depend on the choice of these intervals and /. To
see this, express E(&|Cr, -+ ,Cu) as fig + Zj\il fr;(G5) with fir. satisfying
= fij(w)pj(u;) = 0 for all 1 < j < M, where the p; denote the marginal
densities of (;. Expressing E(&;x|C1, -+, () also as fro + Z]Ai1 fr;(¢;) with

fij now satisfying [} fi;(u;)p(u) du =0 for all 1 < j < M, it holds that

fglg) = fiy(u) — ( / p(u) du)l / F(up(w) du, 1< < M,

Jro = fro +§; (/Ip(u) du) B /If,;‘j(uj)p(u) du.

4. Estimation

We assume throughout that the sample of realizations (X;,Y;)i1,.., of
functional processes X and Y consists of random trajectories that are either
fully observed, or are sampled at a dense and regular grid. In the latter case,
the estimates described in the following require an additional interpolation

step.

4.1 Estimation of singular functions and singular components

For the estimation of the singular values and singular functions {(o;, ¢;, ;) :

1 < j < M} as well as singular components (; and &, the starting point
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are cross-sectional averages to estimate the cross-covariance surfaces,
Cyx(s,t) = n 1Y (Yi(s) — fiy (s))(Xu(t) — fix (1)),
Cxy(s,t) = n5Y (Xy(s) — fux(s)(Yi(t) — iy (1)),

where fix(t) = n7' Y0, X;(t) and iy (t) = n'Y " Yi(t). These are
the building blocks for the estimation of singular functions and singular
values. Then the shared eigenvalues and eigenfunctions of the integral
operators Ayyyx and Ay yy, based on estimated kernels Ay x(s,t) =
fTéxy(S,U)éyx(u,t) du and Ayxy(s,t) = fs C’YX(S,U)OXy(u,t) du, re-
spectively, are obtained by numerical eigen-decomposition of suitably dis-
cretized versions of these estimated kernels. The resulting shared eigenvalue
estimates 67 > 63 > - -, which correspond to the singular value estimates,
are then ordered in declining order.

Denoting the corresponding orthonormal eigenfunctions of Axyx by quSj,
and those of Ay xy by 1%-, the resulting singular components are (5, ¢2j, 1%)
The singular components (;; = [ X£(s)p;(s)ds and &; = [ X£(s)y;(s)ds

for X; and Y; are then obtained by numerically approximating the integrals

~

Gij = [(Xi(s) — fux(s))é;(s)ds and &; = [(Yi(s) — fiy(s));(s)dt.
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4.2 Estimation in the Singular Additive Model

We implement the smooth backfitting idea of 7 to fit model (??) for each

singular component & of Y, aiming to solve the integral equations

fri(ug) = E(&l ¢ = uy) — Z/sz(Uz)ZLZ;”) duj, 1<j<M, (4.1)

!

1] pj(u;
where p; and pj; are the marginal and joint density functions, respectively,
of ¢; and ({j,¢;). The main idea is to estimate the unknown functions in
(7?), E(&|¢ = u;), pju(uj,w) and p;(u;), plug the estimators into (?7) and
then solve the estimated integral equations.

The singular components (; will usually have unbounded supports. We
consider estimating the additive regression function F(&x|Cy, ..., ) at (77)
only on a compact subset of the support of ¢ = (¢; : 1 < j < M), however.
This is in the same spirit as the usual practice in nonparametric regression,
namely to estimate the nonparametric regression function on a compact set.
Since the predictors (;; and &, are not available but need to be estimated,
and since the domains where the f;; are estimated are different from the
supports of (;, it is necessary to modify the existing methodology and theory
of smooth backfitting for the current setting.

