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Abstract—Application of massive multiple-input multiple-
output (MIMO) systems to frequency division duplex (FDD) is
challenging mainly due to the considerable overhead required
for downlink training and feedback. Channel extrapolation,
i.e., estimating the channel response at the downlink frequency
band based on measurements in the disjoint uplink band, is
a promising solution to overcome this bottleneck. This paper
presents measurement campaigns obtained by using a wideband
(350 MHz) channel sounder at 3.5 GHz composed of a cali-
brated 64 element antenna array, in both an anechoic chamber
and outdoor environment. The Space Alternating Generalized
Expectation-Maximization (SAGE) algorithm was used to extract
the parameters (amplitude, delay, and angular information) of
the multipath components from the attained channel data within
the “training” (uplink) band. The channel in the downlink band
is then reconstructed based on these path parameters. The
performance of the extrapolated channel is evaluated in terms of
mean squared error (MSE) and reduction of beamforming gain
(RBG) in comparison to the “ground truth”, i.e., the measured
channel at the downlink frequency. We find strong sensitivity
to calibration errors and model mismatch, and also find that
performance depends on propagation conditions: LOS performs
significantly better than NLOS.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) will be an
essential part of 5G and beyond wireless communications sys-
tems. While massive MIMO performs generally better using
time division duplex (TDD) than frequency division duplex
(FDD) [1], frequency regulators over the world have assigned
large swathes of valuable spectrum as band pairs for FDD
operation; furthermore backward compatibility considerations
(e.g., with Long-Term Evolution (LTE)) also often require
FDD operation. Enabling FDD massive MIMO has thus been
a popular research topic in recent years [2]–[4]. The key
challenge lies in the acquisition of channel state information
for the downlink. Current systems use downlink training and
feedback from the user equipment (UE) to the base station
(BS), which leads to considerable overhead. An alternative
is frequency extrapolation, i.e., using channel information
measured in the uplink frequency band to estimate channel
information in the downlink frequency band.

The idea of frequency extrapolation for MIMO systems
has been studied in the past. One avenue of research was
the extrapolation of second-order channel characteristics such
as angular power spectra and correlation matrices. It can be
argued from physical considerations that the directions from
which the dominant powers are coming change only weakly

with frequency. Angular power spectra derived from Bartlett
and Capon beamformers were used in [5] for 4 × 4 MIMO.
The authors in [6] performed frequency extrapolation of ex-
tracted dominant angles using maximum-likelihood directional
estimators for 64-element arrays and combined them with an
ingenious training/feedback scheme.

Another, more difficult, goal is the extrapolation of the
complex, instantaneous channel frequency response. Since the
phases of the multipath components (MPCs) change rapidly
over frequency, such an extrapolation is extremely sensitive to
both measurement errors within the training band, and errors
in the extrapolation algorithm. While theoretical investigations
and experiments based on synthetic channel models have been
performed for a while [7]–[10], evaluations based on indoor
and outdoor measurements have been done only recently. In
particular, extrapolation based on a Fourier representation of
the channel using uniform linear arrays for 4 to 16 antenna
elements was done in [11]. Deep learning based frequency
extrapolation with 32 antenna elements showed sum-rates
information for measured MIMO cases in [12]. In all these
cases, the “training bandwidth” (i.e., the bandwidth in which
the channel was measured for estimation), was between 10 to
20 MHz, while the extrapolation range was between 40 to 72
MHz. Most of these investigations present the results in terms
of achievable beamforming gain, SNR, or data rate.

In this paper, we present results from a measurement
campaign in both an anechoic chamber and a realistic outdoor
scenarios. Results indicate error sources such as calibration
errors lead to worse performance than theoretical bounds [10],
[13]. As our investigation in [10], our extrapolation approach is
based on (i) measuring with a calibrated array, (ii) extracting
the MPC parameters with a high resolution parameter esti-
mation (HRPE) algorithm (the Space Alternating Generalized
Expectation-Maximization (SAGE) algorithm [14]), and (iii)
synthesizing the channel response at the new band.

