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Abstract
The maturation of the myelinated white matter throughout childhood is a critical developmental process that underlies emerg-
ing connectivity and brain function. In response to genetic influences and neuronal activities, myelination helps establish 
the mature neural networks that support cognitive and behavioral skills. The emergence and refinement of brain networks, 
traditionally investigated using functional imaging data, can also be interrogated using longitudinal structural imaging data. 
However, few studies of structural network development throughout infancy and early childhood have been presented, likely 
owing to the sparse and irregular nature of most longitudinal neuroimaging data, which complicates dynamic analysis. Here, 
we overcome this limitation and investigate through concurrent correlation the co-development of white matter myelination 
and volume, and structural network development of white matter myelination between brain regions as a function of age, 
using statistically well-supported methods. We show that the concurrent correlation of white matter myelination and volume 
is overall positive and reaches a peak at 580 days. Brain regions are found to differ in overall magnitudes and patterns of 
time-varying association throughout early childhood. We introduce time-dynamic developmental networks based on temporal 
similarity of association patterns in the levels of myelination across brain regions. These networks reflect groups of brain 
regions that share similar patterns of evolving intra-regional connectivity, as evidenced by levels of myelination, are biologi-
cally interpretable and provide novel visualizations of brain development. Comparing the constructed networks between 
different maternal education groups, we found that children with higher and lower maternal education differ significantly in 
the overall magnitude of the time-dynamic correlations.

Keywords Whole brain MRI · Myelination · Developmental network · Concurrent correlation structure

Introduction

The maturation of the myelinated white matter is an impor-
tant neurodevelopmental process that underlies brain con-
nectivity and messaging across the brain’s eloquent neural 

regions and systems. From classic histological studies, e.g., 
Yakovlev and Lecours (1967), the elaboration of the myelin 
sheath around neuronal axons follows a well-described spa-
tio-temporal pattern, advancing from deep brain to superfi-
cial regions in a posterior-to-anterior arc. Comparisons of 
this pattern with cognitive and behavioral milestones (Casey 
et al. 2000; Johnson 2001; Durston and Casey 2006) reveal 
strong overlap between myelination and functional devel-
opment, further highlighted in more recent neuroimaging 
studies (van der Knaap et al. 1991; Nagy et al. 2004; Zatorre 
et al. 2012; O’Muircheartaigh et al. 2014; Chevalier et al. 
2015; Deoni et al. 2016).

In general, however, studies exploring the relationship(s) 
between structural maturation and evolving cognitive and/
or behavioral skills have been cross-sectional, making it dif-
ficult to appreciate how these relationships evolve across 
the brain with age. Understanding of this time-dynamic 
association is of significant scientific interest, not only 
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for investigating general neurodevelopment, but also with 
respect to understanding and characterizing sensitive 
windows of development (Hensch and Bilimoria 2012) 
with important implications for interventional timing and 
approach (Marín 2016). Using data acquired longitudinally, 
prior studies have linked patterns of development to later 
childhood outcomes (Shaw et al. 2006, 2009; Wolff et al. 
2012; Deoni et al. 2016). However, this approach also fails 
to elucidate how these structure–function/outcome relation-
ships evolve and change with child age. More recently, Dean 
et al. (2015) has used a moving bin correlation approach to 
investigate the time-dynamic association between white mat-
ter development in infants and toddlers and cognitive ability 
measures obtained from the Mullen Scales of Early Learn-
ing (MSEL) (Mullen 1995). In this study, we explore the 
use of concurrent correlation to investigate the maturation 
of white matter structures as well as the co-development of 
white matter myelin water fraction (MWF) and white matter 
volume, where the concurrent correlation was estimated by 
kernel smoothing.

A secondary outcome of investigating brain–behavior 
relationships is the illumination of the underlying brain 
networks and systems. Typically investigated using func-
tional neuroimaging, the identification of neural systems 
that underlie differing cognitive and behavioral skills is an 
important goal in neuroscience research. Resting-state func-
tional imaging, or functional connectivity imaging (Smith 
et al. 2013), allows the delineation of brain networks based 
on shared temporal signal profiles with the assumption that 
discrete voxels with similar temporal profiles are in some 
way connected or part of the same underlying network (Bull-
more and Sporns 2009; Wang et al. 2010). Comparison of 
the brain’s connections, or connectivity matrix, between 
healthy and diseased populations can provide invaluable 
insight into pathology-induced disruption (Fair et al. 2012; 
Fornito et al. 2012), and analysis across the population can 
inform on associations between connectivity and cognitive 
metrics. Characterizing connectivity across infancy and 
childhood also allows investigation into the brain’s func-
tional organization and how networks emerge and are refined 
with age (Fair et al. 2007; Supekar et al. 2010; Uddin et al. 
2010).

A similar approach (i.e., voxels with similar temporal 
functional signal profiles are part of the same network) 
may also be applied to structural imaging data, though 
over a longer time span (i.e., weeks, months, or years) 
(O’Muircheartaigh et al. 2014). Here, the assumption is that 
regions with similar developmental profiles are part of the 
same network. Previously, our group has used independent 
component analysis (ICA) (Beckmann 2012) to identify spa-
tially contiguous regions with similar temporal developmen-
tal profiles of myelination, and then related those structural 
profiles to developing cognitive abilities (O’Muircheartaigh 

et al. 2014). While informative, evaluating a single tempo-
ral correlation value across the entire developmental win-
dow limits our ability to investigate the time dynamics of 
evolving structural networks. In this study, therefore, we 
use concurrent correlation to investigate the simultaneous 
and coincident maturation of white matter regions to: (1) 
determine whether this methodology provides biologically 
meaningful measures for the concurrent development of 
pairs of brain regions; and (2) construct networks that are 
not age-dependent but inform about (a) the total level of 
co-development, and (b) the dynamics of co-development, 
where these networks will reflect the dynamics across all 
ages through infancy and early childhood.

We hypothesized that structural maturation should mir-
ror functional changes (Fair et al. 2007), with networks 
becoming more specialized and segregated with age. Build-
ing on this methodological framework, we then sought to 
investigate differences in network structure and evolution 
in children stratified by socioeconomic status, for which 
maternal education level served as a stable and prominent 
proxy (Bornstein et al. 2003), while we also evaluated the 
effect of SES as measured by the Hollingshead 4-Factor 
Index (HI) (Hollingshead 1975). Results from our analysis 
revealed significant differences in the overall magnitude of 
the time-dynamic correlation amongst identified white mat-
ter networks for different maternal education levels.

This work provides the foundation for a potentially 
important new way of investigating brain development that, 
though applied here to structural myelin water imaging data, 
could be readily applied to other longitudinal functional, 
diffusion, or structural imaging data.

Methods

Subjects

Data from 222 children (127 males) between 65  days 
and 1489 days of age (approximately 2–48 months) were 
included in this analysis. General demographic informa-
tion is provided in Table 1. A total of 445 longitudinal 
MRI measurements were made at irregular time points for 
these children, ranging from one to six measurements per 
child (median = 2 measurements) at 6 to 24-month intervals 
(median = 15.5 months) as shown in Fig. 1.

