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Abstract

For longitudinal studies with multivariate observations, we propose statistical methods to

identify clusters of archetypal subjects by using techniques from functional data analysis

and to relate longitudinal patterns to outcomes. We demonstrate how this approach can

be applied to examine associations between multiple time-varying exposures and subse-

quent health outcomes, where the former are recorded sparsely and irregularly in time, with

emphasis on the utility of multiple longitudinal observations in the framework of dimension

reduction techniques. In applications to children’s growth data, we investigate archetypes of

infant growth patterns and identify subgroups that are related to cognitive development in

childhood. Specifically, “Stunting” and “Faltering” time-dynamic patterns of head circumfer-

ence, body length and weight in the first 12 months are associated with lower levels of long-

term cognitive development in comparison to “Generally Large” and “Catch-up” growth. Our

findings provide evidence for the statistical association between multivariate growth patterns

in infancy and long-term cognitive development.

Introduction

Objective of the study

The link between deficient growth in infancy and later life cognitive performance degradation

has been widely accepted [1–3]. Stunting and faltering during infancy, or early childhood, are

associated with reduced cognitive ability in later age performance [4, 5], and these growth pat-

terns have been the subject of extensive investigation [6–9]. In most of the previous work,

investigators have studied this association by examining single growth indicators, for example

head circumference [10] or body weight [11]. In particular, [12] examined how cognitive
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development of children in Vietnam is associated with pre-defined growth features at age 1

year. While features such as stunting, underweight, wasting and small head circumference

were examined, the previous analysis was based on one growth modality, for example body

length or weight.

We propose a straightforward way to combine multiple growth indicators under a single

framework. Our approach provides a comprehensive assessment of the potential risk in terms

of cognitive development using longitudinal information from growth patterns of several

growth modalities. Specifically, we demonstrate a data analysis procedure that combines mea-

surements from three commonly recorded time-varying growth traits, head circumference,

body length and body weight. We then identify growth patterns that can be associated with

subsequently measured full-scale IQ (Wechsler abbreviated scale of intelligence, WASI). The

simultaneous consideration of multiple trajectories is a main novel feature of our approach.

We also devise a simple method to learn archetypal growth patterns from data and examine

their association with subsequent IQ outcomes. Our methods assess multiple growth indica-

tors nonparametrically without the need of prior growth charts [13]. Using a functional data

analysis (FDA) framework [14, 15], the proposed methodology combines multiple growth

indicators and identifies data-driven clusters of infants according to their growth profiles.

Recently, [16] and [17] considered quantile contour estimation of functional principal compo-

nents (FPC) with emphasis on analysis for growth curves, but only with a single growth

trajectory sample. In a related approach, [18] focused on finding subjective-specific warping

functions to extract common features among multivariate growth traits. In contrast to existing

approaches, we profile multiple growth patterns in terms of archetypal analysis [19–21], where

we implicitly assume that extreme growth patterns can be used to represent individual growth

curves in the sample through convex combination.

Our findings from applying the proposed methodology to the PROBIT growth study

cohorts [22, 23] suggest that the proposed methodology is capable of identifying infant sub-

groups that differ in a statistically significant way in terms of the average level of associated IQs

and thus can serve as a useful tool for identifying subgroups at risk of impaired cognitive

development.

Data description

The data were collected as part of WHO’s Promotion of Breastfeeding Intervention Trial

(PROBIT) in the Republic of Belarus [22, 23]. They include growth measurements taken dur-

ing the infancy of full term babies who weighed at least 2.5kg at birth among 17,045 total sub-

jects. The physical traits recorded are head circumference, body length and body weight which

were measured six times during the first year after birth. However, the sampling schedules

were not strictly followed and some children did not have a full set of six measurements, the

data are best characterized as irregularly sampled longitudinal observations and see Fig 1. For

example, about 5.5% of the children have less than six measurements. For children with com-

plete records, average measurement times were approximately 1.05 (0.12), 2.05 (0.13), 3.11

(0.24), 6.12 (0.31), 9.12 (0.34) and 12.10 (0.21) months after birth, where standard deviations

at each visit are given in parentheses. We also refer to the design plot for measurement times

during the first year in [13], which demonstrates the extent of sparsity and irregularity of the

observation schedules over the first year after birth. The cognitive ability of children was

assessed using the WASI score of the full-scale IQ measured at 6.5 years.

In addition to time-varying growth traits, a multitude of demographic covariates were also

recorded. These covariates were used in later stages to control for potential confounding

effects including socio-demographic factors. For example, children whose parents attended
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university have higher IQ measurements on average than children whose parents did not to

complete high-school education. These covariates are known to affect later age IQ throughout

a child’s infancy [24–27]. Other covariates included the sex of the child, maternal and paternal

education levels, maternal and paternal age-at-birth, maternal smoking during pregnancy,

duration of exclusive breast feeding and the hospital where the child was born. The sample size

after preprocessing was n = 12,809 children, whose data were analyzed in our study. For details

of data records and preprocessing, we refer to [13] and [22].

Methodology

Functional principal component analysis

Let Xi(t) be a realization of a time-varying trait X(t) for the i-th subject, 1 � i � n, at each time

point t 2 T . Assuming independent measurements between subjects and that the Xi(t) have

smooth trajectories over time t, we apply functional principal component analysis (FPCA) to

decompose patterns of temporal variation. A basic feature of FPCA is that the time-varying

trait of the i-th subject admits the Karhunen-Loève expansion [28–30]

XiðtÞ ¼ mðtÞ þ
X

k�1

xik�kðtÞ; ð1Þ

where μ(t) = EX(t), and the ξik are uncorrelated random variables with mean zero and variance

λk satisfying λ1 � λ2 � � � �. Here in Eq (1), the ξik are the k-th FPC scores of the i-th subject,

associated with the eigenfunction ϕk for all k � 1. For theoretical background on FPCA and

related techniques, see [15, 31–36].

