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Abstract—With the rising popularity of file-sharing services
such as Google Drive and Dropbox in the workflows of individuals
and corporations alike, the protection of client-outsourced data
from unauthorized access or tampering remains a major secu-
rity concern. Existing cryptographic solutions to this problem
typically require server-side support, involve non-trivial key
management on the part of users, and suffer from severe re-
encryption penalties upon access revocations. This combination
of performance overheads and management burdens makes this
class of solutions undesirable in situations where performant,
platform-agnostic, dynamic sharing of user content is required.

We present NEXUS, a stackable filesystem that leverages
trusted hardware to provide confidentiality and integrity for user
files stored on untrusted platforms. NEXUS is explicitly designed
to balance security, portability, and performance: it supports
dynamic sharing of protected volumes on any platform exposing
a file access API without requiring server-side support, enables
the use of fine-grained access control policies to allow for selective
sharing, and avoids the key revocation and file re-encryption
overheads associated with other cryptographic approaches to
access control. This combination of features is made possible
by the use of a client-side Intel SGX enclave that is used to
protect and share NEXUS volumes, ensuring that cryptographic
keys never leave enclave memory and obviating the need to re-
encrypt files upon revocation of access rights. We implemented
a NEXUS prototype that runs on top of the AFS filesystem and
show that it incurs ×2 overhead for a variety of common file
and database operations.

I. INTRODUCTION

Cloud-based data storage and sharing services are among the
most widely used platforms on the Internet [1, 2]. By relying
on centralized, cloud-based infrastructures, users gain access
to vast storage capacities, seamless multi-device access to files,
and point-and-click data sharing at very low cost. However,
this flexibility brings with it risks to the confidentiality and
integrity of users’ data. These services suffer from frequent data
breaches [3, 4, 5], and oftentimes their Terms of Service grant
providers full licensing rights, allowing them to store, modify,
and distribute user data as they choose [6, 7, 8]. As more users
leverage these types of services to manage sensitive information,
addressing these types of security issues is crucial [9].

To this end, our objective is to provide a practical solution
for securing user files on unmodified, distributed file-sharing
services that: (1) allows users to maintain complete control over
how their data can be accessed, modified, and disseminated by
others users and the storage platform itself; (2) does not alter
the user’s typical file access workflow; and (3) is performant

enough to satisfy the demands of the user’s typical file access
workloads. Our goal is to ensure the confidentiality and integrity
of user data in the face of untrusted administrators, data
breaches, and other unauthorized disclosures without requiring
server-side support.

Several schemes have been proposed to provide rich access
control semantics for untrusted storage platforms using cryp-
tography. Unfortunately, when implemented in a distributed
setting [10, 11, 12, 13, 14], purely cryptographic approaches
incur very high overheads on user revocation. This results
from the observation that when decrypting files on a client
machine, the encryption key is inevitably exposed to the client
application and can be cached by the user. Therefore, revoking
a user’s access to a file requires re-encrypting the file under a
new key. As shown by Garrison et al. [15], even under modest
policy updates, the resulting overhead can be significant as
the incurred cryptographic and network costs are proportional
to both the total size of the affected files and the degree to
which they are shared. Alternative approaches make use of
trusted hardware to provide strong security features like access
pattern obliviousness (via ORAM) and policy-based access
control [16, 17, 18]. However, these approaches require server-
side hardware support, which limits their availability for users
of personal cloud storage services.

To address this need, we present NEXUS, a privacy
preserving file system that provides cryptographically secure
data storage and sharing on top of existing network-based
storage services. NEXUS is novel in that it leverages the
Intel SGX [19] extensions to provide efficient access control
and policy management, in a manner that is not possible
using a software-based cryptographic approach. NEXUS allows
users to add strong access controls to existing unmodified and
untrusted distributed data storage services to protect the confi-
dentiality and integrity of their data from both unauthorized
users and the storage service itself, while enabling sharing
with authorized users. Data is protected through client-side
cryptographic operations implemented inside an SGX enclave.
NEXUS embeds user-specified access control policies into
files’ cryptographically protected metadata, which are enforced
by the enclave at access time. Therefore, unlike existing purely
cryptographic approaches to access control, revocations are
efficient and do not require the bulk re-encryption of file
contents. Instead, the policies embedded in the smaller attached
metadata are simply updated and re-uploaded to the server.



NEXUS is user-centric, transparent and requires no server-
side changes. It is implemented as a protection layer between
users/applications and an underlying file system, and leverages
hardware security features (SGX) in order to securely intercept
and transform file system operations. Its two primary compo-
nents are (1) a secure enclave that provides cryptographic and
policy protections, and (2) a file system interface layer that
maps the generic file system API exported by the enclave to
the actual underlying storage platform. This approach allows
NEXUS to present a standard hierarchical file system view
while supporting a broad range of underlying storage services
such as remote file systems and distributed object stores.

In this paper, we make the following contributions:
(1) We propose a novel client-side architecture that allows

mutually-trusting users to securely share files hosted on
untrusted cloud infrastructure. This architecture allows for
efficient volume sharing and access control policy changes.
By performing all access controls and cryptographic
operations inside the enclave, NEXUS allows for seamless
and secure key distribution, minimal user key management,
and efficient user revocation.

(2) NEXUS instantiates a distributed access control platform
using trusted hardware. An SGX enclave serves as a trusted
reference monitor that executes independently on each
client machine rather than centrally on the (untrusted)
server. This enables efficient cryptographic access control
without requiring server-side support for deployment.

(3) We propose a cryptographic protocol that uses SGX remote
attestation to enable secure file sharing between users.
Communication is completely in-band as it uses files on
the underlying shared filesystem to exchange data, and
does not require both users to be online simultaneously.

(4) We implemented a NEXUS prototype that runs on top of
OpenAFS [20]. The prototype runs as a userspace daemon,
and allows unmodified user applications to access files in
a protected folder. whilst cryptographically enforcing user-
specified Access Control Lists (ACLs). Our performance
evaluation shows that, compared to OpenAFS, NEXUS
incurs modest overheads on metadata-intensive operations.

The paper is organized as follows: Section II provides
an account of our protection model. Section III describes
the assumptions and threats of our system. In Section IV,
we describe the NEXUS system and Section V provides
a prototype implementation. Respectively, Sections VI and
VII describe the security and performance evaluations of
the NEXUS AFS prototype. We review related work in
Section VIII, and Section IX concludes the paper.