Our measurements have the following characteristics. First,
channel measurements are done with a wideband (350 MHz),
real-time time-domain channel sounder that allows to mimic
operation of a 5G system. Second, we perform our measure-
ments in an outdoor environment under a variety of setups,
including line-of-sight (LOS), non-LOS (NLOS), and partial
LOS (PLOS), encountering real channel conditions that might
deviate from the model (finite sum of plane waves) that forms
the basis of the extrapolation. Third, calibration and measure-
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ments are done with different mountings (rotating positioner
and measurement cart respectively), with some time between
them, providing information about sensitivity to calibration
“aging” and its impact on the extrapolation. Last but not least,
we investigate different metrics to judge the quality of the
extrapolation, especially comparing mean squared error (MSE)
and reduction of beamforming gain (RBG).

The paper is organized as follows. Section II describes
channel sounder specifications, antenna array calibration, and
measurement scenarios. Section III describes the process of
applying SAGE to the measured data and extrapolating the
channel. Measurement results in Section IV quantify the result-
ing MSE and RBG of estimated channels in the extrapolated
frequency bands, followed by their implications for practical
channel extrapolation in the frequency domain. Section V
provides the conclusions and indications of our future work.

II. SOUNDER, CALIBRATION, AND MEASUREMENT

A. Channel Sounder Specifications

Massive MIMO usually refers to a BS with a large number
of antenna elements communicating with a multitude of single-
antenna UEs. Since the channel estimation errors for the
different UEs are independent of each other provided that they
use orthogonal training sequences, it is sufficient to analyze a
single-input multiple-output (SIMO) setup; such a setup was
used for our real-time channel sounder. Figure 1 and Table
1 show the photo and the specifications of the University
of Southern California (USC) SIMO channel sounder. We
chose the 3.5 GHz frequency band for the sounder because
it will be used widely for 5G and beyond. USC obtained
an experimental license to operate at the frequency from the
Federal Communications Commission (FCC).

On the transmitter (TX) side, the sounder uses a single
omni-directional antenna. The antenna has a non-uniform
beampattern in elevation, with a beamwidth (full-width half-
maximum, FWHM) of ∼ 90°. Note that due to the SIMO
setup, extraction of angles of departure is not possible, which
may be one of the error sources in the extraction of the
MPC parameters [15] when the antenna characteristics are not
separable in angle and frequency; the campaign in this paper
kept the error small by measuring in outdoor scenarios with
limited elevation spread.

The receiver (RX) uses a cylindrical 64 element array.
Patch antenna elements are put together in 16 columns,
where each column contains 4 active patches in the middle
(forming 4 rows), plus a dummy patch (terminated with 50
ohm loads) each at the top and bottom. Each element has
one vertically polarized and one horizontally polarized port.
While the measurements were conducted with all 128 ports,
only 64 vertically polarized ports were used for evaluation of
the channel. The reason is because cross-polarized ports in
RX had failed to provide consistent radiation patterns during
calibration due to high noise sensitivity (TX is vertically
polarized). Note that the lack of dual-polarization at TX
and RX might also contribute to modeling errors [15]. Each
vertically polarized port has azimuth beamwidth of 50° and

elevation beamwidth of 100° (see Fig. 2). The “stacked” patch
design provides a wide bandwidth (S11 < −10 dB), ∼ 10%
of the center frequency (∼350 MHz of 3.5 GHz).

The sounder operates according to the switched sounding
principle, where a single Radio Frequency (RF) chain is
sequentially connected to each of the 128 ports by a fast
(100 ns switching time) electronic switch. The noise figure
of the RX RF chain varies, with up to 11 dB when the
variable attenuator (required for adjustments to large input
level variations) in the chain is at 30 dB, and down to 2.5
dB when variable attenuator is at 0 dB.

At the TX, an arbitrary waveform generator (AWG) creates
a 350 MHz bandwidth multitone signal containing 2801 sub-
carriers (frequency spacing of 0.125 MHz). Using waveform
from [16], the low peak-to-average power ratio (PAPR) of
0.4 dB allows the system to transmit with power close to
the 1 dB compression point of the power amplifier without
saturation; the emitted equivalent isotropically radiated power
(EIRP) is 30 dBm. Each waveform lasts 8µs. This waveform is
repeated 10 times to increase the signal to noise ratio (SNR) by
averaging, increasing the duration of one SISO measurement
(i.e., between the TX antenna and one RX port) to 80µs. The
total SIMO sounding duration is 128× 0.08 = 10.24 ms.