In longitudinal studies, however, measurements of time-varying traits are only available

at Ni successive time points, say ti1 < � � � < tiNi
, for the i-th subject. We note that the set of

time points fti1; . . . ; tiNi
g may differ among the n subjects and Ni may be small. FPCA for lon-

gitudinal data has been widely investigated [14, 37–40]. Specifically, [41, 42] proposed a tech-

nique to perform FPCA for sparse longitudinal data, based on principal components analysis

through a conditional expectation (PACE) scheme. Specifically, we consider sparse and noisy

Fig 1. Irregular and sparse longitudinal observations from the PROBIT data. Head circumference (HC, left), body length (LN, middle) and weight (WT, right) are

illustrated for a random selection of 30 subjects (gray) out of about 12,800 total children, along with estimated mean curves for each longitudinal trait (black solid

lines).

https://doi.org/10.1371/journal.pone.0207073.g001
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longitudinal observations ~Xij ¼ XiðtijÞ þ �ij, instead of continuous and unperturbed observa-

tions of time-varying traits Xi(t), where the �ij are independent mean zero measurement errors.

By assuming that ξik and �ik follow a joint normal distribution, the best linear predictors of the

FPC scores ξik are given by

x̂ ik ¼ l̂k�̂
>
ikŜ

�1
~X i

ð~X i � μ̂iÞ; ð2Þ

where ~X i ¼ ð~Xi1; . . . ; ~XiNi
Þ

>
are longitudinal observations, μ̂i ¼ ðm̂ðti1Þ; . . . ; m̂ðtiNi

ÞÞ
>

are the

estimates of mean vectors of E~X i, and Ŝ ~X i
is the estimated Ni × Ni variance-covariance matrix

of S~X i
with (j, ℓ)-elements given by Covð~Xij;

~Xi‘Þ. Also, ðl̂k; �̂kðtÞÞ, k � 1, are pairs of estima-

tors for eigenvalues and eigenfunctions, which are the solutions of the following equations

with respect to (λk, ϕk(t)),
Z

T
Gðs; tÞ�kðsÞ ds ¼ lk�kðtÞ ðk ¼ 1; 2; . . .Þ;

subject to lk � lkþ1 and
Z

T
�kðtÞ�‘ðtÞ dt ¼

(
0 ðk 6¼ ‘Þ

1 ðk ¼ ‘Þ
;

ð3Þ

where G(s, t) = Cov(X(s), X(t)) is the auto-covariance function of X, so that we may write

�̂ik ¼ ð�̂kðti1Þ; . . . ; �̂kðtiNi
ÞÞ

>
; see [43] and [15] for comprehensive overviews on FDA and

recent developments in the interface between FPCA and longitudinal data.

Once we have estimated eigenfunctions �̂kðtÞ through the PACE method in Eq (2), longitu-

dinal patterns of ~Xi can be summarized by the corresponding FPC scores x̂ ik. In fact, unob-

served time-varying traits Xi(t) can be reconstructed as X̂ iðtÞ ¼ m̂ðtÞ þ
PK

k¼1
x̂ ik�̂kðtÞ, followed

by the representation in Eqs (1) and (3) with a cut-off value K � 1. The truncation point K can

be chosen as the smallest value satisfying
PK

k¼1
l̂k=
P

‘�1
l̂‘ � k for a given 0 < κ< 1, so that a

fraction κ of variance is explained (FVE), see [15, 30]. The infinite dimensional functions X̂ i

will then be represented by K-vectors ðx̂ i1; . . . ; x̂ iKÞ
>

, which provides the required dimension

reduction.

Identification of outlying subjects

To study archetypes in the multivariate data analysis framework, we cluster longitudinal obser-

vations ~X i into subgroups based on trajectory patterns of reconstructed time-varying traits

Xi(t). Time-varying traits are recovered by the first few FPC scores with high fraction of vari-

ance explained (FVE). In practice, the first two FPC scores produce relatively clear discrimina-

tion of the data characteristics in many sparse and irregular longitudinal studies [41, 42, 44,

45]. As an exploratory illustration tool for outlier detection in multivariate data analysis, the

bagplot [46] was introduced as a generalization of the univariate boxplot. In the bagplot, half-

space location depth [47] is usually adopted so that the multivariate data points are ordered

by an extended notion of univariate rank. The halfspace location depth Dðx;XnÞ of a point

x ¼ ðx1; . . . ; xKÞ
>

2 RK
over K-variate data Xn ¼ fξi 2 RK

: 1 � i � ng is defined by the

smallest number of ξi contained in any halfspace with boundary line passing x. Then, data

points can be ordered by depth, that is Dðξi;X nÞ � Dðξi0 ;X nÞ, 1 � i 6¼ i0 � n. For modern con-

cepts and related work on statistical depth, see also [48] and [49].
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In this study, for the purpose of providing flexible inference based on sparse and irregularly

observed functional and longitudinal data, we utilize the highest density region (HDR) as in

[50] and [51]. We consider the (1 − α)-HDR for the K-variate data defined by

Rξð1 � aÞ ¼ fx 2 RK : fξðxÞ � fag ð0 < a < 1Þ; ð4Þ

where fξ is the joint density of a random vector ξ = (ξ1, . . ., ξK)> and

fa ¼ arg max y > 0 :

Z

RK
fξðxÞ � IðfξðxÞ � yÞ dx � a

� �

ð5Þ

in Eqs (4) and (5), respectively. Taking α = 0.05 yields a support region where observations are

expected to fall with at least 95% probability. We also note that the HDR captures the nature of

the distribution of the data like location, scale, correlation and tail information in a flexible man-

ner. [52] proposed a kernel-type estimator ofRξ
ð1 � aÞ, where fξ and fα are replaced by kernel

density estimators, respectively. For example, one can use f̂ ξðxÞ ¼ n�1
Pn

i¼1

QK
k¼1

Lhk
ðxik � xkÞ

with bandwidths hk > 0, where Lh(v) = L(v/h)/h is a scaled version of a baseline kernel L that is a

probability density function with finite variance. The kernel estimator R̂ð1 � aÞ ofRð1 � aÞ

also enjoys level information of the joint density fξ. We identify (100 × α)% extreme subjects in a

sample as those falling outside of R̂ð1 � aÞ. For densely observed functional data, recent studies

have investigated several measures of functional outliers, such as band depth and extremal depth

for functional data [53–55].