II. BACKGROUND AND PROTECTION MODEL

A. Intel Software Guard Extensions (SGX)

Intel SGX is a set of processor extensions that provide secure
execution environments, called enclaves, on modern x86 based
platforms. These extensions enable clients to both measure and
verify the code running within an enclave, while also providing
very strong isolation guarantees. When activated, enclaves

execute in user space and are protected from inspection or
modification by other processes, as well as the underlying
OS. At the system level, enclaves exist as a special CPU
hardware context that ensures data privacy by encrypting the
contents of enclave-managed memory as it leaves the CPU.
Secure execution is achieved by placing both the code and data
contents needed for a given computation inside the protected
memory region, thus ensuring both confidentiality as well as
integrity of the execution.

1) Isolated Execution: An enclave is set to be an isolated
region within a userspace application. When creating the
enclave, the CPU performs a secure hash measurement of its
contents as they are copied into a protected region of physical
memory called the Enclave Page Cache (EPC). The EPC is
inaccessible from untrusted code, including privileged software
and hardware devices. To run the enclave, the application
invokes a special SGX instruction (EENTER) to jump inside a
predefined entrypoint of the enclave code. While executing, the
enclave code performs arbitrary computations, and can read and
write to untrusted memory. This allows an enclave to efficiently
exchange data with the host application. To prevent potential
leakage of sensitive data, the enclave code is not allowed to
call untrusted functions. Enclave memory is only accessible
from the enclave code, and is defined as a linear range in the
host application’s address space. The OS is responsible for
translating enclave virtual addresses into their corresponding
EPC page. On enclave destruction, the CPU clears its EPC
pages and in so, prevents the recovery of sensitive information.

2) Sealed Storage: To persist sensitive data across execu-
tions, SGX allows enclaves to derive a sealing key that can be
used to encrypt and seal data before copying it to untrusted
memory. The sealing key is only accessible within enclave
memory, and is unique to the enclave and the particular CPU
within which the enclave is executing. In NEXUS, we leverage
SGX sealing facilities to protect long-term encryption keys.

3) Remote Attestation: Remote attestation allows a chal-
lenger to validate the identity of a remote enclave, and its
underlying platform. In SGX, this process relies on an Intel-
provisioned Quoting Enclave, which uses a unique asymmetric
key embedded in the CPU to generate quotes [21]. A quote is a
signature of the target enclave’s identity along with additional
data generated inside the enclave. This allows the challenger
to verify the quote using an Intel-provided public certificate.
To support file sharing, we use remote attestation for securely
transferring encryption keys across valid NEXUS enclaves.

B. SGX Design Space

With its strong security primitives, SGX presents a wide
range of options on how to deploy enclaves within a cloud
setting. Depending upon the security needs of the distributed ap-
plication, different considerations have to be taken into account.
Thus, we define the design space of enclave deployment along
the following dimensions: (1) Enclave provenance — whether
the enclave is owned by the client or the service provider and;
(2) Enclave location — whether the enclave is running on the
client or the server.
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Fig. 1: Different architectures for enabling SGX security in a client-server environment. Each architecture shows a different
combination of enclave location and enclave provenance.

Figure 1 shows all the combinations in this design space.
The service-enclave-on-server (e.g., PESOS [18]) and service-
enclave-on-client (e.g., EndBox [22]) collectively describe
Digital Rights Management (DRM) scenarios: access to data
is controlled by the service provider’s enclave. On the other
hand, the client-enclave-on-server (e.g., Troxy [23]) denotes a
scenario in which the client provisions enclaves on the server
to achieve secure remote computation. However, running the
client enclave on the server has drawbacks. First, the server
must be equipped with SGX hardware which, at the time of
this writing was only offered by one major cloud provider
(Microsoft Azure [24]). Second, a substantial amount of server-
side software may need to be retrofitted for SGX support.
Depending upon the system’s complexity, this may not be an
easy task as changes could range from modifying the client –
server communication protocol, to including untrusted software
components inside the enclave [16, 25, 26, 18, 27].

C. Our Approach

NEXUS combines the client-side encryption model used
by existing cryptographic filesystems with SGX security
guarantees. Shown in Figure 1d, NEXUS adopts the client-
enclave-on-client architecture to encrypt data on the local
machine before uploading the resulting ciphertext onto the
server. The idea is to have every client run NEXUS locally
and then leverage the aforementioned SGX features to form
a secure key distribution system. On the local machine, all
cryptographic data protection is performed within an enclave
(Isolated Execution), and keys are persisted to disk using SGX
sealing facilities. Then, before sharing keys with authorized
users, we use the remote attestation feature to ensure the
exchange occurs between valid NEXUS enclaves running on
genuine SGX processors. As a result, encryption keys are
never leaked to untrusted memory, and as such, kept under the
complete control of the NEXUS enclave.

In this paper, we explore a deployment model that targets
applications generating sensitive data exclusively at the client,
but rely on a remote server as a storage provider. In the case
of distributed filesystems, the user’s file contents are opaque to
server, which we assume can access, modify, and disseminate
any file that it stores [6, 7, 8]. To protect each file, we encrypt
its contents, and attach cryptographically-protected metadata
containing access control policy along with key material that
can only be accessed using a valid NEXUS enclave. The
benefits are two-fold: (1) our solution can be easily deployed
without any out-of-band setup, as key distribution is implicitly

provided by the file synchronization service, and (2) users
maintain control over their data and decide on who is authorized
to access its contents. As SGX-enabled machines come to reach
more end-users, we expect this client-side approach to user-
centric access control to become increasingly mainstream.

III. PROBLEM DESCRIPTION

We consider a typical cloud storage service, in which the
service’s users download and run a client-side program to
access the remote storage platform. Data is stored on remote
cloud based systems that are under the control of the service
provider. In addition to ensuring the persistence and availability
of data, the cloud service typically provides authentication and
access control, but in a way that requires the user to trust the
service implicitly. Users interact with their data via their local
file system API, thus allowing arbitrary applications on their
systems to access and operate on the remotely stored data.
Beyond normal file system access, many services also provide
auxiliary sharing capabilities with other users of the service.
Within this context, we aim to provide users with additional
protections against unauthorized disclosure or modification of
their files without hindering their ability to share these files
with other authorized users.

A. Scope, Assumptions, and Threat Model

Security objective. Unless granted explicit access by the
owner, a file’s contents must be inaccessible to unauthorized en-
tities and tamper-evident. In this case, unauthorized entities may
include other users of the storage service, entities monitoring
communication between the user and the storage service, and
the storage service provider itself. We are concerned solely with
the protection of user-created content: i.e., the confidentiality
and integrity of the contents of files, file names, and directory
names; and the integrity of the directory structure itself. The
protection of other file attributes (e.g, file size or access patterns)
is considered an orthogonal problem that can be addressed
using other techniques.