Children were recruited from the local Providence, Rhode 
Island and surrounding areas with a focus on neurotypical 
development. Children with known risk factors for abnor-
mal brain or cognitive development were excluded, includ-
ing in utero exposure to alcohol, cigarette smoke, or other 
illicit substances; premature birth before 37 weeks gesta-
tion; neurological trauma; or family history of major psy-
chiatric or learning disorder, including maternal depression 
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requiring medication. Specific inclusion criteria included: 
(1) healthy singleton birth between 37 and 42 weeks gesta-
tion; (2) uncomplicated pregnancy and delivery; (3) APGAR 
scores > 8; (4) no reported abnormalities on fetal ultrasound; 
(5) no reported neurological history in the child; (6) no 
reported psychiatric or learning disability history in the child 
or first-degree relatives.

MRI protocol and analysis

In general, children under 4 years of age were imaged during 
natural and non-sedated sleep. Older children who were able 
to tolerate awake scanning were imaged while watching a 
favorite movie. All imaging was performed on a 3-T Siemens 
Tim Trio scanner equipped with a 12-channel head RF array. 

To minimize subject motion, children were swaddled in an 
infant or pediatric MedVac vacuum immobilization bag (CFI 
Medical Solutions, USA) and foam cushions were placed 
around their head. Scanner noise was reduced by limiting 
the peak gradient amplitudes and slew rates to 25 mT/m/s. 
A noise-insulating insert (Quiet Barrier HD Composite, 
UltraBarrier, USA) was also fitted to the inside of the scan-
ner bore. MiniMuff pediatric ear covers and electrodynamic 
headphones (MR Confon, Germany) were used for all chil-
dren. A pediatric pulse-oximetry system and infrared camera 
were used to continuously monitor the infants and children 
during scanning (Dean et al. 2014a).

To assess brain development, myelin water fraction 
(MWF) imaging via mcDESPOT (Deoni et al. 2008) was 
used to characterize myelination. Through the acquisition 
of multiple variable flip angle T1-weighted spoiled gradi-
ent and T1/T2-weighted fully balanced images, mcDESPOT 
decomposes the measured MRI signal into contributions 
from three water pools or relaxation species: water trapped 
within the lipid bilayers of the myelin sheath; intra and extra-
cellular water; and a non-exchange free water component 
attributable to cerebral spinal fluid (CSF). The MWF is the 
relative volume fraction of the myelin-associated water and 
is generally between 0 and 25% for healthy white matter 
(MacKay et al. 2009). Validation of the MWF as a reliable 
biomarker of myelin content has been previously provided 
by MRI histology correlations (Wood et al. 2016), as well as 
from in vivo studies of known white matter disorders, such 
as multiple sclerosis (Kolind et al. 2012).

Table 1  Children demographics by maternal education levels

higher ≥ college or university graduate, median partial college, lower 
≤ high school graduate

Education Higher Medium Lower

Participants (n) 129 53 40
Number of visits 2.2 ± 1.2 1.7 ± 0.94 1.9 ± 0.96
Female:male 54:75 21:32 20:20
Gestational age (days) 275 ± 9 276 ± 9 278 ± 8
Birth weight (kg) 3.4 ± 0.5 3.4 ± 0.4 3.2 ± 0.5
Feeding method 

mixed:bottle:breast
44:22:58 20:13:17 9:23:7

Fig. 1  Left: visit times for all subjects. Right: visit times for subjects with higher or lower maternal education. Each row corresponds to a sub-
ject, where black dots denote visits
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Age-specific and acoustically muffled imaging protocols 
(Deoni et al. 2012), comprising 8  T1-weighted spoiled gra-
dient echo images (SPGR or spoiled FLASH) and 16 bal-
anced  T1/T2-weighted steady-state free precession (bSSFP or 
TrueFISP) images, were used to acquire quantitative (q)T1, 
 qT2, and MWF data in each child. Two inversion-prepared 
(IR)-SPGR images were additionally acquired for correction 
of radio-frequency  (B1) inhomogeneities and bSSFP images 
were acquired with two phase cycling patterns (180° and 0°) 
for correction of main magnetic field  (B0) inhomogeneities 
(Deoni 2011). Total imaging times ranged from 15 to 24 min 
depending on child age and head size.

Following acquisition, data were visually assessed for 
motion artifacts (e.g., blurring and ghosting) by the same 
research team member (SCLD) and standard mcDESPOT 
processing was performed. This includes linear co-registra-
tion of the child’s SPGR, IR-SPGR, and bSSFP images to 
account for subtle head movement (Jenkinson et al. 2002), 
non-parenchyma voxel removal (Smith 2002), and correc-
tion of flip angle errors and off-resonance inhomogeneities 
using DESPOT1-HIFI and DESPOT2-FM (Deoni 2011). 
The multi-angle SPGR and bSSFP data were subsequently fit 
to 1- and 3-pool tissue models to estimate single-component 
 qT1 and  qT2, and multi-component volume fractions and 
relaxation times for intra/extra-axonal water, non-exchang-
ing free water, and the myelin-associated water (MWF) 
(Deoni et al. 2013b). These quantitative images (‘maps’) 
were then non-linearly aligned to a common analysis space 
in the approximate Montreal Neurological Institute (MNI) 
space using a previously described multi-step approach that 
first aligns the subject’s high flip angle  T1 weighted SPGR 
image to an age-specific template and then applies the calcu-
lated transformation matrix to the quantitative maps.

Using standardized structural (Brett 1999) and tractogra-
phy (Mori et al. 2008) atlases, regional masks were devel-
oped corresponding to bilateral cerebellar white matter, 
cingulum, corona radiata, internal capsule; frontal, occipi-
tal, parietal, and temporal lobes; and the genu, splenium, 
and body of the corpus callosum. Mean MWF values were 
obtained from each of these regions for each child.

We also quantified total white matter, gray matter, and 
brain volume using an atlas-based approach. Due to the 
lack of gray/white matter contrast, it is difficult to accu-
rately delineate white matter in children under ~ 9 months 
of age using either  qT1 or  T1 weighted imaging data (Raschle 
et al. 2012). To address this, we first applied FMRIB’s Fast 
Automated Segmentation Tool (FAST) (Zhang et al. 2001) 
to a large (n = 93) set of  T1 weighted images from children 
2–4 years of age. Calculated white and gray matter masks 
were then non-linearly registered to our common analysis 
space using the same transformation approach as described 
above. Aligned masks were then averaged and thresholded to 
create population masks, which were then transformed back 

to all participants by applying the inverse transformation 
matrix for each individual. White and gray matter volumes 
were then calculated for each child by summing the result of 
this transformation multiplied by the voxel volume.