Let Ij; denote the intervals where one wants to estimate the compo-

nent functions fi;. The univariate functions fy; at (?7) are subject to the
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constraints
[fstupdu=0. 1<k (12)
I
which are necessary for identifiability of fi;, where I = I X -+ X Iy
and p denotes the joint density function of ((y,...,(y ). Here the constant

fro and the component functions f;; change if the intervals I;; in the con-
straints change. However, the corresponding component functions differ
from each other only by constants, and their sum fio + Zj\il fr;(¢;) does
not depend on the choice of I. To see this, let E(&|Ci, -+, Cu) be ex-
pressed as f}, + Zj\il fi;(G) with f; satisfying ffooo fij(w)pj(u;) = 0 for
all 1 < j < M, where the p; denote the marginal densities of ;. Now,
let E(&|Ci, -+ ,Car) be also expressed as fro + Zj\il fri(¢;) with fi; now

satisfying [, fi;(u;)p(u) du =0 for all 1 < j < M, which leads to

o) = fiu) = [ pwaa) ) [ fiupt)du, 1< 5 <

Jro = fko+z (/ du) /fk] u;)p

In the following, we omit the index k for the singular component of
Y in I, writing I; = I;. With pl(u;) = [[;p(u fLJ_p(u) du_;,

I_j =TIz i, (77) is equivalent to

[ sl e =0, 1< <0 (43)
I

J
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In the current setting one cannot adopt the usual constraints | fooo frj(w)
pj(u) du = 0, where p; is the marginal density of (;, since this requires the
estimation of fi; on the entire support of ;. One can employ constraints
other than (?7), for example, ij fri(w)w;(u) du = 0 for some known weight
functions w;. One technical advantage of the latter is that it leads to the
constraint |’ 1’ fri(w)w;(u) du = 0 for the estimator f; that uses the same
known weight w;, so that one need not carry out an additional asymptotic
analysis of the constraints for the estimators. Because of this advantage, the
latter approach was adopted in ??. In contrast, (?7?) leads to a constraint for
the estimator whereby the density pjl is replaced by an estimated density.
This requires asymptotic analysis of the effects of estimating p]I- on the
statistical properties of the estimator of fi;. Nevertheless, we choose the
constraint (??) since it is natural and yields simpler forms for fi and its
estimator. The methods and theory that we describe below can be modified
accordingly if one uses a different constraint.

To derive an analogue of (??), we define pj = [, p(u) du and p; (u;, w;) =

fLﬂp(u) du_j;/ph, where u_j; is the vector u with (u;,v;) deleted and
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[—jl = Hl’;ﬁj,l ]l’~ Then,

1
Jrj(uy) = m/l _E(fk!C = u)p(u) du_; — fro
Iy i (g, w) . (44)
- Z I fkl(W)Tu) du;, 1< J< M,
I#j AN

where fio = [; E(&|¢ = u)p(u) du/p{ under the constraints (??). For the
estimation of the integral equation (?7), if the singular components ¢;; and
& were available, we could use these for solving the backfitting equation,
in which case the asymptotics would be a straightforward extension of the
existing theory of smooth backfitting. Since the singular functions ¢; and v,
are also unknown, we replace them by corresponding estimators as defined
in Section 4.1. A major technical challenge is to find suitable bounds to
control the effect of estimating the singular components (;; and &, on the
estimation of the additive functions fy;.

Define a scaled kernel function

K, (u—v)

Khj(uav) =1(u € ]j)f Ky, (t —v)dt

(4.5)

whenever [, K (t —v)dt # 0, and Kj,(u,v) = 0 otherwise, where
K (u—v) = hj_lK(hj_l(u —v)) for a baseline kernel K, and a bandwidth

J

h;. Observing that p§ and pél are conditional densities of (; and (¢, (),
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respectively, given that the event ¢ € I occurs, suggests the estimates

pi(u) =n 1ZKh u, )I(C; € 1)/p},
(4.6)
ph(u,v) =n" Z K, (u, Cij) Ko (v, G)I(C; € 1) /b,

i=1
where pf =n~' 27 I(¢; € T) and T is the indicator. The definition of the

scaled kernel function entails
/ ﬁf(u) du =1, /ﬁjl-l(u,v) dv = ﬁf(u)
I I
We also estimate fro by fro = n ' 320, Exl(C; € I)/ph, and the first term

on the right hand side of (?77?) by

n

-1
Fri(u) [ ! ZKh u, Gi;)I(C; € ])] n! ZéikKhj<uaéij)]I(éi €l).
i=1
(4.7)
Our smooth backfitting estimator (fi; : 1 < j < M) of fr; : 1 < j < M)

is defined as the solution of the backfitting system of equations

; P (u, v) .
Frj(u) = fiej(w) = fro — Z sz ﬂ—dv, 1<j<M, (48)
o pj(u)
subject to the constraints
[ gt a0, 1< < (19)
I