Threat model. We consider an attacker who has complete
control of the server (including the OS or hypervisor), and
can thus access or alter any files stored on the server. The
attacker may also tamper with, delete, reorder, or replay all
network packets exchanged between the server and the client.
Since our primary concern is protecting the confidentiality and
integrity of file content, we do not consider availability attacks
(e.g., denial-of-service). Since authorized users ultimately gain



access to decrypted file contents, we do not consider client-
side malware that may maliciously leak files that have been
decrypted by authorized users.

We assume that each user has access to an SGX-enabled CPU
running a commodity OS. The NEXUS enclave is assumed
to be correctly implemented, and free of any security-relevant
vulnerabilities. In addition, we assume the enclave attestation
and memory protection features of the SGX hardware function
properly: i.e., once the enclave’s identity is established, enclave-
provisioned secrets are not accessible from untrusted code.

B. Design Goals

In designing NEXUS, we chose to strike a balance between
security and ease of use with the following aims:

1) Practicality. After an initial setup, the user should be able
to access their data using their typical workflow. NEXUS
should be simple and impose minimal key management
on the user. Also, throughout its execution, the overheads
imposed by NEXUS should not significantly degrade the
system’s performance.

2) Portability. All changes required to run NEXUS must occur
on the client. NEXUS’s design should be flexible in a way
that allows users to either store data locally, or on a remote
storage platform. This implies no server-side coordination,
and the use of the underlying filesystem as the NEXUS
metadata store.

This approach closely follows the direction taken by existing
cryptographic filesystems (e.g., [28, 10, 12]). Our goal is
to offer similar protections with superior key management,
efficient revocation, and no server participation. It is important
to note that NEXUS is not a full-blown standalone filesystem,
but is designed as a security layer over an existing host
filesystem. To minimize our TCB, it is essential for the trusted
portion of NEXUS to be small, and its interface minimal. Our
solution must be transparent and adaptable, such that users
can access their protected files without having to update their
applications, and integrating with various filesystems should
be possible with moderate effort. Moreover, the distribution
of generated metadata should not require the deployment of
additional services, instead our solution should allow the user
to use their available storage for both file data and metadata.

Access Control. NEXUS should adopt a standard discre-
tionary approach to access control in which object owners can
specify custom access control policies to selectively dictate
file access permissions. NEXUS must support standard file
access rights such as read and write. Administrative control
over a file’s access permission should remain with the owner,
and enforcement must occur without the cooperation of the
(untrusted) storage service provider. To achieve this, NEXUS
must internalize access control information as part of the
filesystem state, and enforce access control policies inside
the NEXUS TCB. In addition, NEXUS must ensure that the
unencrypted data contents never leave the TCB unless the
access control policy allows it.

IV. NEXUS

In order to meet the objectives outlined in Section III, we
have designed NEXUS to allow users transparent security
protections on existing file storage services. The design of
NEXUS is based on the concept of a protected volume, which
is presented to the user as a normal file system directory.
In order to ensure that the structure and contents of each
volume are only visible to authorized users, NEXUS internally
manages the volume layout in addition to the user’s data. The
entirety of the volume state is stored as a collection of data and
metadata objects that are managed by NEXUS, and tracked
using universally unique identifiers (UUIDs). Each object is
stored as a normal data file on the underlying storage service
using its UUID as the filename. In effect, NEXUS implements
a virtual file system on top of the underlying target file system.
Figure 2 shows a high level NEXUS configuration.

Accessing data from a NEXUS volume consists of the user
issuing file system requests that are intercepted by NEXUS
and translated into a series of metadata and data operations
that are dispatched to the underlying storage service as file
operations from the NEXUS enclave. The data retrieved
from the underlying storage service is then routed to the
enclave where it is decrypted and either returned as part of
the original request (data) or used to drive further enclave
operations (metadata). Because NEXUS internally implements
a standard hierarchical file system in its metadata structures, this
allows NEXUS to be portable across a wide range of storage
service architectures. Both data and metadata are stored as
self-contained objects in NEXUS, thus allowing them to be
stored on a wide variety of potential storage services (including
object-based storage services).
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Fig. 2: NEXUS architecture.

The linchpin of data confidentiality and integrity in NEXUS
is an enclave-generated symmetric encryption key called the
volume rootkey. This rootkey allows a NEXUS enclave to
decrypt the volume state and all other encryption keys used
to individually encrypt volume objects. Since it is created by
the enclave, NEXUS is able to access the rootkey only when
running inside a restricted enclave environment. When the
NEXUS enclave is not running, the rootkey is sealed using
SGX (Section II-A2) and stored on the local filesystem in an



Filesystem Call Description

Directory Operations
nexus_fs_touch() Creates a new file/directory
nexus_fs_remove() Deletes file/directory
nexus_fs_lookup() Finds a file by name
nexus_fs_filldir() Lists directory contents
nexus_fs_symlink() Creates a symlink
nexus_fs_hardlink() Creates a hardlink
nexus_fs_rename() Moves a file

File Operations
nexus_fs_encrypt() Encrypts a file contents
nexus_fs_decrypt() Decrypts a file contents

TABLE I: NEXUS Filesystem API.

encrypted state that can only be decrypted from inside the
NEXUS enclave running on the same machine that sealed
it. This approach requires that all decryption operations be
performed within the NEXUS enclave (Section II-A1), which
is also able to apply the file’s access control policy before
exposing the data to the user (Section IV-C). In this way, even
should a user obtain a copy of the enclave and a valid rootkey
for a volume, they would still be unable to access the protected
data unless they also possessed a valid identity that had been
granted access permissions. With this approach, NEXUS is
able to provide sharing capabilities (Section IV-C) using SGX
remote attestation (Section II-A3), where the rootkey may be
accessible to multiple users while still maintaining per-file
access controls that limit access to a subset of those users.

A. Filesystem Interface

Users access data in NEXUS using standard file system
interfaces, which are translated into a set of generic API calls
implemented by the NEXUS enclave. This API is shown in
Table I, and consists of 9 operations — 7 directory operations
and 2 file operations. Each operation takes as a target a file
or directory stored inside the NEXUS volume. Each target is
represented as a metadata object stored by NEXUS, as well as
a potential data object in the case of file operations. As part
of each operation, NEXUS traverses the volume’s directory
hierarchy decrypting and performing access control checks at
each layer. This has the side effect of turning single operations
in multiple potential operations on the underlying storage
service. While this does introduce additional overheads, we
show that these are acceptable for most use cases. In addition,
NEXUS contains a number of performance optimizations to
limit the impact of these overheads (Section V).