Functional correlation

To investigate the co-development of two longitudinal pro-
cesses, for example, the myelination of two different white 
matter regions, we calculated the time-dynamic functional 
or concurrent correlation between the processes. Let X(t) 
and Y(t) , t ∈   denote two longitudinal white matter devel-
opmental processes on which we make occasional measure-
ments, where y denotes the period of interest. Our goal is 
to obtain the concurrent cross-correlation of the concurrent 
processes (see for example Ramsay and Silverman 2005) 
evaluated at time t , given by

Since only sparse and irregular observations are available, 
this correlation cannot be estimated cross-sectionally, as 
each cross-sectional time slice contains only a low amount 
of data (see Fig. 1). We instead applied local kernel smooth-
ing (Müller 1987; Fan and Gijbels 1996), with appropriate 
bandwidth choice for estimating the covariance and vari-
ances, which are then plugged into Eq. (1) for estimating 
the functional correlation; see Zhou et al. (2018), where 
theoretical justifications such as consistency results are also 
provided. Technical details about these smoothing methods 
are included in the “Appendix”. The implementation FCCor 
of the estimation procedure for the pairwise functional cor-
relations is available in the R package fdapace (Dai et al. 
2018), which can be accessed on CRAN.

We applied functional correlation to investigate the asso-
ciation of concurrent myelination processes in two separate 
tasks: task (1) the whole brain white matter MWF and 
white matter volume; and task (2) pairwise MWF in the 
23 white matter regions: body, genu, and splenium of the 
corpus callosum; bilateral frontal, parietal, occipital, tem-
poral, and cerebellar white matter; bilateral internal cap-
sule, corona radiata, cingulum, and superior longitudinal 
fasciculus. We limited our consideration to the period when 
denser measurements are available and thus more stable 
estimates can be obtained, which is 150–1000 days for task 
1, and 150–750 days for task 2. Task 1 was performed to 
better understand how myelination drives early brain vol-
ume growth, as myelin accounts for a sizeable volume frac-
tion of mature white matter (O’Brien and Sampson 1965), 
and altered myelination is a hypothesized substrate in the 
early brain overgrowth observed in autism (Dementieva 
et al. 2005; Lewis et al. 2013). Task 2 was performed to 

(1)corr(X(t), Y(t)) =
cov(X(t), Y(t))√
var(X(t)) var(Y(t))

.
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investigate how regions evolve with age and to determine if 
anatomically plausible networks can be identified.

Functional principal component analysis (FPCA)

For task 2, after obtaining the correlation functions we car-
ried out an FPCA on the pairwise correlation functions 
between different white matter structures. Let Ck(t) denote 
the correlation function between a pair of the 23 regions, for 

k = 1,… , 253 , since there are 
(
23

2

)
= 253 distinct pairs. 

Correlation functions Ck(t) are square integrable random 
functions and as such have Karhunen–Loève expansions 
(Grenander 1950; Müller 2005; Ramsay and Silverman 
2005; Wang et al. 2016)

where �C(t) = E(Ck(t)) is the mean function, the �j(t) are the 
orthonormal eigenfunctions of the auto-covariance operator, 
and the �jk are the functional principal components (FPCs) 
with variance �j , for j = 1, 2,… . The eigenfunctions �j(t) 
can be interpreted as the dominant modes of variation (Cas-
tro et al. 1986; Jones and Rice 1992; Wang et al. 2016) in 
Ck(t) , and the FPCs are the corresponding Fourier coeffi-
cients of the centered process Ck(t) − �C(t) . Using the eigen-
functions �j as basis functions, FPCA leads to the truncated 
representation CJ

k
(t) = �C(t) +

∑J

j=1
�jk�j(t) for some J < ∞ , 

which is the most parsimonious representation of the pro-
cesses Ck(t) in the sense that it explains the highest fraction 
of total variation among all such representations with J com-
ponents. Further details can be found in the “Appendix”. In 
practice FPCA needs to be performed based on the sample 
of estimated correlation functions Ĉk , which then leads to 
the empirical FPCA

where �̂�Ĉ , 𝜉jk , and �̂�j are the empirical estimates of �C , �jk , 
and �j , respectively.

Comparing development in groups with differing 
maternal education levels

As a preliminary and pilot application of the developed 
methodology, we examined network development in chil-
dren stratified by their social demographic and economic 
environment (SES). SES has previously and consistently 
been linked with changes in brain structure and function 
(Hackman and Farah 2009; Gao et al. 2015; Hair et al. 

(2)Ck(t) = �C(t) +

∞∑
j=1

�jk�j(t),

(3)Ĉk(t) = �̂�Ĉ(t) +

J∑
j=1

𝜉jk�̂�j(t),

2015; Noble et al. 2015), as well as child cognitive abili-
ties and academic performance (Noble et al. 2005; Sirin 
2005). We chose to use only the maternal education level 
as a measure reflective of overall SES, which can include 
numerous factors including educational attainment, family 
income, housing neighborhood, and social status. Maternal 
education has been shown to be a relatively stable measure 
of SES, unlike occupational status (Bornstein et al. 2003), 
and is not attenuated by single or stay-at-home mothers. 
Maternal education was measured for each family using 
the Hollingshead scale (Hollingshead 1975), with maternal 
education quantized on a 7-level scale, with 3 = partial 
high school; 4 = high school graduate; 5 = partial college; 
6 = college or university graduate; and 7 = professional 
degree. Based on maximum achieved maternal education 
level, children were stratified into either a higher level 
(≥ 6) or lower level (≤ 4) group. We compared the dynamic 
developmental patterns of MWF pairwise correlations 
between the higher and lower group children by compar-
ing the projection scores of the pairwise correlation func-
tions. The concurrent correlation between the 23 white 
matter regions were estimated separately for each group 
only between 150 and 750 days, because there were fewer 
observations for the low group between 750 and 1000 days 
(see Fig. 1).

After obtaining the estimates Ĉhi
k

 and Ĉlo
k

 of the k th cor-
relation function for the higher and the lower education 
group, respectively, where k = 1,… , 253 , we projected the 
centered correlation functions Ĉg

k
− �̂�Ĉ onto �̂�j , for g = hi, lo , 

j = 1, 2  ,  a n d  o b t a i n e d  p r o j e c t i o n  s c o r e s 
x
g

jk
= ⟨Ĉg

k
− �̂�Ĉ, �̂�j⟩ = ∫ (Ĉg

k
(t) − �̂�Ĉ(t))�̂�j(t) dt. Visualization 

and comparison of the higher and lower education groups 
were then based on these projection scores, {xhi

jk
}253
k=1

 and 

{xlo
jk
}253
k=1

 , where we visualized the concurrent myelination 

between regions as defined by the projection scores by con-
structing connectivity networks, separately for the first two 
modes of connectivity j = 1, 2.

To determine whether there were differences in the co-
myelination patterns between children in the higher and 
lower education groups we used a permutation test. To test 
whether the distributions of projection scores differed sig-
nificantly between the two groups, we employed the L2 Was-
serstein distance W2(�, �) between two probability measures 
�  a n d  �  a s  t e s t  s t a t i s t i c ,  d e f i n e d  b y 
W2(�, �) =

[
inf� ∫ ||x − y||2 d�(x, y)]1∕2, where || ⋅ || is the 

Euclidean norm, and the infimum is taken over all joint 
measures � with marginals � and � . For distributions on the 
real line as considered here, it is well-known that the L2 
Wa s s e r s t e i n  d i s t a n c e  c a n  b e  w r i t t e n  a s 
W2(�, �) =

[∫ 1

0
(F−1(s) − G−1(s))

2
ds
]1∕2

 , where F and G are 

the cumulative distribution functions of � and � , respectively 
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(Hoeffding 1940). The p value of the test was determined 
from 10,000 permutation samples.