An iteration scheme to obtain the solution of the equation (?7?) starts

with an initial tuple (f T.1< j < M), updating (fk[g :1 <7< M)in the
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rth cycle by

Alr] - pz u U)
fkj( u) = fkg fko—Z/ L " dv
(4.10)

Z r 1] pjl(“av) do
131 (w)
I=j+1 J
Once the estimators of all components are in hand, we predict the
response process Y by
M M
V()= (0 + 3D Al (&.11)
k=1 j=1
We demonstrate in Section 5 that with probability tending to one the back-

fitting equation (??) has a unique solution and the iterative algorithm (?7?)

converges to the solution exponentially fast, under weak conditions.

5. Theoretical Results

5.1 Consistency of the singular functions and singular compo-

nents

The convergence rates of the estimators of the singular functions (gj and @Ej

and of the singular components are key auxiliary results and are based on

EllAxyx — Axyxllop = O(n %), E|Ayxy — Avxyllop = O(n™'7?),

(5.1)
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where ||-||op denotes the operator norm. These results hold if F||X|?||Y]|* <
co. Under the additional assumptions that the eigenvalues o7, ... ,0]2- 1
are separated and that E|X|**||Y|]** < oo for some a > 2, properties

(??7) ultimately lead to the following results for the maximal errors of the

estimated singular components,

ot 1Cij = Gis| = Op(n= (@172, ioien i — &ijl = Op(n=*"D/2%), (5.2)

with further details provided in Section A.2 of the Supplementary Materials.

5.2 Consistency of the estimated singular additive model

Without loss of generality, assume that ; = [0,1] for all 1 < j < M and let

1
P

u) = dp(u)/du; with fi., fi;, respectively, denoting first and second
derivatives of fj;. Define
5 S " (©)
Buw) = [KE) Y @B ful @)™ S —ucer).
= p(¢)
2

Tkj(u) = mcj_l\/ar(fﬂgj =u,{ el /K(v)2 dv,

1
Bial) = B, (u) + 56 (w) [ WK (w)du
where constants ¢; are as in condition (A2) below, and the tuple (8;; : 1 <

j < M) is the solution of the system of equations

e, (0) = () = 3 o Pl )

dv, 1<j<M
o p]()

— — Y
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subject to the constraints

1 . 1 8
| amde=e [yl [ oK@ du
0 0
We need the following assumptions.

(A1) The baseline kernel function K is bounded, has compact support
[—1,1], is symmetric around zero, differentiable and its derivative is

Lipschitz continuous.
(A2) The bandwidths h; satisfy n'/h; — ¢; for some positive constants c;.
(A3) The joint density p of ¢ is bounded away from zero and infinity on 1.

(A4) The additive functions fy; are twice continuously differentiable and

the densities p; and pj; are (partially) continuously differentiable on

[0,1].

(A5) E|&|° < oo for ¢ > 5/2 and Var(&|(; = -, ¢ € I) are continuous on

[0,1].

(A6) E|X|** < oo and E||Y]|** < oo for some a > 5 and the eigenvalues

2 2
o%,...,0y4 are separated.

Assumptions (A1)—(A4) are widely assumed in kernel smoothing the-

ory. The moment condition (A5) is also typical for response variables in
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regression models, which is &, in our case, while (A6) is used to prove (77?)

are of smaller order than the univariate rate n=2/5.

Theorem 1. Assume (A1)-(A6). Then, (i) with probability tending to
one, there exists a unique solution (fk] 1< j< M) of (??7) subject to the

constraints (17); (ii) there ezist constants 0 < v < 1 and ¢ > 0 such that

with probability tending to one

/0 1 )~ fy)] Py du < e 7> (1 + fj / ) ) du> ;
j=1
(ili) for a given vector (u:0 < u; < 1,1 < j < M), the estimators fkj(uj)
for 1 <5 < M are asymptotically independent and
n?/s (fkj(“j) - fkj(%‘)) s N (Baj (), 73 (uy)) -