Joint feature extraction from multiple time-varying traits

In this subsection, we describe how we perform dimension reduction for multivariate longitudi-

nal observations by employing the covariance structure between multiple traits. Using Eq (1) and

the FVE method introduced in the previous subsection, let X�;½j�ðtÞ ¼
PK½j�

k¼1
x

½j�
k �

½j�
k ðtÞ be truncated

versions of the original time-varying traits X[j](t) using only the first K[j] eigenfunctions, where

�
½j�
k ðtÞ is the k-th eigenfunction of the j-th trait, 1 � j � d, 1 � k � K[j], and let z

½j�
k ¼ x

½j�
k =ðl

½j�
k Þ

1=2

denote the standardized k-th FPC score of the j-th longitudinal trait, respectively. Then the

functional covariance structure among the truncated time-varying traits (X�,[j](t):1 � j � d)

can be reduced to the variance-covariance matrix of ðz
½j�
k : 1 � k � K ½j�; 1 � j � dÞ. Indeed,

CovðX�;½j�ðsÞ;X�;½m�ðtÞÞ ¼
PK½j�

k¼1

PK½m�

‘¼1
ðl

½j�
k l

½m�

‘
Þ

1=2Covðz
½j�
k ; z

½m�

‘
Þ�

½j�
k ðsÞ�

½m�

‘
ðtÞ, 1 � j 6¼ m � d. This

suggests to apply conventional principal component analysis (PCA) on the vector of standardized

marginal FPC scores ðz
½j�
k : 1 � k � K ½j�Þ, 1 � j � d. Then, time-varying associations among

multiple time-varying traits can be reproduced by a few PC scores in this second analysis. This

approach has strong connections with the joint functional analysis methods of multiple random

processes [56–58], and we also refer to [59] for similar ideas in a recent study on relationships

between univariate and multivariate functional principal component analyses.

Identifying subgroups for risk associated with outcomes

Our study aims to identify at-risk longitudinal growth patterns associated with undesirable

outcomes. For this, we consider conditional density function of outcomes Y given a collection

of multiple time-varying traits. Let fY|S be the conditional density of Y given a collection S of

principal components that are obtained from the principal component analysis of the marginal

FPC scores ðz
½j�
k : 1 � k � K ½j�Þ, 1 � j � d. In this study, we suggest four clusters (Sm: 1 �

m � 4) of standardized principal components of the multiple traits based on the (1 − α)-HDR

Multiple FPCA and their association with outcomes
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method as follows:

S1 ¼ fZ =2Rð1 � aÞ : jZ1j=r
1=2

1 > jZ2j=r
1=2

2 ; Z1 > 0g;

S2 ¼ fZ =2Rð1 � aÞ : jZ1j=r
1=2

1 < jZ2j=r
1=2

2 ; Z2 > 0g;

S3 ¼ fZ =2Rð1 � aÞ : jZ1j=r
1=2

1 > jZ2j=r
1=2

2 ; Z1 < 0g;

S4 ¼ fZ =2Rð1 � aÞ : jZ1j=r
1=2

1 < jZ2j=r
1=2

2 ; Z2 < 0g;

ð6Þ

where Z = (Z1, Z2)
> is a 2-vector consisting of the first two PC scores obtained from the PCA

of ζ = (ζ[1], ζ[2], ζ[3]) andRð1 � aÞ is the (1 − α)-HDR of Z as in Eq (4). Also, ρ1 and ρ2 are the

eigenvalues associated with the first two PC scores Z1 and Z2, respectively. We then examine

distributional differences among fYjSm
ð�jSmÞ, 1 � m � 4, and quantify the distributional differ-

ences with analysis of variance (ANOVA).

For practical implementation, we use conditional kernel density estimators for fY|S, given

by f̂ YjSðyjŜmÞ ¼ jŜmj
�1P

i2Ŝm
KhðYi � yÞ with a bandwidth h > 0. Here jŜmj equals the number

of elements in Ŝm, which are empirical clusters of Eq (6) defined by

Ŝ1 ¼ f1 � i � n : Ẑ i =2 R̂ð1 � aÞ; jẐ i1j=r̂
1=2

1 > jẐ i2j=r̂2

1=2
; Ẑ i1 > 0g;

Ŝ2 ¼ f1 � i � n : Ẑ i =2 R̂ð1 � aÞ; jẐ i1j=r̂
1=2

1 < jẐ i2j=r̂2

1=2
; Ẑ i2 > 0g;

Ŝ3 ¼ f1 � i � n : Ẑ i =2 R̂ð1 � aÞ; jẐ i1j=r̂
1=2

1 > jẐ i2j=r̂2

1=2
; Ẑ i1 < 0g;

Ŝ4 ¼ f1 � i � n : Ẑ i =2 R̂ð1 � aÞ; jẐ i1j=r̂
1=2

1 < jẐ i2j=r̂2

1=2
; Ẑ i2 < 0g;

ð7Þ

where the Ẑ i are vectors of the first two PC scores from the PCA of ζ̂ i ¼ ðζ̂ ½1�

i ; ζ̂ ½2�

i ; ζ̂ ½3�

i Þ and

R̂ð1 � aÞ is the (1 − α)-HDR of Ẑ i as defined in the previous subsection. Also, r̂1 and r̂2 are

estimates of the eigenvalues associated with the first two PC scores, respectively.

Finally, we identify subgroups for risk associated with outcomes based on multiple compar-

ison techniques. Once we find significant differences among different subgroups, post-hoc

procedures can be applied to perform multiple comparisons and control for multiple testing,

which then lends support to specify risk subgroups associated with outcomes. For example,

Bonferroni or Benjamini-Hochberg [60] procedures can be applied for pairwise analysis and

in the next section we adopt Tukey’s post-hoc analysis [61] as a multiple comparison proce-

dure for testing mean differences between all pairs of groups. We also use the Kruskal-Wallis

rank sum test [62] as a nonparametric procedure for one-way ANOVA, and the Tukey-Kra-

mer test (or Nemenyi test) for pairwise comparisons.