Results

Correlation between white matter myelination 
and white matter volume

Since myelin represents a significant fraction of total white 
matter volume, we hypothesized that measures of myelina-
tion and white matter volume throughout childhood would 
be strongly correlated. The longitudinal mean trajectories of 
white matter myelination and white matter volume, and their 
concurrent correlation function are shown in Fig. 2. Point-
wise significance at the 0.05 level as determined by 10,000 
bootstrap samples is indicated in red and adjusted signifi-
cance in asterisks, where the (conservative) Bonferroni 
adjustment was performed for multiple testing at 200, 400, 
600, 800, and 1000 days. The correlations were found to be 
overall above zero, increasing until 580 days to around 0.2, 
and then slightly declining. The correlations between white 
matter myelination and volume were significantly different 
from zero at 400 and 600 days after multiple adjustment; 
unadjusted pointwise significance was observed between 
290 and 780 days. Bootstrap confidence intervals became 
wider towards 1000 days, as fewer observations were avail-
able at older ages. These results suggest that while being an 
important contributor, myelination is not the sole or perhaps 
even primary driver of early white matter volume growth.

Pairwise correlation functions between white 
matter regions

The pai r wise  cor re la t ion  funct ion  est imates 
Ĉk = �corr(Xj(t),Xl(t)) for the (j, l) th subregion are shown 
in Fig. 3. For better visualization, we show the correla-
tion functions for all pairs j = 1,… , 23 and l = 1,… , 23 , 
although ĉorr(Xj(t),Xl(t)) = ĉorr(Xl(t),Xj(t)) . Each panel of 
Fig. 3 displays the correlation functions between one white 
matter region and all other regions, where line type denotes 
left/right hemisphere or genu/body/splenu corpus callosum, 
and color denotes brain region.

FPCA on pairwise correlations

Applying FPCA on the pairwise correlations Ĉk , in Fig. 4, 
we highlight the first two eigenfunctions (left panel) and the 
first two modes of variation (middle and right panels). The 
eigenfunctions have natural interpretations and serve as the 
directions on which we then project the correlation functions 
to obtain projection scores, which are the functional princi-
pal components. The first eigenfunction corresponds to the 
overall strength of correlation/co-development, and explains 
93.5% of total variation, while the second eigenfunction cor-
responds to the contrast of correlations earlier and later in 
the early life period that we studied and accounts for 5.2% 
of total variation. The second and third plots illustrate the 
modes of variation by displaying the mean function (red 
solid) plus or minus 1 or 2 standard deviations times the 
eigenfunctions. A more detailed explanation for the modes 
of variation is included in the “Appendix”.

Fig. 2  Longitudinal measurements of white matter volume and MWF 
(left and middle) with overall mean functions (blue), and the concur-
rent correlation between them throughout early childhood (right). For 
the last correlation plot, the solid line corresponds to the functional 

correlation estimate and the light gray band denotes 95% pointwise 
bootstrap confidence intervals; pointwise significance at 0.05 level is 
indicated by red line segment and adjustment significance by asterisks
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Connectivity networks

It is of interest to investigate the connectivity network 
between white matter regions, where the connection is 
defined by the overall correlation in myelination or the 
increase/decrease of correlation over time. We separated the 
observations according to the j th projection scores for 
j = 1, 2 , i.e., the first and second functional principal 

components, into five bins, where the four cut points are 
defined by −1.5

√
�̂�j , −0.5

√
�̂�j , 0.5

√
�̂�j , and 1.5

√
�̂�j ; here 

�̂�j is the estimated variance of the j th FPC �jk as in Eq. (2). 
In the first panels in the first and third rows of Fig. 5 we 
show the modes of variation 𝜇C(t) + x̄𝜙j(t) , where x̄ is the 
mean of the j th FPCs in each of the five bins. The remaining 
panels in Fig.  5 visualize the network of correlation 
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Fig. 3  Pairwise functional correlations between different white matter 
structures for all children. Each panel shows the 23 functional cor-
relations each constructed pairwise between one region (indicated in 

the panel title) and one of the 23 regions (indicated by color and line 
type), including the region itself, where the correlation is constant at 
1 for all ages
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functions with a Circos plot (Zhang et al. 2013). A pair of 
regions is marked as connected in each plot if the FPC 𝜉jk of 
the correlation function falls within the corresponding bin 
for j = 1, 2.

Comparing correlation functions and networks 
in groups with differing maternal education/SES

The pairwise correlation functions for the higher and lower 
maternal education groups were estimated separately and 
are shown in Figs. 6 and 7, respectively. It appears the lower 
education group had smaller overall correlations, espe-
cially in bilateral cerebellum, and the correlations tended to 
decrease with age, in contrast to the higher education group 
where the correlations overall were relatively stable with age 
between 350 and 750 days. For an additional analysis using 
the HI (Hollingshead 1975) we refer to the Supplement.

The differences between the pairwise correlation func-
tions in the high and the low groups are shown in Fig. 8. 
These results suggest that the correlations across hemi-
spheres (dashed curves in the first and second rows and solid 
curves in the third and fourth rows) are higher in the later 
time period for the higher education group than the lower 
education group. This corresponds to a slower decrease in 
correlation in these areas roughly after 400 days of age. The 
differences were largest for the bilateral occipital and tempo-
ral lobe, cerebellum, optic radiation, and corona radiata; and 
left superior longitudinal fasciculus. In the higher education 
group, the overall correlations for the genu, body, and splenu 
corpus callosum with the left hemisphere were stronger as 

compared to the lower education group, but those with the 
right hemisphere were weaker.

The projection scores for all the correlation functions 
estimated within each education group are displayed in 
Fig. 9, where we use color to encode the value of the first 
and second projection scores. Among other things, Fig. 9 
demonstrates that the overall correlation tended to be higher 
between white matter regions within the same hemisphere 
than between hemispheres.

The kernel density estimates (Silverman 1986) of the first 
and second projections were shown in Fig. S1. The higher 
and lower education groups had significantly different first 
projections (p = 0.02).

To compare the overall magnitude and time-dynamic 
connectivity networks for the higher and the lower groups, 
Figs. S2 and S3 present the modes of variation and the net-
works of correlation functions. Differences can be seen in 
the time-dynamic networks (Fig. S3) between the higher and 
the lower education groups, especially in the networks of 
fast increasing correlations (red) and of fast decreasing cor-
relations (blue).