If the true singular components (;; and &, are used in the estimators
fkj, ]3][ and ﬁél, then Theorem 1 is a straightforward extension of the existing
theory of smooth backfitting, as one only needs to take care of the truncation
I(¢; € 1) in fi, pj and pf,. Thus, the main step in the proof of Theorem ??
is to show that the estimation of the singular components (;; and &;; has a
negligible effect on the convergence of f,@ and on the first-order asymptotic

properties of the estimators fkj. The proof of the theorem is in Section A.3

of the Supplementary Materials.
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6. Simulation Results

We generated paired random processes X;,Y; with given singular compo-

nents by

Xz(s) = ZC@]¢] +,ux ) and

Yi(t) = Z@J% +u,(t), se€eS=1[0,8], teT =][0,T,
with K = 4, S = 10, T = 5 and {¢;(s),¥;(t)},j = 1,2,s € S, t €

V/2/Ssin(27s/S), ¢a(s) =

T, chosen as Fourier basis with ¢(s) =

2/S cos(4ms/S), ¢3(s) = \/2/Ssin(67s/S), pa(s) = —+/2/S cos(8ms/S),
pz(s) = sin(s)+s, and ¢y (t) = —+/2/T cos(2nt/T), o(t) = /2/T sin(4nt/T),

/2/T sin(87t/T),

., 4, was generated by a

—+/2/T cos(6mt/T), y(t) = oy (t) = sin(t) + .

The random predictor vector ¢ = {(;}, j =1

normal distribution with zero mean and covariance matrix

16 6 2 =2
6 8 3 1
cov() =
2 3 4 15
-2 1 15 2
and the vector of response coefficients £ = {{;}, j = 1,...,4, using the
additive functions f;(z) = —1.98 — .11z + .1222, fi5(x) = —.58 + .13z +

0722, fi3(z) = —.30+ .11z + .0822,

f14(l') = 2.03+4+ .16x — 1.015(,’2, fgl(x) =
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—1.85+ .08z + 1202, fao(2) = 1.35 + 112 — 1722, fos(x) = —.26 — 120 +
0722, fos(z) = .04 + ATz — 0222, f31(x) = 12 + .04x — 0122, fo(x) =
1.10 + .14z — 1422, faz(x) = —.81 — .7lx + 2022, fau(z) = .05 + .287 —
0222 fu(z) = —.79 + .06x + 0522, fio(x) = .08 — 0122, fi3(x) = —.12 +
20z +.032%, fuu(z) = —.32+ .14z +.162% The random coefficient vectors &
for the i-th subject were then obtained as &;, = Z?Zl fri(Gij)s k=1,...,4.

The additive functions fj; were constructed to satisfy the constraints

The design points s;,¢; on [0, .S] and [0, T] where functions are sampled
were chosen as 100 equidistant points, respectively, and observations were

generated as

X(Sl) = X(Sl) + Vx(Sl), Y/(tl) = Y(tl> + Vy(lfl),

where vx,vy are remainder processes as in (?77), obtained as vx(s;) =
2e1P21(81) + 2e2pe2(s1) and vy () = zpp(l) + 22p2(t), With 2.1, 2,
1.1.d.N(0,0%), 249, 242 1.1.d.N(0,0.50%) and
po1(s1) = \/2/Ssin(1215,/S),  paz(si) = —\/2/S cos(107s;/S)
py(t) = —/2/T cos(127t;)T),  pya(ty) = /2/T sin(107t, /T).

As in (?77?) we consider the number of components M to be the same

for predictor and response processes and report simulation results for com-
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binations of sample sizes n = 100,500 and factors ¢ = 1,5 by which
vx, vy are multiplied, allowing for different magnitudes of the remainder
processes. We report the values of Integrated Squared Prediction Error,
ISPE = [(Y(t) — Y(t))dt, for the proposed singular additive modeling
(SAM) approach, and also for the functional linear model (FLM) as in
(??), (?7?) and the functional additive model (FAM). The latter is additive
in the functional principal component (FPC) scores of predictor processes
X, EMym|X) = 32721 gmj(nx;), using the principal component scores 1y,
of response processes Y and 7x; of predictor processes X as defined in (?7?)
(Miiller and Yao (2008)).

When implementing SAM, here and in our data analysis in Section 6,
we standardized each of the estimated singular components éij and subse-
quently chose the intervals [, in (??) as I; = [—2, 2] for the standardized
values, then after fitting transforming back to the original scale when re-
porting the results. The tuning parameters for SAM, except for M, which
was fixed at various levels, were chosen by 5-fold cross-validation.