Next, we describe how the enclave manages and protects
metadata in order to provide a virtual hierarchical filesystem.

1) Metadata Structures: Figure 3 gives a high level overview
of the structure of a NEXUS volume. NEXUS stores the file
system structure internally using a set of encrypted metadata
files alongside the encrypted data files using obfuscated names.
These obfuscated names consist of a globally unique 16-byte
ID (UUID), that is tracked by the metadata structures. The
UUIDs are randomly generated within the enclave at metadata
creation, and are universally unique across all machines. The
unencrypted view of the file system (seen on the right side of
Figure 3) is only accessible by decrypting the metadata inside

the NEXUS enclave. The metadata files not only store the
file system layout, but also contain the cryptographic keys and
access control policies needed to ensure that the file system
data and metadata are confidential and tamper-evident.

The metadata structures implement a standard hierarchical
file system approach. Each NEXUS file system is specified by
a supernode (corresponding to a superblock in a normal file
system). The file system hierarchy is then implemented using
a set of dirnodes (corresponding to dentries) and filenodes
(corresponding to inodes).
• Supernode: A supernode defines the context of a single

NEXUS volume. The supernode structure stores the UUID
of the file system’s root directory along with the identity
(public key) of the file system’s owner. It also contains a
list of other user identities that have been granted access
to the file system by the owner. These identities consist
of a user name along with an associated public key that
is used for authentication. The owner of a file system is
immutable, however, the owner has the ability to add and
remove authorized users at any time.

• Dirnode: Dirnodes represent directories in a NEXUS file
system. Each dirnode contains a list of directory contents
consisting of a mapping between file/directory names and
their UUIDs. It is important to note that each UUID in
a dirnode only references other metadata files, and never
directly references an actual data file. In NEXUS, because
access control is maintained at the directory level, the dirnode
also stores the directory’s access control policy.

• Filenode: Filenodes store the metadata that is necessary to
access the data files stored in NEXUS. Specifically, the
filenode stores the cryptographic keys needed to encryp-
t/decrypt the file contents. To support efficient random file
access, NEXUS divides each data file into a set of fixed-
sized chunks, each of which is encrypted with an independent
cryptographic context. These contexts are stored as an array
in the filenode structure, along with the UUID corresponding
to the actual data file.
2) Metadata Encryption: The general layout of a metadata

structure consists of three components, each of which has a
different degree of cryptographic protection.
(1) A preamble that is used to store non-sensitive information

(e.g., UUID, size). This section is integrity-protected.
(2) A cryptographic context containing the information used

to secure the metadata contents. It has a 128-bit encryption
key, an initialization vector and an authentication tag. This
section is integrity-protected, and the encryption key is
stored in keywrapped form to protect its confidentiality.

(3) A section where the metadata’s sensitive information is
stored. This section is encrypted and integrity-protected
using the unique metadata key stored in (2).

Encryption of the metadata file occurs on every update, and
is performed within the enclave in two stages. After generating
a fresh encryption key and IV inside the cryptographic context
from (2), the first stage of encryption is performed using the
AES-GCM cipher with metadata section (3) as input, and the
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Fig. 3: Authenticated user view. Directory traversal by NEXUS to present the plain contents of the user’s data files.

other two sections as additional authenticated material. This
operation outputs an authentication tag, which is copied into
(2). The second stage involves a keywrapping scheme that
uses the volume’s rootkey to encrypt the freshly generated key.
We use the GCM-SIV [29] AEAD construction, and refer the
reader for a deeper discussion on keywrappring.

Essentially, the metadata is protected using its cryptographic
context which, in turn, is protected using the rootkey. This
simplifies key management, as every encryption key is embed-
ded within its corresponding metadata. Therefore, to access a
volume, a user only needs to store the volume’s sealed rootkey,
which can only be unsealed within the NEXUS enclave.

3) Metadata Traversal: Because a volume is just a normal
directory, if directly accessed by the user, the files will be
encrypted and bear obfuscated names. Therefore, to expose
this protected state, — i.e., plain content and human-readable
filenames — NEXUS has to translate each local filesystem
request into the corresponding metadata. Figure 3 shows the
metadata traversal to access bar/cake.c. We abstracted all
metadata operations into a simple primary-key only interface
that provides access to metadata using a UUID. To begin, the
root dirnode is loaded using the root directory’s UUID stored
in the supernode. Then, for each path component, the current
dirnode’s directory list is used to lookup the UUID of the next
dirnode. As each metadata object is read into trusted memory,
the enclave uses the volume rootkey to decrypt and verify
its contents. Before performing the lookup, the enclave also
checks the parent_uuid field of the loaded dirnode matches
the UUID of its parent. This guards against file swapping
attacks [10], and helps provide integrity protection for the
filesystem structure. If the verification or lookup operation
fails, the metadata traversal terminates. Otherwise, the final
metadata object is returned.

B. Authentication and User Sharing

To access a NEXUS volume, a user must first be authenti-
cated to a NEXUS enclave in order to be granted access to
the file system’s rootkey. While the rootkey allows a user to
launch a NEXUS instance for a particular volume, it does not
automatically grant access to the data stored in that volume. For
that, the NEXUS enclave performs a second step ensuring that
the identity used to authenticate into the volume is authorized
by the access control policies stored in the file’s metadata.

Cryptographic Notation. We denote a (public, private) keypair
as {pk, sk}, and use PKGEN() to indicate public keypair

generation. SIGN(sk,m) represents a signature over m us-
ing sk, and VERIFY(pk, s) indicates the verification of a
signature s using pk. ENC/DEC(k,m) denotes symmetric key
encryption/decryption.

In NEXUS, identity is established using public-private key
pairs, where each authorized user’s public key is stored inside
the supernode metadata file. Each identity has an associated
user ID that is used in the access control policies maintained
by the dirnodes. To authenticate into a NEXUS volume the
user performs the following challenge-response protocol:
1) The user requests to authenticate by making a call into the

NEXUS enclave with their public key (pku) and the sealed
volume rootkey as arguments.

2) Inside the enclave, the rootkey is unsealed. Then, a random
128-bit nonce is generated, and returned to the calling user.

3) The user then uses their private key to create a signature over
the encrypted supernode structure of the volume and the
enclave nonce. This signature and the encrypted supernode
are then passed to the enclave.

m = SIGN(sku, nonce |ENC(rootkey, supernode))

4) Inside the enclave, the volume rootkey is used to decrypt and
verify the supernode. After finding the user’s entry inside
the supernode, the enclave then validates the signature with
the user’s public key.