Numerical illustrations

Simulation study

We demonstrate the finite sample performance of the proposed method to identify clusters of

extreme subjects. For this purpose random trajectories X = (X[1], X[2], X[3]) were generated

such that

X½j�ðtÞ ¼ mjðtÞ þ x
½j�
1

�
½j�
1

ðtÞ þ x
½j�
2

�
½j�
2

ðtÞ; t 2 ½0; 1�; ð8Þ

for 1 � j � 3, where the mean functions μj of X[j] were zero and we use the normalized Fourier

basis �
½j�
1

ðtÞ ¼
ffiffiffi
2

p
sin ð2ptÞ and �

½j�
2

ðtÞ ¼
ffiffiffi
2

p
cos ð2ptÞ on the interval [0, 1] for all 1 � j � 3.

The FPC score vectors ξ½j�
¼ ðx

½j�
1

; x
½j�
2

Þ
>

were generated with multivariate normal distributions
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with mean zero, sd(ξ[1]) = diag(3.0, 2.5), sd(ξ[2]) = diag(3.0, 2.0) and sd(ξ[3]) = diag(3.0, 1.5).

For simplicity, we considered a common cross-covariance matrix for (ξ[j], ξ[k]), given by

covðx
½j�
1

; x
½k�

1
Þ covðx

½j�
1

; x
½k�

2
Þ

covðx
½j�
2

; x
½k�

1
Þ covðx

½j�
2

; x
½k�

2
Þ

0

@

1

A ¼
0:5 0:1

0:1 0:5

 !

ð9Þ

for 1 � j 6¼ k � 3. Let (ρj, vj) be (eigenvalue/eigenvector) pairs of the variance-covariance matrix

Sξ of ξ = (ξ[1], ξ[2], ξ[3]), satisfying ρ1 � � � � � ρ6, where det(Sξ) � 154.8. The first two eigenvec-

tors are v1 � (0.56, 0.14, 0.57, 0.11, 0.57, 0.09)> and v2 � (−0.15, 0.75, −0.11, 0.51, −0.09, 0.38)>,

and the corresponding eigenvalues are ρ1 � 4.041 and ρ2 � 3.068 (FVEs are 26.94% and

20.46%, respectively). Then, a scalar response Y was generated by Y = β1Z1 + β2Z2 + ε, where

Zj ¼ v>
j ξ, β = (β1, β2)

> = (0.4, 0.2)> and ε* N(0, 0.42).

From n random copies (Xi: 1 � i � n) of X for n = 1000, we generated sparse and noisy

observations ~X ½j�
i ðTijkÞ ¼ X½j�

i ðTijkÞ þ �ijk; 1 � k � Nij, where the Nij are randomly chosen inte-

gers between 5 and 10, Tijk are iid uniform random variables on (0, 1) and �ijk are Gaussian

measurement errors with mean zero and variance 0.12, and Nij, Tijk and �ijk were generated

independently. Let Yn ¼ fðYi;
~X ½1�

i ; ~X ½2�

i ; ~X ½3�

i Þ : 1 � i � ng be the random sample generated as

described above, where ~X ½j�
i ¼ ð~X ½j�

i ðTijkÞ : 1 � k � NiÞ for 1 � j � 3.

We also demonstrate the outcomes Y that are associated with extremes of the predictors Z

such that (high Z1, high Z2), (high Z1, low Z2), (low Z1, high Z2) and (low Z1, low Z2) entail differ-

ent levels of response outcomes. For example, suppose that we have Z1 = (1, 1)>, Z2 = (1, −1)>,

Z3 = (−1, 1)> and Z4 = (−1, −1)>, then the corresponding conditional means of the response out-

comes are 0.6, 0.2, −0.2 and −0.6 which may represent different risk levels of subgroups associ-

ated with outcomes. In Fig 2 we present an example of one i.i.d. sample from (Y, Z1, Z2), where

we demonstrate four archetypal clusters associated with different response outcomes in different

colors. This simulation setting illustrates a simple case where archetypes of functional patterns

are associated with response.

Since we only have sparse and noisy longitudinal observations ~X ½j� of X[j], we first estimate

Eðξ½j�
j ~X ½j�Þ for each j-th trajectory marginally by applying FPCA based on the conditional

expectation technique (PACE) [41] to ð~X ½j�
i : 1 � i � nÞ. For computation, we used the

“fdapace” package in R [63], where fξ̂ ½j�
i ¼ ðx̂

½j�
i1; x̂

½j�
i2Þ

>
: 1 � i � ng denotes estimates of

Eðξ½j�
i j ~X ½j�

i Þ, 1 � i � n, obtained from the PACE algorithm. Implementing the proposed method

described in the Methodology section, we obtain four clusters Ŝm based on the (1 − α)-HDR

method and standardized PC scores of multiple traits as in Eq (7). We considered the perfor-

mance of our proposed methodology for the identification of risk clusters in comparison to

using the univariate traits separately. Similarly, we obtained the marginal four clusters Ŝ½j�
m

based on the 95%-HDR method analogously to the above and standardized the individual FPC

scores of each j-th trait as follows:

Ŝ½j�
1 ¼ f1 � i � n : ξ̂ ½j�

i =2 R̂ ½j�ð1 � aÞ; jx̂
½j�
i1j=ðl̂

½j�
1 Þ

1=2
> jx̂

½j�
i2j=ðl̂

½j�
2 Þ

1=2
; x̂

½j�
i1 > 0g;

Ŝ½j�
2 ¼ f1 � i � n : ξ̂ ½j�

i =2 R̂ ½j�ð1 � aÞ; jx̂
½j�
i1j=ðl̂

½j�
1 Þ

1=2
< jx̂

½j�
i2j=ðl̂

½j�
2 Þ

1=2
; x̂

½j�
i2 > 0g;

Ŝ½j�
3 ¼ f1 � i � n : ξ̂ ½j�

i =2 R̂ ½j�ð1 � aÞ; jx̂
½j�
i1j=ðl̂

½j�
1 Þ

1=2
> jx̂

½j�
i2j=ðl̂

½j�
2 Þ

1=2
; x̂

½j�
i1 < 0g;

Ŝ½j�
4 ¼ f1 � i � n : ξ̂ ½j�

i =2 R̂ ½j�ð1 � aÞ; jx̂
½j�
i1j=ðl̂

½j�
1 Þ

1=2
< jx̂

½j�
i2j=ðl̂

½j�
2 Þ

1=2
; x̂

½j�
i2 < 0g;

ð10Þ

where R̂ ½j�ð1 � aÞ is the (1 − α)-HDR of ξ̂ ½j�
i .
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We report the simulation results in Table 1, where the numbers of joint extreme trajectory

clusters associated with outcomes obtained from 1000 Monte Carlo repetitions with sample

size n = 1000 are shown for α = 0.05. Tukey’s post-hoc multiple comparison was employed to

determine how many associated clusters exist at each Monte Carlo run. That is, at each repeti-

tion, we counted the subgroups which are completely separated by Tukey’s post-hoc analysis.