From the results in Table 1 (for n = 100) and Table 2 (for n = 500)
we find that SAM performs consistently better than FLM or FAM in these
comparisons for all quantiles of ISPE that were considered. As expected,

the ISPEs increase for larger values of o and decrease for larger sample size.
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n = 100
25th 50th 75th
M o¢%* | SAM FAM FLM | SAM FAM FLM | SAM FAM FLM
3 1 3.60 389 522 | 703 856 11.09 | 15.15 22.70 29.22
4 1 3.56 426 541 | 693 9.26 11.49 | 14.56 24.00 29.70
5 1 3.53 470 5.60 | 6.88 10.10 11.94 | 14.47 25.46 30.39
3 5 7.84 9.09 10.36 | 14.59 17.64 20.01 | 26.70 35.02 40.21
4 5 7.68 9.15 10.33 | 14.19 17.76 19.87 | 25.86 35.41 40.05
2 5 756  9.36 10.26 | 14.07 18.34 19.85 | 25.48 36.68 40.03

Table 1: The 25th, 50th and 75th percentiles of scaled integrated squared
prediction error comparing the proposed singular additive modeling (SAM),
the functional additive model (FAM) (?) and the functional linear model
(FLM), as in (??), (?7). Results are based on 400 simulation runs for
sample size n = 100. Model training and prediction is done by 5-fold cross-
validation, where M is the number of singular components for both predic-
tor and response processes.

The second best performer is FAM, followed by FLM.

In a second simulation we generated singular components for predictor

processes as

Cil
Giz

~ N (0,%),

where

Y=
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n = 500

25th 50th 75th
SAM FAM FLM | SAM FAM FLM | SAM FAM FLM
3.23 332 467 | 613 735 9.76 | 13.27 19.60 26.64
3.15 341 472 | 595 753 9.84 | 12.72 19.85 26.70
311 351 476 | 591 7.69 995 | 1252 20.06 26.82
6.88 826 9.53 | 1299 16.05 18.51 | 23.93 31.38 37.56
6.76 7.79 9.22 | 12.76 15.28 17.79 | 23.30 30.12 36.41
6.66 7.58 896 | 12.59 15.01 17.40 | 22.97 29.84 35.88

Table 2: Same as Table 1, but for n = 500.
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and for response processes as &1 = [f11(G1) + f12(Go), E2 = for(G1) +
f22(Ciz), with additive functions fi;(z) = —1.84 — .37z + 2322, fia(z) =
—1.21 + 27z + 3022, for(x) = 1.58 + .1lx — 2022, foo(z) = —2.05 —
28z + .5122. The following singular functions and mean functions were
chosen for predictor processes X, ¢1(s) = +/2/Ssin(27s/S), da(s) =

2/S cos(6ms/S), p.(s) = sin(s) + s, and for processes response pro-
cesses Y, U1 (t) = —/2/T cos(2nt/T), a(t) = \/2/Tsin(67t/T), p,(t) =
sin(t) + t. All other settings were as above. In Figure ?? we demonstrate
the surface estimates of the additive regressions of & on (i, (s, and of &
on (i, (s, for n = 100 and n = 500 for this second simulation scenario. We
show estimates with close to median mean integrated squared errors (MISE)
among 400 simulations and find that these surface estimates improve as the
sample size gets larger. Table 3 indicates that in terms of ISPE, the results

are similar to those in the first simulation scenario.

7. Data Analysis

We demonstrate the comparative performance of FLM and SAM for data
that were obtained in a nephrological study for 32 hemodialysis patients
(Kaysen et al. (2000)). For each patient the expression levels of acute phase

blood proteins were collected longitudinally. Exploring the longitudinal
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Figure 1: First row left for first (a) and right for second (b) singular compo-
nent of response processes Y versus first and second singular component of
predictor processes X, true relationships. Second row depicts correspond-
ing estimates (c¢) and (d) with SAM for n = 100 and third row in (e) and
(f) for n = 500. These estimates were selected to have an MISE that is
near the median over 400 Monte Carlo runs.
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n = 100