Hardware Specs
Center frequency 3.5 GHz

# of TX/RX ports 1/64

TX EIRP 30 dBm

RX beamwidth az/el 50°/100°

RX RF switch time 100 ns

RX total noise figure < 11 dB

Sounding Waveform
Bandwidth 350 MHz

Sample frequency 1.25GSps

# of subcarriers 2801

PAPR 0.4 dB

Waveform duration 8 us

Waveform repetition 10

SISO duration 80 us

SIMO duration 10.24 ms

Fig. 1 & TABLE I: USC SIMO channel sounder

B. Calibration of Antennas and RF Chains

The waveform measured at the analog to digital converter
(ADC) at the RX contains the transmitted waveform affected
by antennas, RF chains, and the channel. Therefore, calibra-
tions of the antennas and the RF chains are necessary in order
obtain the true physical characteristics (amplitude, delay, and
angular information) of the channel itself. This subsection
discusses the calibration procedures; usage of the calibrated
data for HRPE will be discussed in Sec. III.

The TX antenna and the RX array (including the switches)
are calibrated “together”. Two ports on the vector network
analyzer (VNA) are connected to the input port of the TX



antenna and output port of the switch at RX. This setup is
placed in the shielded anechoic chamber at USC. TX and RX
were placed at least 5 m from each other, which is larger than
the Rayleigh distance of the array at the highest considered
frequency (2D2/λ = 3 m), so that the far-field assumption
holds. While TX antenna is fixed in one position, the RX
array is on a rotating positioner that moves the array in 5°
steps in both azimuth (360°) and elevation (180°), providing
72× 37 positions. The positioner was covered with absorbers
to minimize its impact on the measured array patterns.

For each position, the array switches through the 128 ports,
and for each switch position, the VNA sweeps to get frequency
response per port per position. During the calibration, the
TX power was 10 dBm, and a low-noise amplifier (whose
impact on the frequency characteristics was eliminated in post-
processing) was placed in front of the VNA receiving port, in
order to increase the SNR during calibration to 50 dB.

The calibration provides a 4-Dimensional calibration matrix
(port×azimuth×elevation×frequency) characterizing the
antennas. This complex pattern a(m,φ, θ, f), compensated by
free space path loss, serves as a reference radiation pattern
that is an input for the SAGE algorithm. Fig. 2 shows the
averaged azimuth pattern and elevation pattern over column
and row respectively at 3.5 GHz. Because frequency points
measured during the calibration are fewer than the frequency
points used in channel sounder (every 1 MHz vs every 0.125
MHz), the effective aperture distribution function (EADF) was
used to interpolate the pattern in elevation and azimuth angles
on unmeasured frequency points. [17].

Calibrating RF chain to obtain the so-called “RF back-to-
back” frequency response, Hb2b, is rather simple. The TX
output (at the TX antenna connector) is connected directly
(via a cable) to the RX input (at the point where normally
the switch output would be connected), with attenuators in
between to prevent the high power output from the TX
saturating the RF components in the RX. Frequency responses
of the attenuators and cables are then measured separately, and
compensated from the frequency response of the back-to-back
measurements that include them. Hb2b(f) is one-dimensional
complex valued vector, depending only on frequency.

C. Measurement Scenarios

For initial verification of the setup functionality, first mea-
surements were conducted in the anechoic chamber right after
the calibration. TX antenna and RX array remained in the
same position as during calibration (RX array still attached
to the positioner), as shown in Fig. 3 to minimize calibration
error. Then, outdoor measurements were conducted, where a
TX antenna was 1 m above ground at three different positions
and the RX array was on top of a four stories high parking
structure (USC PSX building) sitting on top of a cart. The
three different positions for TX covered scenarios which were
LOS, PLOS (where only parts of the arrays were at LOS due
to a waist-high wall - example: only 1st row of all 4 rows
was at LOS), and NLOS, where the LOS connection was
blocked by trees. Lastly, the sounder was moved back onto
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Fig. 3: Two different measurement scenarios

the positioner, and another LOS measurement was done in the
anechoic chamber. As the outdoor measurement studies were
conducted two months after the calibration, the objective of
this third experiment was to verify whether calibration has
been retained, to narrow down potential error sources in our
studies.