By comparing conditional mean differences of outcomes between the four extreme clusters,

we found that the proposed method identified more risk clusters than the marginal methods

which detected two clusters on average for all cases. The joint method identified the three or

four of the archetype clusters which depict (high Z1, high Z2), (high Z1, low Z2), (low Z1, high

Z2) and (low Z1, low Z2) up to 90.4% (= 59.8% + 30.6%). This result supports the use of multi-

ple trajectories instead of a single trajectory when identifying archetypes of risk sets. This

applies even as the first two PC scores have less than 50% FVE, as in this simulation example.

Fig 2. Example for visualization of observations from simulation. The proposed method identifies clusters associated with

response outcomes Y characterized by archetypal covariate levels Z = (Z1, Z2), for example (high Z1, high Z2), (high Z1, low Z2),

(low Z1, high Z2) and (low Z1, low Z2), which are symbolized by red, purple, green and blue points, respectively, where the

crosses denote the cluster centers. The surface demonstrates the conditional mean response when regressing Y on Z = (Z1, Z2)

for n = 200 data points.

https://doi.org/10.1371/journal.pone.0207073.g002
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Analysis of PROBIT data

Marginal analysis for longitudinal measurements of growth traits. PROBIT contains

three main time-varying traits; head circumference (HC), body length (LN) and weight (WT).

For the marginal FPCA of these three variables, we applied the PACE technique introduced in

the Methodology section, since we only have sparse and irregular observations available. As in

the simulation study, we also used the “fdapace” package in R [63]. Auto-covariance func-

tions of each time-varying trait were reconstructed by the first two eigenfunctions. The frac-

tions of variance explained (FVEs) were 97.70%, 96.92% and 98.14% for HC, LN and WT,

respectively. See Fig 3 for illustrations of estimated auto-covariance functions and eigenfunc-

tions. The first and second eigenfunctions can be regarded as “General growth” and “Growth

acceleration”, respectively. Based on the observed high FVE coverages, we assume in the rest

of the paper that these two qualitative features carry information about the longitudinal pat-

terns of time-varying growth traits in the PROBIT data.

The marginal analysis of outlying subgroups was performed with a (1 − α)-high density

region (HDR) with α = 0.05. Subjects were classified as “normal” if they belonged to the 95%

support region in the HDR criterion as in Eq (4), while outlying subjects were classified as 5%

extreme cases falling outside the HDR criterion. In this study, we considered four exclusive

subgroups as in Eq (10), where the trait index [j], 1 � j � 3, stands for HC, LN and WT,

respectively. The four outlying subgroups correspond to distinctive growth patterns, which

can be labeled as “Generally Large”, “Catch-up”, “Stunting” and “Faltering” (Fig 4). We found

that the outlying patterns were discordant across traits. For example, subjects who were classi-

fied into the generally large head circumference subgroup could be normal for body length or

weight, and vice versa. Moreover, as there are 43-combinations of subgroups entailed by the

marginal analysis, it is difficult to associate all these multiple trajectory patterns with the

response of interest, which is IQ at 6.5 years.

Potential risk subgroups for cognitive development. We constructed joint outlying sub-

groups of multiple time-varying traits based on the HDR method and standardized PC scores

of multiple traits ðẑ
½j�
i ¼ x̂

½j�
ik=ðl̂

½j�
k Þ

1=2
: 1 � k � 2; 1 � j � 3Þ as described in Eq (7). Principal

component analysis results for the six FPC scores are presented in Table 2, where the first and

second FPC stand for scores of general growth and growth acceleration, respectively. We

found that these two features were captured in the first two PC loadings. In this study, we

Table 1. Simulation results for identification of at-risk multiple trajectories clusters associated with response

outcomes.

Number of risk clusters

associated with outcomes

Marginal method Joint method

PC-FPCj = 1 j = 2 j = 3

< 2 3.6% 5.0% 4.7% 0.0%

2 62.3% 83.0% 84.0% 9.6%

3 31.7% 11.5% 10.8% 59.8%

4 2.4% 0.5% 0.5% 30.6%

For 1000 Monte Carlo (MC) repetitions with sample size n = 1000, the numbers of risk clusters were identified by

analysis of variance (ANOVA) and Tukey’s multiple comparisons with a family-wise significance level 0.05. At each

repetition, we counted subgroups completely separated by Tukey’s post-hoc analysis. For example, we identify two

clusters if all subgroups included in a cluster show significant differences in pairwise comparison (family-wise

significance level 0.05) against the other cluster members. Percentages in each column of the table demonstrate how

many clusters are detected through 1000 MC repetitions. For the comparison with the marginal method, we applied

the same procedure, using the marginal trajectory information only for j = 1, 2, 3, respectively.

https://doi.org/10.1371/journal.pone.0207073.t001
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focus on the first two PC scores as they explain more than 95% of the variation for each of the

three modalities [41, 42, 45].

On the other hand, socio-economic factors affect childhood intelligence in ways that are

not reflected in the FPCA of time-varying traits [26, 27]. To avoid confounding effects by

socio-economic variables, we used a linear mixed effects model to reduce the influence of

the socio-economic indicators. Hospital information was treated as a random effect as it is

related to the random clustered design of the PROBIT study. We used the residuals of the lin-

ear mixed effects model and marginalized the effect of the potentially confounding variables

considered above. For details of the data preprocessing, we refer to [22] and [13].