Discussion

The time-dynamic correlation between whole brain white 
matter myelination and volume as in the third panel of 
Fig. 2 reveals that their co-development increases begin-
ning 150 days after birth, peaks at 580 days with a correla-
tion equal to 0.2, and then decreases after 580 days. White 

0.00

0.05

0.10

200 400 600
Age (days)

φ̂1 φ̂2

200 400 600

0.4

0.6

0.8

1.0

Age (days)
200 400 600

0.4

0.6

0.8

1.0

Age (days)

µ̂(t) − 2 λ̂j φ̂j(t) µ̂(t) − λ̂j φ̂j(t) µ̂(t) µ̂(t) + λ̂j φ̂j(t) µ̂(t) + 2 λ̂j φ̂j(t)

Fig. 4  Eigenfunctions (left) and the first (middle) and second (right) 
modes of variation for pairwise correlation functions. In the middle 
and the right panels we show the estimates of �(t) + k

√
�j�j(t) for 

k = −2 (solid), −1 (dashed), 0 (red), 1 (dotted), and 2 (dash-dotted). 
The first mode of variation explains 93.5% of total variation for the 

pairwise correlation functions and corresponds to the overall mag-
nitude. The second mode of variation accounting for 5.2% of total 
variation and corresponds to the increase/decrease in correlation over 
time
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Fig. 5  The overall magnitude (the first and the second rows) and 
time-dynamic (the third and the fourth rows) concurrent myelination 
network for all children. The averages of the correlation functions 
within each of the five bins (defined in the text) are shown in the first 
figures of the top and the third rows. The subsequent figures display 

overall (resp. time-dynamic) concurrent myelination between brain 
regions, where for each bin we marked as connected a pair of regions 
if the first (resp. second) projection of the corresponding correlation 
falls within that bin
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matter MWF and white matter volume processes reflect 
myelin development at the population level, and this is dem-
onstrated in Fig. 2, left and middle panels, where the mean 
development trajectories for both processes follow a similar 
pattern. While the mean trajectories are well-aligned, the 
observed correlation between white matter MWF and white 
matter volume processes was found to be relatively small 
with a value of 0.2. So while the mean trajectories are quite 
similar, the deviations from the means are not strongly corre-
lated, pointing to substantial variability between individuals. 

This could be due to additional drivers of white matter vol-
ume as discussed below.

To gain additional insights into age-dependent pattern 
changes, mean white matter and MWF growth patterns 
are instructive (Fig. 2, left and middle). In general, white 
matter volume increases logarithmically with age, whilst 
MWF follows a modified sigmoidal function (Dean et al. 
2014b). There is a relatively stronger correlation between 
white matter volume and MWF during the period where 
they are both rapidly developing; poor correlation in early 
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Fig. 6  Pairwise functional correlations between different white matter structures for children with higher maternal education



545Brain Structure and Function (2019) 224:535–551 

1 3

infancy (birth to 4 months) when volume is increasing but 
myelination has yet to begin in earnest; and poor correlation 
in later childhood / early adolescence when white matter 
volume continues to increase but myelination has plateaued. 
As total white matter volume is related not only to myelina-
tion, but also axonal density and axonal diameter, it is likely 
that changes in axonal density and diameter are the primary 
drivers of volume change in later childhood, a finding which 
has been noted previously based on diffusion imaging data 
(Paus 2010). These additional contributions to white matter 

volume might explain the relatively low correlations with 
MWF.

The pairwise functional correlations between different 
white matter regions, shown in Figs. 3, 6, and 7 reveals that 
different white matter structures have distinct connectivity 
profiles with other regions. Bilateral cerebellum shows less 
overall co-development with other regions; most pairs of 
regions have decreasing co-myelination, with the cerebellum 
being a notable exception where the co-myelination with 
most other regions increases between 150 and 300 days. A 
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Fig. 7  Pairwise functional correlations between different white matter structures for children with lower maternal education
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reduction in correlation with age between differing sets of 
regions could reflect ongoing specialization and segrega-
tion of neural systems in line with developing cognitive and 
behavioral functions.

From past studies exploring functional connectivity 
changes throughout early childhood, there has been a noted 
pattern of segregation and integration of networks with 
age. Globally, this is evidenced by a reduction in overall 
intra-hemisphere, and increased inter-hemisphere, con-
nectivity (Fair et al. 2007; Gao et al. 2015). Our structural 

covariance/connectivity measures support this and provide 
new insight into associated changes in the underlying brain 
structure. For example, sets of regions that show increas-
ing correlation with age (Fig. 5) include: (1) corpus cal-
losum, cerebellum, internal capsule, and parietal regions; 
and (2) the frontal and temporal lobes. In contrast, regions 
showing decreasing correlation with age include: (1) tem-
poral lobes and the cingulum; and (2) corpus callosum and 
cerebellum and temporal lobes. These results are consist-
ent with prior functional connectivity network changes 
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Fig. 8  Differences between the pairwise functional correlations in the higher and lower education groups
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from childhood to adult (Vogel et al. 2010), and also align 
with known brain regions associated with specific skills 
and abilities that are maturing across the investigated age 
range. Corpus callosum, cerebellum, internal capsule, and 
parietal regions, for example, comprise parts of the motor 
network and, thus, would be expected to have increasing 
connectivity as fine and gross motor skills improve; Fron-
tal and temporal regions are central to systems involved 

with language, emotion, and executive functions, which 
also see substantial improvements across this age range.

Although the cerebellum is involved in varied functional 
processing, it is predominately associated with motion and 
spatial processing. The temporal lobe is primary involved 
in auditory functioning and language processing. Thus, it is 
not surprising that the development of the cerebellum and 
the temporal lobes are not significantly correlated. While the 

Fig. 9  The first and second projection scores by maternal education (upper: first projection; lower: second projection; left: higher education; 
right: lower education). Each dot corresponds to a pair of brain regions, while color stands for the values of the projections
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cingulum does connect the regions within the frontal and 
temporal lobes, it is primarily involved in executive func-
tioning, including attention and working memory skills. 
These again are divergent processes from the auditory pro-
cessing of the temporal lobe.

Comparing children from the lower and higher maternal 
education groups, children from the lower group appeared 
to have more pairs of white matter regions with declining 
co-myelination and higher variance in the correlations than 
the higher education group. Regions in the same hemisphere 
had overall higher levels of co-development than those in 
different hemispheres, probably due to anatomic proximity.

The eigenfunctions obtained from the FPCA have natu-
ral interpretations and serve as the directions on which we 
project the correlation functions to obtain projection scores. 
The first eigenfunction corresponds to the overall magnitude 
of correlation/co-development, and the second eigenfunction 
corresponds to the contrast of the correlation between earlier 
and later days of the investigated period. These two major 
modes of variation can be characterized as size and dynam-
ics, as evidenced from the modes of variation in Figs. S2 
and S3 (left upper panel), so that the observed correlation 
functions are composed of these two components, charac-
terizing the correlation function for each pair of regions by 
its size and dynamics. Subsequent analysis concerning the 
magnitude or time dynamics of co-development can then be 
performed based on the projection scores.