III. FREQUENCY EXTRAPOLATION

This section reviews the principle of HRPE-based channel
extrapolation and defines the figures of merit of this study,
MSE and RBG, from measurement data and calibration data.
In brief, we extract from measurements within a “training
bandwidth” the MPC parameters through HRPE, and use them
to synthesize the transfer function in the desired frequency
band; the figures of merit describe the difference between these



extrapolated transfer functions and the ground truth, i.e., the
actually measured transfer function in the desired band.

Figure 4 outlines the detailed steps. While the calibration
data obtained with the VNA provides the frequency re-
sponse directly, the (time-domain) measurement data received
from the ADC are Fourier-transformed (after cyclic prefix
removal) to provide the frequency response. It is averaged
over the waveform repetitions to improve the SNR, providing
Hmeas(m, f) where m is the port number and f is frequency
in Hz (there are in total 64 ports and 2801 frequency points,
as specified in TABLE 1). The frequency response of the RF
chain obtained through RF back-to-back calibration (see Sec-
tion II-B), Hb2b(f), is removed from Hmeas(m, f) to provide
Hchan(m, f), which is a combined response of channel, TX
antenna, and RX array.

In order to analyze channel extrapolation, a “training band-
width”, i.e., a subset of total measurement bandwidth, is se-
lected (in a practical system this would be the bandwidth over
which the BS can observe uplink pilots). Among all measured
frequency points, those within this training bandwidth are
referred as ftb. In this particular study, the first 35 MHz (3.325
- 3.360 GHz) of 350 MHz bandwidth was chosen, which
corresponded to 281 of 2801 frequency points. The subset of
Hchan(m, f), denoted as Hchan(m, ftb), and the calibrated
complex pattern of TX antenna and RX array, a(m,φ, θ, f)
(see Section II-B), are used as inputs for SAGE algorithm, a
widely popular HRPE algorithm [14].

The SAGE algorithm models the transfer functions at the
different antenna elements as the sum of plane waves (MPCs):

HSAGE(m, f)
∆
=

L∑
l=1

α̂la(m, φ̂, θ̂, f)e
−2πjfτ̂l . (1)

This model has a number of important implicit assumptions:
e.g., that the absolute amplitude of an MPC is constant
across the different antenna elements, and that no wave-
front curvature exists. A further important question is the
number of modeled paths L. A larger L might be required
to represent a sufficient percentage of the total field; yet
increasing the number of estimated parameters might also
increase the estimation errors due to over-fitting. Thus, while
L ≤ 4 might be sufficient for extrapolation if the scenario is
very simple (example: LOS scenario in anechoic chamber),
complicated scenarios may require as much as > 20 paths.
Finally, we note that SAGE is an iterative algorithm that might
converge to a local minimum, depending on initialization and
various iteration parameters; for more details see, e.g., [14].

The output from SAGE are the parameters of the MPCs,
which include complex amplitude, delay, azimuth and eleva-
tion (ψl−SAGE = [α̂l, τ̂l, φ̂l, θ̂l]). From these parameters, the
SIMO channel model is used to reconstruct the channel for
each port at each frequency using equation (1).

Note that this approach provides the extrapolated channel
in the uplink. To be used in an actual system, the channel and
associated beamformer needs to be translated to the equivalent
downlink channel. Our measurement setup is not designed
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Fig. 4: Process of frequency extrapolation

to include this step, which is also known as reciprocity
calibration. However, it is the same as in TDD systems, where
it has been widely explored [18]. Furthermore, any errors
occurring in this step would be additive to, and essentially
independent of, the errors from the extrapolation procedure.

Lastly, both Hchan(m, f) and HSAGE(m, f) are used to
calculate both the MSE and the RBG for the extrapolated
channel at any frequency f of interest. First, MSE is calculated
as follow:

MSE(f)
∆
=

∑M
m=1 |Hchan(m, f)−HSAGE(m, f)|2

M
(2)

where M is the number of ports evaluated (in our case,
M = 64). If f lies within the training bandwidth, the MSE
describes the classical accuracy of the SAGE-extracted MPCs
for channel sounding; for f outside the training band, it
describes the quality of the channel extrapolation.

Also, the RBG refers to how much loss occurs with knowl-
edge of estimated channel response assuming matched filter.
Knowledge of HSAGE is compared to the perfect channel
knowledge, which in our study refers to knowledge of Hchan

(min RBG = 1 = 0 dB).