In Fig 5, we find that conditional densities of IQ measured at 6.5 years, given the joint outly-

ing subgroups, exhibited different distributional behaviors. The four subgroups were con-

structed by a principal component analysis of the standardized six FPC scores for HC, LN and

WT. The significance of the group mean differences was examined by one-way ANOVA (p-

value = 0.002), and also by the Kruskal-Wallis rank sum test [62], a nonparametric procedure

for one-way ANOVA (p-value < 0.001), so that the results were qualitatively the same. For a

more detailed comparison, we performed post-hoc analysis with Tukey’s multiple comparison

procedure. As shown in Table 3 and Fig 5, we found significant mean differences among

Fig 3. Estimated auto-covariance functions and eigenfunctions. Estimated auto-covariance functions G(s, t) (top) and the corresponding first two eigenfunctions

ϕ1(t) and ϕ2(t) (bottom) as in Eq (3) for head circumference (HC, left), body length (LN, middle) and weight (WT, right), respectively. Eigenfunctions represent the

qualitative factors “General growth” (red) and “Growth acceleration” (blue). The cumulative fractions of variation explained (FVE) of the first two components are

97.70%, 96.92% and 98.14% for HC, LN and WT, respectively.

https://doi.org/10.1371/journal.pone.0207073.g003
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Fig 4. Extreme functional patterns from marginal analysis. Head circumference (HC, left), body length (LN, middle) and weight (WT, right) traits, respectively.

Four outlying clusters (falling into the smallest 5% of the bivariate density) are demonstrated with respective different colors, with estimated mean curves

corresponding to the four outlying subgroups, respectively, which represent the four qualitative longitudinal growth patterns: “Generally Large” (red), “Catch-up”

(purple), “Stunting” (green) and “Faltering” (blue) (top panels). The corresponding scatterplots for the first two functional principal component scores (bottom).

https://doi.org/10.1371/journal.pone.0207073.g004

Table 2. Principal component analysis of functional principal components.

qualitative feature

of joint FPCs

marginal FPC

factor

PC loadings

PC1 PC2 PC3 PC4 PC5 PC6

General growth HC-FPC1 0.502 0.155 0.457 0.690 0.044 0.191

LN-FPC1 0.552 0.198 -0.289 -0.430 0.243 0.574

WT-FPC1 0.527 0.331 -0.109 -0.182 -0.383 -0.649

Growth acceleration HC-FPC2 -0.216 0.517 0.688 -0.422 0.188 -0.020

LN-FPC2 -0.185 0.546 -0.432 0.324 0.570 -0.227

WT-FPC2 -0.291 0.512 -0.190 0.154 -0.657 0.402

partial FVE 0.382 0.261 0.122 0.094 0.088 0.053

cumulative FVE 0.382 0.643 0.765 0.859 0.947 1.000

Principal component analysis for the variance-covariance matrix of the first two marginal functional principal component scores (FPCs) for head circumference (HC),

body length (LN) and weight (WT).

https://doi.org/10.1371/journal.pone.0207073.t002
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outlying subgroups in a family-wise 5%-level test. “Stunting” and “Faltering” were associated

with higher risk in comparison with the “Generally Large” and “Catch-up” subgroups. Similar

results were obtained by using the nonparametric procedure for pairwise comparisons of the

Tukey-Kramer test. We also applied several multiple comparison techniques such as Bonfer-

roni and Benjamini-Hochberg methods for post-hoc analysis and similar results were obtained

by controlling false discovery rate (FDR) at 5%. For example, we found that “Stunting” and

“Faltering” were associated with higher risk in comparison with the “Generally Large” and

“Catch-up” subgroups after application of both procedures. The results were suggestive of

higher risk for “Faltering” versus “Catch-up” (p-value = 0.060 after Bonferroni correction).

We close this section with a short remark on Figs 6 and 7 which presents the result of the

marginal analysis as described in the Simulation study section. In contrast to the proposed

joint method, we found that the marginal procedures may not effectively detect risk growth

patterns associated with long-term IQ outcomes. From the post-hoc analysis, “Generally

Large” and “Stunting” subgroups had significantly different IQ performance for head circum-

ference (p-value = 0.002), body length (p-value = 0.003) and weight (p-value < 0.001), but no

significant difference was found between other subgroups such as “Catch-up” or “Faltering”

for head circumference and body length. We note that “Stunting” for one of the marginal com-

ponents may not be an at-risk growth pattern associated with IQ development compared to

Fig 5. Extreme subgroup identification from the proposed method. (Left panel) Scatterplot of 95% high density region clustering from principal component analysis

for head circumference, body length and weight and (Middle panel) the corresponding conditional kernel density estimates for long-term intelligence for each

subgroup. Here, qualitative growth patterns include “Generally Large” (red), “Catch-up” (purple), “Stunting” (green) and “Faltering” (blue), whereas the black dashed

line represents the “normal” subgroup that consists of subjects who do not belong to the four outlying subgroups. (Right panel) Tukey’s multiple comparisons of mean

differences for standardized IQ along outlying subgroups are demonstrated by family-wise 95% confidence intervals, where we label the four subgroups as R (red,

“Generally Large”), P (purple, “Catch-up”), G (green, “Stunting”) and B (blue, “Faltering”).

https://doi.org/10.1371/journal.pone.0207073.g005

Table 3. One-way ANOVA for subgroup detection.

variation df sum of sq. mean sq.

subgroup 3 27.002 9.001

residuals 598 631.902 1.057

total 601 658.904

F-value = 8.518 p-value < 0.001

One-way ANOVA result provides evidence for differences in group means of long-term IQ for the four outlying

subgroups “Generally Large”, “Catch-up”, “Stunting” and “Faltering”.

https://doi.org/10.1371/journal.pone.0207073.t003

Multiple FPCA and their association with outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0207073 November 12, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0207073.g005
https://doi.org/10.1371/journal.pone.0207073.t003
https://doi.org/10.1371/journal.pone.0207073


the other subgroups. Moreover, “Faltering” for weight showed higher IQ performances than

the “Stunting” subgroup (p-values < 0.001), while failure to thrive in infancy, defined as

weight faltering in the first 9 months of life, was previously found to be associated with persis-

tent deficits in intellectual development when measured at 8 years [64]. These results suggest

that the combination of multiple growth patterns can indeed be beneficial for identifying risk

subgroups associated with IQ outcomes.