25th 50th 75th

M | SAM FAM FLM | SAM FAM FLM | SAM FAM FLM

3 174 291 599 | 339 494 916 | 7.07 10.51 15.82

4 1.55 3.07 591 | 3.08 551 940 | 6.36 11.63 16.88

5 1.49 329 590 | 298 6.11 9.63 | 6.20 12.96 17.84

Table 3: Same as Table 1, but for ¢ = 1 only in the second simulation
scenario where data are generated with two rather than four singular com-
ponents.

relationship between the negative acute phase protein Albumin (alb) and
positive acute phase protein a-aminoglobulin (aag), we use aag as predictor
and alb as response. To avoid biases resulting from non-uniform observation
designs, we removed the observations falling within the first and last 5% of
the design points. Since the measurement times were more and more spread
out away from the origin with increasing spacings, we log-transformed them,
which led to more regular designs. The spaghetti plots of alb and aag are
shown in Figure ?7?.

The quartiles of integrated squared prediction error ISPE obtained
when applying SAM and FLM using five-fold cross-validation are reported

in Table 4. The selection of the number of included components for SAM



35

was based on the number of components selected by applying the BIC cri-
terion for FLM (Yao et al. (2005)). This is expected to favor the FLM.
Nevertheless, the results in Table 3 show that the overall predictive perfor-
mance of SAM is somewhat better than that of FLM. We conclude that one
can often achieve improvements by implementing functional linear models

via singular additive modeling.

Protein: alb Protein: aag
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Figure 2: Longitudinal recordings of Albumin (left panel) and of «-
aminoglobulin (right panel) with log time scale for n = 32 subjects. The
thick black lines indicate the corresponding group means obtained by local
linear kernel smoothing.

8. Discussion

We did not fully investigate the choice of the number of included compo-

nents M, for which we used the data-based BIC criterion that is geared



36

towards the functional linear model but may provide a suboptimal choice
for the singular additive model. A full investigation of this choice is left as
a topic for future research.

For the derivation and implementation of the proposed singular additive
model (SAM) with smooth backfitting, we have made several assumptions
that are plausible but nevertheless restrictive. A basic assumption is that
there are only finitely many singular components that are sufficient to ex-
plain the regression relation between X and Y and that the remainders vy
and vy of the infinite-dimensional processes X and Y can be ignored. This
assumption seems at least more plausible than a corresponding assumption
on the FPCs, since the latter are constructed without taking into account
the interaction between X and Y. This is the main motivation for functional
singular component analysis (Yang et al. (2011)) and singular component
based functional regression (Zhang and Wang (2016)). A second restrictive
assumption is that the functional data are fully observed without errors,
which is rarely if ever the case in practical applications. In situations where
trajectories are observed with noise or on an irregular grid, a pre-smoothing
step can be employed, but to get the requisite uniform bounds, additional
restrictive assumptions on the underlying smooth processes X and Y are

needed (see, e.g., Miiller et al. (2006)).
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n =232

SAM FLM

25th | 0.24  0.25

50th | 0.38  0.39

75th | 0.57  0.85

Table 4: The 25th, 50th and 75th percentiles of integrated squared pre-
diction error ISPE for the proposed singular additive model (SAM) and
the functional linear model (FLM), when predicting Albumin trajectories
from a-aminoglobulin trajectories for n = 32 subjects. Model training and
prediction was done by selecting separate tuning and test sets, using 5-fold
cross-validation.

A third assumption is that additive regression models are reasonable
and that the idea of dimension reduction through singular components car-
ries forward to additive models. Additional assumptions are needed for
the fitting of the additive model, as described in detail in the theory sec-
tion. Also, we are only able to estimate the additive functions on compact
intervals even though the predictor scores are typically not bounded.

On the other hand, we have strengthened the case that using singular
components can be advantageous not only for functional correlation but

also when using additive models, and presumably also other functional re-

gression models when both predictors and responses are functional. As we
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demonstrate, the proposed smooth backfitting approach works reasonably
well. By adopting smooth backfitting, we are able to deal with the de-
pendency of the predictor scores that is an inherent feature of functional

singular components.

Supplementary Materials

These consist of Section A.1., where the dependency of the functional
singular components is discussed, Section A.2, which contains a proof of the
important auxiliary result given in (??), and Section A.3 with the proof of

Theorem 1.
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