The FPCA method had stable performance when applied 
to the pairwise correlation functions, since the correlations 
have bounded values with no outliers. The results produced 
by our FPCA as compared to a robust PCA via projection 
pursuit algorithm (Croux and Ruiz-Gazen 2005, see also; 
Bali et al. 2011) were highly similar, where the latter tar-
gets directions that maximize median absolute deviation 
(MAD). The first eigenfunctions and the projection scores 
(not reported here) were almost identical, while the second 
eigenfunctions and scores also exhibited a high degree of 
similarity. The downstream analysis including the construc-
tion of networks then also gave similar results.

The permutation test for the first and second projection 
scores shows that the distribution of the first projection 
scores is significantly different between the higher and the 
lower education groups, but the difference in the second 
projection scores is not found to be significant. Figure S1 
indicates the higher education group tended to have higher 
overall connectivity and slower decline in connectivity than 
the low group, perhaps reflecting a more mature and con-
nected brain.

The reason for the insignificant results despite the appar-
ent large difference in the second projections is possibly the 
small sample size for the lower education group (n = 40) 
and thus large variation in the second projections. The sec-
ond projection corresponds to the decrease/increase in the 

correlation functions over time, which is harder to quan-
tify than the first projection, which corresponds to overall 
magnitude.

Maternal education has been shown to be the component 
most associated with the full HI (Bornstein et al. 2003) and 
to be associated with brain network connectivity (Gao et al. 
2015). Although the full HI is available to us, as pointed 
out by a reviewer, it may suffer from the instability and 
inaccuracy in the occupational scale. We therefore chose to 
measure SES by the maternal education scale only, which 
is also in line with our previous work (Deoni et al. 2013a). 
Additional analysis with SES levels defined by the full HI is 
included in the Supplementary Materials, which produced 
similar results to those defining SES levels by maternal edu-
cation only, but the first projection scores were no longer 
significantly different in the higher and lower groups This 
indicates maternal education may indeed be a better meas-
ure of SES than as quantified by HI in the context of brain 
network development.

Conclusion

This work introduces an important methodological frame-
work for investigating concurrent correlations in sparse 
and irregularly sampled structural imaging data. Using this 
framework, we investigated the development of structural 
brain networks throughout childhood based on white mat-
ter myelination, though similar analyses could equally be 
applied to other imaging metrics, including relaxation times 
and diffusion characteristics. Results are in line with past 
functional neuroimaging studies, with increasing correlation 
in associated regions as networks consolidate, and decreas-
ing correlation in dissociated regions. The primary meth-
odological innovations are illustrated with this preliminary 
investigation, where we demonstrate differential patterns of 
development in children born to mothers with higher and 
lower education levels. Lower maternal education level was 
found to be associated with a less mature and less connected 
developing brain.
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Appendix

Estimation of correlation functions

The functional correlation corr(X(t), Y(t)) is estimated by 
the plug-in estimator
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We propose to estimate cov(X(t), Y(t)) , var(X(t)) , and 
var(Y(t)) separately by kernel local linear smoothing the 
pooled centered observations, which is detailed as follows. 
Assume we make observations (tij,Xij, Yij) at each time tij , for 
subject i = 1,… , n and visit j = 1,… , ni , where Xij = X(tij) , 
Yij = Y(tij) , n is the number of subjects and ni is the number 
of measurements per subject.

We first estimate �X(t) ∶= E(X(t)) and �Y (t) ∶= E(Y(t)) 
by kernel local linear smoothing. We define the local linear 
kernel smoother for �X(t) as �̂�X(t) = 𝛽0 by smoothing the 
pooled observation {(tij,Xij)}

n
i=1

ni
j=1

 , where

h > 0 is the bandwidth, and K(⋅) is a kernel function. The 
mean function �Y (t) of Y(t) can be estimated similarly by 
smoothing {(tij, Yij)}ni=1

ni
j=1

 . Next we obtain the centered 

observations

for i = 1,… , n and j = 1,… , ni . Finally, ĉov(X(t), Y(t)) 
(resp. v̂ar(X(t)) and v̂ar(Y(t)) ) is obtained by smoothing 
{(tij, X̃ijỸij)}

n
i=1

ni
j=1

 (resp. {(tij, X̃2
ij
)}n

i=1

ni
j=1

 and {(tij, Ỹ2
ij
)}n

i=1

ni
j=1

 ) as 

in (5). For all kernel local smoothing we used Gaussian ker-
nel for K(⋅) with bandwidth h equal to 150 days.

Note that one can write var(X(t)) = E(X2(t)) − �X(t)
2 and 

thus construct another plug-in estimate v̂ar(Y(t)) from 
Ê(X(t)2) − �̂�X(t)

2 by smoothing {(tij,X2
ij
)}n

i=1

ni
j=1

 for Ê(X(t)2) 

and {tij,Xij}
n
i=1

ni
j=1

 for �̂�X(t) . This alternative procedure is 

known to have larger bias than the proposed procedure (see 
for example Fan and Yao 1998; Zhang and Wang 2016) and 
thus is not used here. An alternative approach is Frechet 
regression (Petersen et al. 2018).

Modes of variation

The modes of variation for functional data was discussed by 
Castro et al. (1986) and Jones and Rice (1992). Given a 
random function X(t) , we target to summarize its important 
variability using a few basis functions. Denoting 
XC(t) = X(t) − �(t) as the centered process, our goal is to 
approximate XC(t) by XC

J
(t) =

∑J

j=1
�j�j(t) using a few basis 

functions, where {�j(t)}
J
j=1

 is an orthonormal basis of L2and 

(4)ĉorr(X(t), Y(t)) =
ĉov(X(t), Y(t))√
v̂ar(X(t)), v̂ar(Y(t))

.

(5)

(𝛽0, 𝛽1) = arg min
𝛽0,𝛽1

n∑
i=1

ni∑
j=1

K

(
tij − t

h

)
[Xij − 𝛽0 − 𝛽1(t − tij)]

2,

X̃ij = Xij − �̂�X(tij),

Ỹij = Yij − �̂�Y (tij),

the �j are the j th Fourier coefficients of XC projected onto 
�j . Using a suitably defined notion of total variation for 
functional data, the best J-dimensional approximation XC

J
(t) 

to XC(t) in terms of total variation explained is given by the 
orthonormal basis that solves

An explicit solution to (6) is given by the eigenfunctions 
of G(s, t) = cov(X(s),X(t)) . Covariance function G has spec-
tral decomposition

where the �1 ≥ �2 ≥ ⋯ ≥ 0 are the eigenvalues and the 
�j(t) are the corresponding orthonormal eigenfunction. It is 
then well-known the first J eigenfunctions �1,… ,�J of the 
covariance operator G is a solution to (6), corresponding to 
the principal modes of variation, and the eigenvalue �j asso-
ciated with �j quantifies how much variation is explained 
by the j th eigenfunction. The fraction of total variation 
explained by the j th eigenfunction is �j∕

∑∞

j=1
�j.