5) On success, the user’s ID is cached inside the enclave.
This protocol establishes that (i) the user as the owner of the

public key stored (via signature verification), (ii) the user has
been granted access to the volume (via the presence of their
public key in the supernode), and (iii) the supernode itself has
not been modified (via metadata protection). Once access is
granted, the volume is mounted, and becomes available.

1) Granting access to other users: Sharing data with
NEXUS is complicated by the fact that SGX generates a
unique sealing key on each machine. This means that a sealed
rootkey cannot simply be passed between enclaves when a
new user is granted permission to access a volume, or when
an authorized user accesses a volume using a new machine.
At the same time, the rootkey cannot be encrypted with a key
available outside of the enclave context (e.g., a user’s public
key) without compromising the volume’s security. To overcome
this challenge, we incorporated a key exchange protocol that
allows a volume’s rootkey to be distributed to remote NEXUS
instances while ensuring that it will only be accessible from
within a NEXUS enclave. This protocol relies on an Elliptical
Curve Diffie Hellmann (ECDH) key exchange combined with



owen server alice
owen’s keypair: {pk_o, sk_o}

{pk_eo, sk_eo} <- PKGEN()
Q1 = QUOTE(pk_eo)

m1 = SIGN(sk_o, Q1) | pk_eo

alice’s keypair: {pk_a, sk_a}
{pk_ea, sk_ea} <- PKGEN()
Q1’ = QUOTE(pk_ea)
m1’ = SIGN(sk_a, Q1’) | pk_ea

m1

owen server

VERIFY_QUOTE(Q1’)
{pk_eph, sk_eph} <- PKGEN()

k <- ECDH_SECRET(sk_eph, pk_a)
h = ENC(k, rootkey)

m2 = SIGN(sk_a,  h)) | pk_eph m2

VERIFY(pk_o, m2)
k’ <- ECDH_SECRET(sk_ea, pk_eph)
rootkey <- DEC(k’, h)

m1’

server alice
m1’ m2

SETUP EXCHANGE EXTRACTION

Fig. 4: Key Exchange protocol diagram for Owen sharing his NEXUS volume rootkey with Alice.

enclave attestation features available in SGX. All messages are
communicated in-band using the underlying storage service to
exchange data between endpoints.

Consider the case where a NEXUS volume owner, Owen,
wishes to grant access to his volume to another user, Alice.
The end result of the protocol will be that Alice has a locally
sealed version of the rootkey for Owen’s NEXUS volume, and
Alice’s public key will be present in list of users stored inside
the volume’s supernode. We assume that Alice’s public key
is available to Owen via some external mechanism (e.g., as
in SSH). The endpoints of the protocol are actual NEXUS
enclaves, and the execution is as follows (Figure 4):
1) Setup: As part of the initialization process of a NEXUS

volume, an ECDH keypair (pke, ske) is generated inside the
NEXUS enclave. The private key is only ever accessible
inside the enclave, and is encrypted with the enclave sealing
key before being stored persistently. To export the public
key, the user generates an enclave quote supplying the public
key as authenticated data. This quote a) identifies the user’s
enclave and b) cryptographically binds the ECDH public to
the enclave. The quote is signed with the owner’s private
key, and then stored on the underlying storage service in a
location that is accessible to the other users in the system.

Q = QUOTE(pke)
m1 = SIGN(sku, Q) | pke

Where {pku, sku} is the volume owner’s public keypair
and Q is the enclave quote with the enclave ECDH public
key, pke, as authentication data.

2) Exchange: Whenever Owen wishes to grant Alice access to
his file system, he must transfer a copy of his volume rootkey
to Alice. To do this, Owen first validates the quote generated
from Alice’s enclave (by checking that the signature matches
Alice’s public key and verifying the quote with Intel) before
extracting the enclosed enclave public key, pkea. Then,
within the enclave, Owen generates an ephemeral ECDH
keypair (pkeph, skeph), and combines it with pkea to derive
a common secret that encrypts his volume rootkey. The
encrypted rootkey and the ephemeral ECDH public key
(the private portion is discarded) are signed using Owen’s
private key and stored on the underlying storage service in
a location that is accessible to Alice.

k ← ECDH_SECRET(skeph, pkea)
h = ENC(k, rootkey)

m2 = SIGN(sko, h) | pkeph

3) Extraction: Alice first validates Owen’s signature and then,
using the enclave private key, she derives the ECDH secret
and decrypts the rootkey.

k ← ECDH_SECRET(skea, pkeph)
rootkey = DEC(k, h)

Since the ECDH secret can only be derived within the
enclave, our protocol ensures the rootkey is only accessible
within valid NEXUS enclaves. The rootkey can then be
sealed and stored to Alice’s local disk. Later, once Alice
authenticates, she can decide to mount Owen’s volume using
the corresponding rootkey.

C. Access Control
Even after a user has been granted access to a volume’s

rootkey, access to files within the volume is further restricted
via access control policies enforced by the NEXUS enclave.
Access control is based on: 1) the user’s identity as specified
by the private key they authenticated with, 2) the permissions
stored in the respective metadata. With this, access control
enforcement is independent of the server, and because the
metadata is encrypted and sealed, the access policies cannot
be viewed nor undetectably tampered by any attacker.

We implemented a typical Access Control List (ACL) scheme
in which users have unique IDs mapped to (username, public
key) pairs, and permissions apply to all files (and subdirectories)
within a directory. We leveraged the user list in the supernode
to bind every user to a unique ID, and store the directory ACLs
comprising of (user ID, access right) in the dirnode. Hence, to
enforce access control within a given directory:
• The dirnode metadata is decrypted inside the enclave.
• If the current user is the owner of the volume, permission

is granted to the user and the enclave exits.
• Otherwise, the user’s ID is used to find the corresponding

ACL entry inside the dirnode’s ACL. Permission is granted
if the user’s ACL entry satisfies the required access rights.

NEXUS denies access by default and automatically grants
administrative rights to the volume owner, who maintains
complete control over their volume. Revoking a user is
performed either by removing them from the user list, or
removing their ACL entry from the dirnode. In both cases,
the process is relatively inexpensive as it only requires re-
encrypting the affected metadata.