Discussion

This paper outlines a statistical framework for exploring multivariate functional patterns

deduced from sparsely and irregularly sampled longitudinal data and their association with

long-term outcomes. For the joint analysis of children’s growth and IQ in the PROBIT data,

we propose a straightforward way to combine multiple growth indicators under a single frame-

work. We extract multiple growth features jointly, by using standard multivariate analysis of

Fig 6. Correlation plot. Correlations between the first two functional principal component (FPC) scores of head circumference (HC), body length

(LN) and weight (WT). FPC scores among the first and second components have positive correlations, respectively, which suggests to combine the

three growth features linearly with PC loadings as in Table 2.

https://doi.org/10.1371/journal.pone.0207073.g006
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the functional principal components. The major modes of growth variation are then repre-

sented at the subject level and we can thus profile outlying multiple growth patterns, which

can be considered as archetypes of growth.

The focus of this paper is how to combine multivariate functional data to identify extremal

curve patterns and associate these features with responses. One may consider an alternative

application of multivariate functional principal component analysis as in [58, 59, 65, 66] or

functional ANOVA [67–69] as alternatives. However, for all approaches it is critical how to

determine outlying and extremal patterns jointly from multiple functional data, and the high-

density region (HDR) method to detect outlying functional principal components that we

adopt here is a natural extension of similar nonparametric approaches in multivariate data

analysis. Recently several related studies have been introduced for functional outlier detection

[54, 70, 71] but it still remains an open problem how to combine these with other methodolo-

gies such as clustering and archetypal analysis.

In the PROBIT growth data analysis, we identified four archetypal subgroups of infant

growth patterns, namely “Stunting”, “Faltering”, “Generally Large” and “Catch-up”. In addi-

tion we also found that covariance structures have marginally similar patterns across the

Fig 7. Marginal subgroup identification. (Top panels) Conditional kernel density estimators and (bottom panels) illustrations of Tukey’s multiple comparisons for

standardized IQ along outlying subgroups. As in Fig 5, the first two functional principal component (FPC) scores are used to construct subgroups for head

circumference (left), body length (middle) and weight (right), labeled R (red, “Generally Large”), P (purple, “Catch-up”), G (green, “Stunting”) and B (blue,

“Faltering”).

https://doi.org/10.1371/journal.pone.0207073.g007
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functional traits considered; head-circumference, body length and weight. According to our

analysis, subgroups corresponding to “Stunting” and “Faltering” in the infant period had

lower downstream IQ compared to “Generally Large” and “Catch-up” subgroups. This finding

is supported by previous studies that link deficient infant growth and later life cognitive perfor-

mance degradation.

It is worth mentioning that single growth indicators were not found to be associated with

risk of lowered IQ, and the marginal analysis of single growth traits did not produce informa-

tive results in the PROBIT analysis (See Fig 7). Also, there is a possibility that the absence of

any measure of cognitive ability during infancy in the data could be explained by reverse cau-

sality, namely, poor cognitive function in infancy may have led to worse dietary intake. Both

may have been consequences of poor parenting or unmeasured insults during pregnancy or

infancy. The proposed methods are not limited to specific data structures, such as growth data,

but can be applied to many other kinds of longitudinal data as well, whenever a downstream

outcome is of interest.
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29. Loève M. Fonctions aléatoires à décomposition orthogonale exponentielle. La Revue Scientique. 1946;

84:159–162.

30. Ramsay J, Silverman BW. Functional data analysis. 2nd ed. Springer-Verlag, New York; 2005.

31. Dauxois J, Pousse A, Romain Y. Asymptotic theory for the principal component analysis of a vector ran-

dom function: Some applications to statistical inference. Journal of Multivariate Analysis. 1982; 12:136–

154. https://doi.org/10.1016/0047-259X(82)90088-4

32. Besse P, Ramsay JO. Principal components analysis of sampled functions. Psychometrika. 1986;

51:285–311. https://doi.org/10.1007/BF02293986

33. Silverman BW. Smoothed functional principal components analysis by choice of norm. Annals of Statis-

tics. 1996; 24:1–24. https://doi.org/10.1214/aos/1033066196

34. Boente G, Fraiman R. Kernel-based functional principal components. Statistics & Probability Letters.

2000; 48:335–345. https://doi.org/10.1016/S0167-7152(00)00014-6

35. Hall P, Hosseini-Nasab M. On properties of functional principal components analysis. Journal of the

Royal Statistical Society: Series B. 2006; 68:109–126. https://doi.org/10.1111/j.1467-9868.2005.00535.x

36. Li Y, Wang N, Carroll RJ. Selecting the number of principal components in functional data. Journal of

the American Statistical Association. 2013; 108:1284–1291. https://doi.org/10.1080/01621459.2013.

788980

37. James G, Hastie T, Sugar C. Principal component models for sparse functional data. Biometrika. 2000;

87:587–602. https://doi.org/10.1093/biomet/87.3.587

38. Rice JA, Wu CO. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrika.

2001; 57:253–259. https://doi.org/10.1111/j.0006-341X.2001.00253.x

39. Müller HG. Functional modeling and classification of longitudinal data. Scandinavian Journal of Statis-

tics. 2005; 32(2):223–240. https://doi.org/10.1111/j.1467-9469.2005.00429.x

40. Yao F, Lee T. Penalized spline models for functional principal component analysis. Journal of the Royal

Statistical Society: Series B. 2006; 68:3–25. https://doi.org/10.1111/j.1467-9868.2005.00530.x

41. Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. Journal of the Ameri-

can Statistical Association. 2005; 100(470):577–590. https://doi.org/10.1198/016214504000001745

42. Yao F, Müller HG, Wang JL. Functional linear regression analysis for longitudinal data. Annals of Statis-

tics. 2005; 33(6):2873–2903. https://doi.org/10.1214/009053605000000660

43. Müller HG. Functional modeling of longitudinal data. In: Fitzmaurice G, Davidian M, Verbeke G, Molen-

berghs G, editors. Longitudinal Data Analysis. CRC Press; 2009. p. 233–252.