References

Bali JL, Boente G, Tyler DE, Wang JL (2011) Robust functional 
principal components: a projection-pursuit approach. Ann Stat 
39(6):2852–2882

Beckmann CF (2012) Modelling with independent components. Neu-
roImage 62(2):891–901

Bornstein MH, Hahn CS, Suwalsky JTD, Haynes OM (2003) Socioeco-
nomic status, parenting, and child development: the Hollingshead 
Four-Factor Index of Social Status and the Socioeconomic Index 
of Occupations. In: Bornstein MH, Bradley RH (eds) Socioeco-
nomic status, parenting, and child development. Lawrence Erl-
baum Associates Publishers, Mahwah, pp 29–82

Brett M (1999) The MNI brain and the Talairach atlas, Technical report
Bullmore E, Sporns O (2009) Complex brain networks: graph theoreti-

cal analysis of structural and functional systems. Nat Rev Neu-
rosci 10:186–198

Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional 
brain development and its relation to cognitive development. Biol 
Psychol 54(1–3):241–257

Castro PE, Lawton WH, Sylvestre EA (1986) Principal modes of vari-
ation for processes with continuous sample curves. Technometrics 
28(4):329–337

Chevalier N, Kurth S, Doucette MR, Wiseheart M (2015) Myelination 
is associated with processing speed in early childhood: prelimi-
nary insights. PLoS ONE 10(10):e0139897

Croux C, Ruiz-Gazen A (2005) High breakdown estimators for prin-
cipal components: the projection-pursuit approach revisited. J 
Multivar Anal 95(1):206–226

(6)

min
�1,… ,�J

���j�� = 1,

⟨�j,�l⟩ = 0 for 1 ≤ j ≠ l ≤ J

E

⎛
⎜⎜⎝�

�
XC(t) −

J�
j=1

�j�j(t)

�2

dt

⎞
⎟⎟⎠
.

G(s, t) =

∞∑
j=1

�j�j(s)�j(t),



550 Brain Structure and Function (2019) 224:535–551

1 3

Dai X, Hadjipantelis PZ, Han K, Ji H, Lin SC, Müller HG, Wang JL 
(2018) fdapace: functional data analysis and empirical dynamics. 
R package version 0.4.0. https ://cran.r-proje ct.org/packa ge=fdapa 
ce. Accessed 30 Oct 2018

Dean DC III, Dirks H, O’Muircheartaigh J, Walker L, Jerskey BA, 
Lehman K et al (2014a) Pediatric neuroimaging using magnetic 
resonance imaging during non-sedated sleep. Pediatr Radiol 
44(1):64–72

Dean DC III, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, 
Walker L et al (2014b) Modeling healthy male white matter and 
myelin development: 3 through 60 months of age. NeuroImage 
84:742–752

Dean DC, O’Muircheartaigh J, Dirks H, Waskiewicz N, Walker L, 
Doernberg E, Piryatinsky I, Deoni SC (2015) Characterizing lon-
gitudinal white matter development during early childhood. Brain 
Struct Funct 220(4):1921–1933

Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, 
Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML 
(2005) Accelerated head growth in early development of individu-
als with autism. Pediatr Neurol 32(2):102–108

Deoni SCL (2011) Correction of main and transmit magnetic field 
(B0 and B1) inhomogeneity effects in multicomponent-driven 
equilibrium single-pulse observation of T1 and T2. Magn Reson 
Med 65(4):1021–1035

Deoni SCL, Dean DC III, O’Muircheartaigh J, Dirks H, Jerskey BA 
(2012) Investigating white matter development in infancy and 
early childhood using myelin water faction and relaxation time 
mapping. NeuroImage 63(3):1038–1053

Deoni SC, Dean DC III, Piryatinsky I, O’Muircheartaigh J, Waskiewicz 
N, Lehman K, Han M, Dirks H (2013a) Breastfeeding and early 
white matter development: a cross-sectional study. NeuroImage 
82:77–86

Deoni SCL, Matthews L, Kolind SH (2013b) One component? Two 
components? Three? The effect of including a nonexchang-
ing “free” water component in multicomponent driven equilib-
rium single pulse observation of T1 and T2. Magn Reson Med 
70(1):147–154 (PMCID: 3711852)

Deoni SCL, Rutt BK, Arun T (2008) Gleaning multicomponent T1 
and T2 information from steady-state imaging data. Magn Reson 
Med 60(6):1372–1387

Deoni SCL, O’Muircheartaigh J, Elison JT, Walker L, Doernberg 
E, Waskiewicz N, Dirks H, Piryatinsky I, Dean DC III, Jumbe 
NL (2016) White matter maturation profiles through early 
childhood predict general cognitive ability. Brain Struct Funct 
221(2):1189–1203

Durston S, Casey BJ (2006) What have we learned about cogni-
tive development from neuroimaging? Neuropsychologia 
44(11):2149–2157

Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Mie-
zin FM et al (2007) Development of distinct control networks 
through segregation and integration. PNAS 104(33):13507–13512 
(PMCID: PMC1940033)

Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NUF et al 
(2012) Distinct neural signatures detected for ADHD subtypes 
after controlling for micro-movements in resting state functional 
connectivity MRI data. Front Syst Neurosci 6:80 (PMCID: 
PMC3563110)

Fan J, Gijbels I (1996) Local polynomial modelling and its applica-
tions: monographs on statistics and applied probability, vol 66. 
CRC Press, Boca Raton

Fan J, Yao Q (1998) Efficient estimation of conditional variance func-
tions in stochastic regression. Biometrika 1:645–660

Fornito A, Zalesky A, Pantelis C, Bullmore ET (2012) Schizophrenia, 
neuroimaging and connectomics. NeuroImage 62(4):2296–2314

Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ram-
irez J et al (2015) Functional network development during the first 

year: relative sequence and socioeconomic correlations. Cereb 
Cortex 25(9):2919–2928 (PMCID: PMC4537436)

Grenander U (1950) Stochastic processes and statistical inference. 
Arkiv för matematik 1(3):195–277

Hackman DA, Farah MJ (2009) Socioeconomic status and the develop-
ing brain. Trends Cogn Sci 13(2):65–73 (PMCID: PMC3575682)

Hair NL, Hanson JL, Wolfe BL, Pollak SD (2015) Association of child 
poverty, brain development, and academic achievement. JAMA 
Pediatr 169(9):822–829 (PMCID: PMC4687959)

Hensch TK, Bilimoria PM (2012) Re-opening windows: manipulat-
ing critical periods for brain development. Cerebrum 2012:11 
(PMCID: PMC3574806)

Hoeffding W (1940) Masstabinvariante korrelationstheorie, vol 5. 
Schriften Des Mathematischen Instituts Und Des Instituts Für 
Angewandte Mathematik Der Universität Berlin, Berlin, pp 
181–233

Hollingshead AB (1975) Four factor index of social status, Technical 
report

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimi-
zation for the robust and accurate linear registration and motion 
correction of brain images. NeuroImage 17(2):825–841

Johnson MH (2001) Functional brain development in humans. Nat Rev 
Neurosci 2:475–483

Jones MC, Rice JA (1992) Displaying the important features of large 
collections of similar curves. Am Stat 46(2):140–145

Kolind SH, Matthews L, Johansen-Berg H, Leite MI, Williams SCR, 
Deoni S, Palace J (2012) Myelin water imaging reflects clinical 
variability in multiple sclerosis. NeuroImage 60:263–270