V. IMPLEMENTATION

We implemented NEXUS as a Linux service that provides
secure access to protected volumes. We extended OpenAFS [20]



— a widely used opensource distributed filesystem — to
manage protected volumes on the network, without any
modifications on the server-side or changes in the user’s typical
file management workflow. Our interface does not make any
internal modifications to OpenAFS, it simply calls the NEXUS
filesystem API via a shimlayer. Excluding third party libraries,
our implementation comprises about 22618 SLOC. Integrating
with OpenAFS (90K SLOC) required about 3200 SLOC.

Our prototype acts as a stackable layer interposed between
user applications and the host filesystem. We split the prototype
into an untrusted portion and a trusted portion. The untrusted
portion (9005 SLOC) mainly (1) forwards requests into the
enclave via the filesystem API, and (2) facilitates enclave access
to data and metadata on the underlying storage service.

The NEXUS enclave is designed to be minimalistic; with
a codebase size amounting to 9900 SLOC and a 512 KB
binary, its verification is well within the reach of modern
model-checking tools. Additionally, this small size ensures that
NEXUS easily fits in enclave-reserved memory (SGX provides
about 96 MB [30]). We included a subset of the MbedTLS
Cryptographic Library [31], which added about 212KB. For
GCM-SIV key wrapping, we used the C-based implementation
provided by Gueron et al. [29, 32]. Our enclave interface
comprises 13 enclave calls (ecalls), and 10 outside calls (ocalls).
Ecalls invoke specific entrypoints within the enclave, and
are mostly concerned with marshalling I/O requests from the
filesystem API. Ocalls help with managing untrusted memory
and accessing data/metadata objects. To prevent inadvertent
data leakage, we sanity-check our inputs and employ secure
data serializers on sensitive outputs.

A. Data Consistency

Because NEXUS manages metadata internally, every filesys-
tem request triggers several I/O requests to the underlying
storage service. As a result, in the situation whereby a file is
simultaneously accessed by multiple users, a user’s NEXUS
enclave might fetch an older version of the metadata. To
prevent this possible mismatch, on every filesystem request that
updates metadata (e.g., create, delete, rename), NEXUS locks
metadata structures via the facilities provided by the storage
service. In our OpenAFS-based implementation, this locking
is accomplished by invoking flock() on the metadata file.
Once both data and metadata are flushed to storage, the lock is
released, allowing users to access the file. Note that the lock is
not required when accessing metadata files on read operations.

B. Optimizations

For every filesystem request to NEXUS, the enclave fetches
one or more metadata objects from the backing store to
complete the request. Because of the network cost, this makes
metadata-intensive operations cost prohibitive. To address this,
we introduced several caches to speedup data access. This in-
cludes a VFS-like directory cache structure (dentry tree) inside
the enclave, and caching the metadata locally (unencrypted in
enclave memory, or encrypted in untrusted memory). This way,

unless a file is modified remotely, subsequent access need not
download the file contents from the server.

To improve performance on larger directories, we split
dirnodes into independently-encrypted buckets. Each bucket
contains a user-configurable number of directory entries, and
are stored as separate metadata objects. The main bucket stores
the directory’s access control as well as the MAC of each bucket
to prevent rollback attacks at the bucket level. When writing
the dirnode to the underlying storage service, the enclave only
flushes the main bucket, and any dirty buckets.

VI. SECURITY ANALYSIS

Our goal is to provide a secure and scalable filesystem
in which users maintain complete control over their data.
Against the backdrop of threats outlined in Section III-A, we
now discuss how NEXUS meets its security objectives. By
combining encryption and access control within the enclave,
NEXUS achieves self-protection [33]: the ability to protect
sensitive data from all entities — trusted or untrusted — using
the data’s attached policy. Thus, security guarantees are:
• File and (protected) metadata contents, as well as file/direc-

tory names are confidential, and only accessible to authorized
users.

• All data and metadata are tamper-evident, and can only be
updated by individuals with the necessary write permissions.

Recall that we consider an attacker who has complete control of
the server, including full access to all packets exchanged with
the client, and a history of the user’s encrypted files. Further,
to encompass the abilities of a revoked user, we assume that
the attacker once had access to the owner’s volume i.e., the
attacker has a copy of the volume owner’s sealed rootkey, but
their public key is no longer stored in the volume’s supernode.

A. Confidentiality and Integrity

Confidentiality is enforced by encrypting all sensitive data
within the enclave, allowing decryption only after performing
adequate permission checks. The user’s files are encrypted in
fixed-sized chunks, and are re-encrypted using fresh keys on
every file content update. These per-file chunk keys are stored
in the encrypted portion of the filenode associated with the file.
To protect directory entries, we replace the original human-
readable filename (or directory name) with a random name,
and store the correspondence in the encrypted portion of the
dirnode. The metadata are re-encrypted on every update, and
their encryption keys are key-wrapped with the volume rootkey.
Therefore, to read the data, one must obtain access to the
volume rootkey. Moreover, because all encryption is performed
using AEAD cryptographic primitives, data integrity is provided
alongside confidentiality. Hence, any illegal modifications of
the ciphertext will be detected by the NEXUS enclave.

B. Authorization: Access to keys

Our security guarantees hinge on the secrecy of the rootkey,
which must only be accessible within the enclave and require
validation of the user’s identity before use. At volume creation,
the volume rootkey is generated within the enclave and is



persisted to the local disk using SGX sealed storage. This
ensures that it cannot be accessed outside of a valid NEXUS
enclave running on this particular processor. Before permitting
the use of a volume rootkey, the NEXUS enclave validates the
user’s identity. To accomplish this, the user must demonstrate
proof of knowledge of the private key associated with a public
key stored in the volume’s supernode via a challenge/response
protocol. Therefore, even with a sealed copy of the rootkey,
unless the attacker’s public key is stored within the volume’s
supernode, they will be denied by the enclave.

As shown in Section IV-B, we enable secure file sharing
by leveraging SGX Remote Attestation to exchange rootkeys
between valid NEXUS enclaves running on genuine SGX
processors. Our construction involves an asynchronous ECDH
key exchange in which the recipient’s NEXUS enclave is
remotely attested before securely transmitting the rootkey
encrypted with the ECDH secret. The ECDH keypairs are
generated within the enclave, and their public keys are used to
create SGX quotes. Since the ECDH private keys never leave
enclave memory, the ECDH secret can only be derived within
the enclave, thereby ensuring that the rootkey is not leaked
unto untrusted storage. However, because we keep long-term
ECDH keypairs fixed and exposed on the remote server, our
key exchange protocol fails to provide perfect forward secrecy.
In the event the attacker reconstructs the matching enclave
ECDH private key, he will be able to extract every rootkey
exchanged with the user. To mitigate this, we propose an
alternative synchronous solution where, both parties generate
ephemeral ECDH keys on every exchange and mutually attest
their enclaves. This approach introduces an additional delay
as it involves multiple rounds to attest the enclaves. Please
note that in practice, the security and convenience tradeoffs of
either approach will be left to the volume owner.