44. Jones MC, Rice JA. Displaying the important features of large collections of similar curves. The Ameri-

can Statistician. 1992; 46(2):140–145. https://doi.org/10.2307/2684184

45. Leng X, Müller HG. Classification using functional data analysis for temporal gene expression data. Bio-

informatics. 2006; 22(1):68–76. https://doi.org/10.1093/bioinformatics/bti742 PMID: 16257986

46. Rousseeuw PJ, Ruts I, Tukey JW. The bagplot: A bivariate boxplot. The American Statistician. 1999; 53

(4):382–387. https://doi.org/10.2307/2686061

47. Tukey JW. Mathematics and the picturing of data. In: James RD, editor. Proceedings of the International

Congress of Mathematicians. vol. 2. Canadian Mathematical Society; 1975. p. 523–531.

48. Zuo Y. Projection-based depth functions and associated medians. Annals of Statistics. 2003; 31:1460–

1490. https://doi.org/10.1214/aos/1065705115

49. Agostinelli C, Romanazzi M. Local depth. Journal of Statistical Planning and Inference. 2011; 141

(2):817–830. https://doi.org/10.1016/j.jspi.2010.08.001

Multiple FPCA and their association with outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0207073 November 12, 2018 17 / 18

https://doi.org/10.1080/00039890009604025
http://www.ncbi.nlm.nih.gov/pubmed/11063408
https://doi.org/10.1016/S0140-6736(07)60076-2
https://doi.org/10.1016/S0140-6736(07)60076-2
https://doi.org/10.1037/a0026699
http://www.ncbi.nlm.nih.gov/pubmed/22233090
https://doi.org/10.1542/peds.2012-3497
http://www.ncbi.nlm.nih.gov/pubmed/23776123
https://doi.org/10.1016/0047-259X(82)90088-4
https://doi.org/10.1007/BF02293986
https://doi.org/10.1214/aos/1033066196
https://doi.org/10.1016/S0167-7152(00)00014-6
https://doi.org/10.1111/j.1467-9868.2005.00535.x
https://doi.org/10.1080/01621459.2013.788980
https://doi.org/10.1080/01621459.2013.788980
https://doi.org/10.1093/biomet/87.3.587
https://doi.org/10.1111/j.0006-341X.2001.00253.x
https://doi.org/10.1111/j.1467-9469.2005.00429.x
https://doi.org/10.1111/j.1467-9868.2005.00530.x
https://doi.org/10.1198/016214504000001745
https://doi.org/10.1214/009053605000000660
https://doi.org/10.2307/2684184
https://doi.org/10.1093/bioinformatics/bti742
http://www.ncbi.nlm.nih.gov/pubmed/16257986
https://doi.org/10.2307/2686061
https://doi.org/10.1214/aos/1065705115
https://doi.org/10.1016/j.jspi.2010.08.001
https://doi.org/10.1371/journal.pone.0207073


50. Hyndman RJ. Computing and graphing highest density regions. The American Statistician. 1996; 50

(2):241–250. https://doi.org/10.2307/2684423

51. Scott DW. Multivariate density estimation: Theory, practice and visualization. 2nd ed. Wiley, New

York; 2015.

52. Hyndman RJ, Shang HL. Rainbow plots, bagplots and boxplots for functional data. Journal of Computa-

tional and Graphical Statistics. 2010; 19:29–45. https://doi.org/10.1198/jcgs.2009.08158

53. Sun Y, Genton MG. Functional boxplots. Journal of Computational and Graphical Statistics. 2011; 20

(2):316–334. https://doi.org/10.1198/jcgs.2011.09224

54. Hubert M, Rousseeuw PJ, Segaert P. Multivariate functional outlier detection. Statistical Methods &

Applications. 2015; 24(2):177–202. https://doi.org/10.1007/s10260-015-0297-8

55. Narisetty NN, Nair VN. Extremal depth for functional data and applications. Journal of the American Sta-

tistical Association. 2016; 111(516):1705–1714. https://doi.org/10.1080/01621459.2015.1110033

56. Zhou L, Huang JZ, Carroll RJ. Joint modeling of paired sparse functional data using principal compo-

nents. Biometrika. 2008; 95(3):601–619. https://doi.org/10.1093/biomet/asn035 PMID: 19396364

57. Chiou JM, Müller HG. Linear manifold modeling of multivariate functional data. Journal of the Royal Sta-

tistical Society: Series B. 2011; 76(3):605–626. https://doi.org/10.1111/rssb.12038

58. Chiou JM, Chen YT, Yang YF. Multivariate functional principal component analysis: A normalization

approach. Statistica Sinica. 2014; 24:1571–1596.

59. Happ C, Greven S. Multivariate functional principal component analysis for data observed on different

(dimensional) domains. Journal of the American Statistical Association. 2018; 113(522):649–659.

https://doi.org/10.1080/01621459.2016.1273115

60. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; p. 289–300.

61. Tukey JW. Comparing individual means in the analysis of variance. Biometrika. 1949; 5(2):99–114.

https://doi.org/10.2307/3001913

62. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. Journal of the American Statis-

tical Association. 1952; 47(260):583–621. https://doi.org/10.1080/01621459.1952.10483441

63. fdapace. R Package: Functional Data Analysis and Empirical Dynamics; version 0.4.0. Available

from: https://CRAN.R-project.org/package=fdapace.

64. Emond AM, Blair PS, Emmett PM, Drewett RF. Weight faltering in infancy and IQ levels at 8 years in the

Avon Longitudinal Study of Parents and Children. Pediatrics. 2007; 120(4):e1051–e1058. https://doi.

org/10.1542/peds.2006-2295 PMID: 17908725

65. Berrendero JR, Justel A, Svarc M. Principal components for multivariate functional data. Computational

Statistics & Data Analysis. 2011; 55(9):2619–2634. https://doi.org/10.1016/j.csda.2011.03.011

66. Górecki T, Krzyśko M, Waszak Ł, Wołyński W. Selected statistical methods of data analysis for multi-

variate functional data. Statistical Papers. 2018; 59(1):153–182. https://doi.org/10.1007/s00362-016-

0757-8

67. Cuevas A, Febrero M, Fraiman R. An anova test for functional data. Computational Statistics & Data

Analysis. 2004; 47(1):111–122. https://doi.org/10.1016/j.csda.2003.10.021
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