Lewis JD, Theilmann RJ, Townsend J, Evans AC (2013) Network 
efficiency in autism spectrum disorder and its relation to brain 
overgrowth. Front Hum Neurosci 7:845

MacKay AL, Vavasour IM, Rouscher A, Kolind SH, Madler B, Moore 
GR, Traboulsee AL, Li DK, Laule C (2009) MR relaxation in 
multiple sclerosis. Neuroimaging Clin 19:1–26

Marín O (2016) Developmental timing and critical windows for the 
treatment of psychiatric disorders. Nat Med 22(11):1229–1238

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K et al (2008) Stere-
otaxic white matter atlas based on diffusion tensor imaging in an 
ICBM template. NeuroImage 40:570–582

Mullen EM (1995) Mullen scales of early learning, Technical report
Müller HG (1987) Weighted local regression and kernel methods for 

nonparametric curve fitting. J Am Stat Assoc 82(397):231–238
Müller HG (2005) Functional modelling and classification of longitu-

dinal data. Scand J Stat 32(2):223–240
Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white mat-

ter is associated with the development of cognitive functions 
during childhood. J Cogn Neurosci 16(7):1227–1233 (PMCID: 
15453975)

Noble KG, Norman MF, Farah MJ (2005) Neurocognitive correlates of 
socioeconomic status in kindergarten children. Dev Sci 8:74–87

Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM 
et al (2015) Family income, parental education and brain struc-
ture in children and adolescents. Nat Neurosci 18(5):773–778 
(PMCID: PMC4414816)

O’Brien JS, Sampson EL (1965) Lipid composition of the normal 
human brain: gray matter, white matter, and myelin. J Lipid Res 
6(4):537–544

O’Muircheartaigh J, Dean DC, Ginestet CE, Walker L, Waskiewicz N, 
Lehman K, Dirks H, Piryatinsky I, Deoni SC (2014) White mat-
ter development and early cognition in babies and toddlers. Hum 
Brain Mapp 35(9):4475–4487

Paus T (2010) Growth of white matter in the adolescent brain: Myelin 
or axon? Brain Cogn 72(1):26–35

Petersen A, Deoni S, Müller HG (2018) Fréchet estimation of time-
varying covariance matrices from sparse data, with application 
to the regional co-evolution of myelination in the developing 

https://cran.r-project.org/package=fdapace
https://cran.r-project.org/package=fdapace


551Brain Structure and Function (2019) 224:535–551 

1 3

brain. Ann Appl Stat (to appear). https ://www.imsta t.org/journ 
als-and-publi catio ns/annal s-of-appli ed-stati stics /annal s-of-appli 
ed-stati stics next-issue s/

Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. 
Springer, Berlin

Raschle N, Zuk J, Ortiz-Mantilla S, Sliva DD, Franceschi A, Grant 
PE, Benasich AA, Gaab N (2012) Pediatric neuroimaging in early 
childhood and infancy: challenges and practical guidelines. Ann 
N Y Acad Sci 1252(1):43–50

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N et al 
(2006) Intellectual ability and cortical development in children 
and adolescents. Nature 440(7084):676–679 (PMCID: 16572172)

Shaw P, Lalonde F, Lepage C, Rabin C, Eckstrand K, Sharp W et al 
(2009) Development of cortical asymmetry in typically devel-
oping children and its disruption in attention-deficit/hyperac-
tivity disorder. Arch Gen Psychiatry 66(8):888–896. PMCID: 
PMC2948210

Silverman BW (1986) Density estimation for statistics and data analy-
sis. Chapman & Hall, London

Sirin SR (2005) Socioeconomic status and academic achievement: a 
meta-analytic review of research. Rev Educ Res 75:417–453

Smith SM (2002) Fast robust automated brain extraction. Hum Brain 
Mapp 17(3):143–155

Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, 
Miller KL et  al (2013) Functional connectomics from rest-
ing-state fMRI. Trends Cogn Sci 17(12):666–682 (PMCID: 
PMC4004765)

Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD (2010) Devel-
opment of functional and structural connectivity within the default 
mode network in young children. NeuroImage 52:290–301

Uddin LQ, Supekar K, Menon V (2010) Typical and atypical develop-
ment of functional human brain networks: insights from resting-
state FMRI. Front Syst Neurosci 4:21 (PMCID: PMC2889680)

van der Knaap MS, Valk J, Bakker CJ, Schooneveld M, Faber JA, Wil-
lemse J et al (1991) Myelination as an expression of the functional 

maturity of the brain. Dev Med Child Neurol 33(10):849–857 
(PMCID: 1743407)

Vogel AC, Power JD, Petersen SE, Schlaggar BL (2010) Development 
of the brain’s functional network architecture. Neuropsychol Rev 
20:362–375

Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-
state functional MRI. Front Syst Neurosci 4:16

Wang JL, Chiou JM, Müller HG (2016) Review of functional data 
analysis. Annu Rev Stat Appl 3:257–295

Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S et al (2012) 
Differences in white matter fiber tract development present from 6 
to 24 months in infants with autism. Am J Psychiatry 169(6):589–
600 (PMCID: 3377782)

Wood TC, Simmons C, Hurley SA, Wernon AC, Torres J, Dell’Acqua 
F, Williams SCR, Cash D (2016) Whole brain ex-vivo quantitative 
MRI of the cuprizone mouse model. PeerJ 4:e2632

Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional 
maturation of the brain. In: Minkowski A (ed) Regional develop-
ment of the brain in early life. Blackwell, Oxford, pp 3–70

Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and 
white: neuroimaging changes in brain structure during learn-
ing. Nat Neurosci Nat Publ Group 15(4):528–536 (PMCID: 
PMC3660656)

Zhang X, Wang JL (2016) From sparse to dense functional data and 
beyond. Ann Stat 44(5):2281–2321

Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images 
through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

Zhang H, Meltzer P, Davis S (2013) RCircos: an R package for Circos 
2D track plots. BMC Bioinform 14(1):244

Zhou Y, Lin SC, Wang JL (2018) Local and global temporal correla-
tions for longitudinal data. J Multivar Anal 167(2018):1–14

https://www.imstat.org/journals-and-publications/annals-of-applied-statistics/annals-of-applied-statisticsnext-issues/
https://www.imstat.org/journals-and-publications/annals-of-applied-statistics/annals-of-applied-statisticsnext-issues/
https://www.imstat.org/journals-and-publications/annals-of-applied-statistics/annals-of-applied-statisticsnext-issues/

	Age-dynamic networks and functional correlation for early white matter myelination
	Abstract
	Introduction
	Methods
	Subjects
	MRI protocol and analysis
	Functional correlation
	Functional principal component analysis (FPCA)
	Comparing development in groups with differing maternal education levels

	Results
	Correlation between white matter myelination and white matter volume
	Pairwise correlation functions between white matter regions
	FPCA on pairwise correlations
	Connectivity networks
	Comparing correlation functions and networks in groups with differing maternal educationSES

	Discussion
	Conclusion
	Acknowledgements 
	References