C. Attacking File System Structure

A malicious server might wish to modify the structure of
the filesystem by, e.g., moving files or directories to other
locations within the volume. This is prevented by the use of
parent UUID pointers within our metadata structures, and the
authenticated encryption used to protect these structures: the
content of metadata cannot be altered without detection, and
swapping of equivalently named objects will cause the parent
UUID pointer validation to fail.

A more subtle attack is the rollback attack, in which the
server exposes a previous version of a user’s files. In this
case, the NEXUS enclave will cryptographically validate the
metadata, but cannot tell if it is the most recent version. To
address this freshness issue, we have extended our metadata
structures with a version number. On every metadata update,
the version number is incremented and stored locally before
uploading the metadata file. The metadata is considered stale if
the downloaded version is lower than the local value. However,
this approach is limited as it only offers per-file protection, and
not protect the entire file hierarchy. As a result, a malicious
server server could mount a forking attack [34], whereby file
updates are hidden from users resulting in each user perceiving

a different state of the volume. As a mitigating strategy, one
could maintain a hash tree of the metadata content as part
of the filesystem state [35, 10]. However, this naive design
approach requires root-to-leaf locking along write paths to
ensure metadata consistency. This not only impacts overall
latency, but also raises synchronization concerns in ensuring
the availability of the root hash. We leave further exploration
of this protection and performance tradeoff to future work.

VII. EVALUATION

To show how NEXUS achieves the design goals outlined in
Section III-B, we organized our performance evaluation around
the following criteria:
1) Utility. Does our prototype support a wide range of user

applications and workloads?
2) Performance. Are the overheads imposed by our prototype

reasonable? How does it perform on workloads representa-
tive of normal users?

3) Efficient Revocation. How cheap are user revocations when
compared to pure cryptographic techniques?

Experimental Setup. Our experimental hardware consisted
of Intel i7 3.4 GHz CPUs with 8 GB RAM and 128 MB
SGX Enclave memory. For SGX support, we installed v1.7
of the Linux SGX SDK [36]. On the server-side, we used
the OpenAFS server distribution from the Ubuntu software
channels. In our experiments, we compare our approach against
an unmodified version of OpenAFS. For both setups, the file
chunk size was 1MB. As for NEXUS, we set dirnode bucket
size to 128 entries (See V-B), and used a normal AFS directory
as the metadata backing store. Unless otherwise noted, all of
our experiments are averaged over 10 runs.

A. Microbenchmarks

We ran several microbenchmarks to isolate the overhead
incurred by NEXUS. Recall from Section IV-A that NEXUS
requires repeated interaction with the underlying storage service
to find the correct metadata. This generates additional network
traffic on the server, and impacts the overall latency. Thus, we
break down the overhead as follows:
1) Enclave Runtime — The total time spent within the enclave,

including enclave transitions (ecalls and ocalls), access
control enforcement and metadata encryption.

2) Metadata I/O Latency — The time spent performing I/O
on the metadata objects, including reading, locking, and
writing. This is influenced by two main factors: the directory
depth of the path (each path component requires a metadata
access) and the size of the metadata being accessed.

We start by measuring the overhead on basic file I/O
operations using a python utility that reads and writes a file.
Before each run, we flush the AFS file cache to ensure initial
data access requires a network trip to the server. AFS follows
open-to-close semantics, which implies that all file writes
are local until the file is closed (at which point NEXUS
encrypts the file chunks). Table 5a shows that overheads
increase proportionally with the file size. The enclave cost



Prototype File Size (MB)

1 2 16 64

OpenAFS 0.61 1.52 5.55 22.24
NEXUS 0.51 1.46 6.81 28.56

Metadata I/O 0.09 0.12 0.14 0.80
Enclave 0.02 0.09 0.58 2.07

(a) Latency (seconds) of File I/O operations.

Prototype Number of files

1024 2048 4096 8192

OpenAFS 1.27 2.63 5.26 11.93
NEXUS 19.38 38.62 81.98 172.29

Metadata I/O 17.44 34.63 73.66 154.34
Enclave 0.38 0.79 1.67 3.55

(b) Latency (seconds) of directory operations. redis julia nodejs
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(c) Latency for cloning Git repositories.

Fig. 5: Latency measurements.

Operation OpenAFS NEXUS Overhead

LevelDB
Fillseq 10.5 MB/s 8.1 MB/s 1.29
fillsync 2.2 ms/op 4.5 ms/op 2.04
fillrandom 5.9 MB/s 3.7 MB/s 1.59
overwrite 4.0 MB/s 2.6 MB/s 1.53
readseq 664.6 MB/s 718.1 MB/s 0.94
readreverse 425.0 MB/s 425.7 MB/s 0.99
readrandom 2.27 µs/op 3.7 µs/op 1.62
fill100K 11.0 MB/s 7.2 MB/s 1.52

SQLITE
fillseq 6.5 MB/s 6.4 MB/s 1.01
fillseqsync 14.4 ms/op 31.4 ms/op 2.18
fillseqbatch 70.2 MB/s 69.7 MB/s 1.00
fillrandom 4.2 MB/s 4.2 MB/s 1.00
fillrandsync 13.4 ms/op 31.2 ms/op 2.34
fillrandbatch 7.6 MB/s 7.7 MB/s 0.98
overwrite 3.4 MB/s 3.4 MB/s 1.00

TABLE II: Database benchmark results.

per MB is almost constant (between ×0.01 — ×0.02), and
enclave execution is a small contribution to the overall runtime.
Metadata I/O overheads increase as the size of the filenode
grows to accommodate more file chunks. However, this is still
small compared to the file size (about 80B of encryption data
for every 1MB file chunk).

Next, we analyzed the performance of directory operations
using another python program that creates and deletes files
within a flat directory. Table 5b shows that enclave execution
scales proportionally while remaining a small component of
the overall system runtime. However, the metadata I/O latency
is a major constituent of the overall runtime because every
file created increases the size of the directory dirnode, which
becomes much larger than the corresponding directory entry.
For large directories, this could result in significant performance
overheads as the size discrepancy between the directory entry
and the dirnode becomes more pronounced.

B. Database Benchmarks

We ran the database benchmarks of LevelDB [37] and
Sqlite [38], two embeddable database engines commonly used
to provide a data layer. Using 4 MB of cache memory, each
benchmark generates several database files to emulate a key-
value store of 16-byte keys and 100-byte values. The latency
of various database operations was measured and displayed in
Table II. NEXUS’ performance closely matches OpenAFS in
asynchronous operations. Because the benchmark tool does not

Workload #files Total Size

LFSD Large Files and Small Directory 32 3.2 GB
MFMD Medium Files and Medium Directory 256 2.5 GB
SFLD Small Files and Large Directory 1024 10 MB

TABLE III: Workloads for benchmarking Linux Applications.

wait for the data to propagate to disk, the overhead incurred by
NEXUS is amortized and does not noticeably affect the overall
latency. On the other hand, NEXUS incurs a ×2 performance
overhead on synchronous operations.

C. Cloning Git Repositories

We evaluated the performance of NEXUS in accessing
volumes with arbitrary directory hierarchies by cloning 3
repositories: Redis (618 files), Julia (1096 files) and NodeJS
(19912 files). Figure 5c shows a ×2.39 and ×2.87 overhead on
cloning Redis and Julia respectively, while incurring a ×3.64
overhead on NodeJS. This is because NodeJS has significantly
more files/directories, a deeper directory hierarchy (up to 13
levels), larger directories (top 3 directories: 1458, 762, 783),
and bigger files. This increases the server-side load as each
filesystem access on NodeJS requires more metadata operations.

D. Linux Applications

In this test, we generated 3 characteristic workloads (Ta-
ble III) to evaluate the performance of common Linux utilities:
• tar -x: Extract an archive.
• du: Traverse and list the file sizes.
• grep: Recursively search the term “javascript”.
• tar -c: Create an archive.
• cp: Duplicate a file.
• mv: Rename a file.
With the exception of du and mv, all the applications perform
both file and directory operations. To prevent cache effects, we
flush the system cache before running each application.

Figure 6 shows the plot of the test over 25 runs. The
tar extraction reaffirms the result of the directory operations
microbenchmark: the relative overhead of NEXUS with respect
to OpenAFS is proportional to the number of files in the
directory. This is further confirmed by the single file write
operations in the tar archive creation and cp tests; they
impose a constant overhead across all workloads. The same
applies to the single directory operation performed by mv. In
the du test, NEXUS is indistinguishable from OpenAFS. Since
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Fig. 6: Latency (over 25 runs) of common Linux applications under 3 generated worklords.

the directory structure is flat, once the corresponding dirnode
gets cached in memory, lookup operations can be performed
locally. The same applies to grep, which has an overhead
between 1.5×—1.7× on all workloads.

E. Revocation Estimates

In a typical cryptographic fileystem, revoking user access
involves the following steps: re-encrypting the affected file,
uploading the file on the server, and then distributing the key
to authorized users. Because NEXUS ensures encryption keys
never escape the enclave boundary, revocation becomes as
simple as re-encrypting the metadata with a new key. For
instance, consider the scenario in which a user is revoked from
the directory containing the SFLD workload mentioned above.
For 10MB of file data, NEXUS will have to re-encrypt and
update about 95KB of metadata (recall access control is stored
in the dirnode). Whereas, in the LFSD workload, the metadata
payload drops to 3.2KB for 3.2GB of file data.

F. Takeaway Discussion

The results of our evaluation demonstrate the ability of
NEXUS to meet the demands of standard user workloads.
While our approach does necessarily introduce additional over-
heads, these are predominately encountered during metadata
modifying operations that generally do not fall on the critical
path for most personal data workloads. In general, interactive
programs exhibit less than ×2 performance degradation, which
we believe is acceptable in practice for the majority of users.

Moreover, NEXUS is designed to operate within a multi-
user environment that offers standard file sharing capabilities.
Although our evaluation occurs within a single machine, we
document the costs of providing sharing as follows: (1) The
asynchronous rootkey exchange (Section IV-B) requires a
single file write. (2) Adding/removing users (Section IV-C)
is not unlike revocation, which has been shown to require
a singe metadata update. (3) Although policy enforcement
(Section IV-C) scales with the number of ACL entries, its cost
is dominated by the initial metadata fetch.

VIII. RELATED WORK

SGX-Enabled Storage: Since its release, SGX has gener-
ated considerable research aimed at achieving secure remote
storage [18, 16, 17, 27, 39, 40, 41]. PESOS [18] enforces
custom server-side access control on top of untrusted storage,
but its prototype requires a LibOS [42] that severely impacts

the TCB. ZeroTrace [17] and OBLIVIATE [16] use an ORAM
protocol to protect file contents and access patterns from the
server, but do not consider file sharing. Moreover, because
these solutions require server-side SGX support, they have
limited applicability in the personal cloud storage setting. We
circumvent this by running the NEXUS enclave on the client.
SGX-FS [41] is an enclave-protected userspace filesystem, but
does not provide any sharing capabilities.

IBBE-SGX [43] proposes a computationally efficient IBBE
scheme [44] for achieving scalable access control. However,
unlike NEXUS, its access control model restricts all group
membership operations to an administrator.

Cryptographic Filesystems: By encrypting user files
before uploading the ciphertext to the server, cryptographic
filesystems [10, 11, 12, 14] have been proposed as a flexible
solution for secure data sharing. Unfortunately, pure encryption
techniques are plagued by issues of bulk file re-encryption
on user revocation. This incurs a significant performance
overhead which, according to Garrison et al. [15] is con-
siderable even with modest access policy updates. Although
mitigating schemes such as lazy encryption [45] and proxy
re-encryption [46] have been proposed, concerns remain on
how practical they perform under real world environments. By
having the NEXUS enclave mediate access to all encryption
keys, we offer superior user key management and obviate the
necessity of bulk file re-encryption on policy updates.

IX. CONCLUSIONS

The protection of user data on cloud storage remains an
active research area, however existing works either require
substantial changes to server/client, or impose severe data
management burdens on the user. We presented NEXUS, a
stackable filesystem that protects files on untrusted storage,
while providing secure file sharing under fine-grained access
control. NEXUS is a performant and practical solution: it
requires no server-side changes, and imposes minimal key
management on users. NEXUS uses an SGX enclave to encrypt
file contents on the client, and then attaches metadata that
ensures the encryption keys are enclave-bound. Access control
is enforced at each user’s local machine, and file sharing
is enabled using SGX remote attestation. We implemented
a prototype that runs on top of AFS, which achieves good
performance on file I/O operations and incurs modest overheads
on workloads that involved bulk metadata.
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