RBG(f)

∆
=

(
∑M
m′=1 |HSAGE(m

′, f)|2)(
∑M
m′′ |Hchan(m

′′, f)|2)
|
∑M
m′′′=1H

∗
SAGE(m

′′′, f)Hchan(m′′′, f)|2
(3)



IV. RESULTS AND DISCUSSIONS

Fig. 5 and Fig. 6 show results of MSE and RBG in the
outdoor and chamber environments (Fig. 3). We see that
outside the training bandwidth, the MSE is usually larger than
−10 dB, and often approaches or even exceeds 0 dB for NLOS
case. We discuss in the following some main insights on the
channel properties the error depends on.

First, we consider the error within the training bandwidth
(3.325−3.36 GHz), henceforth called reconstruction error. Its
value depends on the particular scenario: for the LOS cases,
MSE was < −15 dB, but increases as the channel moves from
LOS, to NLOS. This may be due both to a reduction of the
SNR, and the fact that a richer multipath environment makes
the estimation of the MPC parameters more difficult due to
interpath interference. We also see that the reconstruction error
is even larger in the PLOS channel, where some rows are at
LOS and other rows are at NLOS. This can be explained by the
fact that PLOS violates the fundamental SAGE signal model,
as the absolute amplitude of the MPCs across the antenna
elements is not constant.

The MSE outside the training bandwidth (henceforth called
extrapolation error) remains, for the LOS case, < −10 dB
for up to 70 MHz distance from the 35 MHz training band.
Furthermore, the extrapolation error in terms of MSE increases
as the channel moves from LOS, to NLOS, to PLOS for up
to 40 MHz distance from the training band.

We also find that for all scenarios an increase in the number
of estimated paths L leads to a lower reconstruction error - it is
intuitive that a more sophisticated model can better represent
the channel within the measured bandwidth; it can even correct
partially for model mismatch, e.g., by approximating a curved
wavefront by a sum of plane waves. This situation changes
when we consider the extrapolation error. There, the MSE
becomes worse as we increase L from 4 to 20. This is
due to the fact that estimation errors in the delay are more
pronounced for the additional, weaker (lower SNR) MPCs that
are estimated in the latter case; delay estimation errors strongly
impact the phase at extrapolated frequencies. The increase of
the extrapolation error with increasing L is most pronounced
in the LOS case, mostly because for NLOS the error is high
overall anyway.

Besides the MSE, we are also interested in the loss of
beamforming gain. Fig. 5b shows the results for the different
environments. We see that for the LOS scenario, the loss is
less than 1.2 dB over the whole 350 MHz bandwidth, while
for NLOS, the loss in less than 2 dB until 165 MHz outside
the band (3.325 - 3.525 GHz). It is worth remembering that
the ideal beamforming gain achieved in our system is 18 dB,
so even a 3 dB loss is comparatively low.

Still, the relatively high extrapolation error motivated us to
investigate possible error sources. The key candidates were (i)
model mismatch, and (ii) calibration errors. In terms of model
mismatch, we already noted that the PLOS setup results in
a violation of the model assumption of absolute amplitude
of the MPCs across the antenna elements being constant, so
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that both reconstruction error and extrapolation error are high.
However, this does not completely explain the extrapolation
error for NLOS, since the reconstruction error for this scenario
is smaller than in PLOS, but extrapolation error is much larger.

To test the calibration error, we had performed simple LOS
measurements in the anechoic chamber, see Fig. 6. We see
that in the measurements conducted right after the calibration
(see black line, denoted by 04-04), the extrapolation error
is small - less than −10 dB up to 200 MHz distance from
the training band. However, for a measurement that was
conducted after two months since the calibration (see purple
plots, 06-07), performance degraded considerably (note that
while the measurement was conducted in the same chamber,
the measurements are not exactly comparable due to modified
setups within the chamber, as indicated also by the fact that
the reconstruction error of the later measurements is actually
smaller than that of the earlier measurements). Furthermore,
the MPC parameters extracted from the chamber measure-
ments agree with the physical conditions, i.e., directions and
delay of the MPC components. RBG was actually less for (06-
07) in comparison to (04-04), despite worse performance in
MSE, (in all cases the actual RBG is small anyways due to
very simple and optimistic scenario).

This indicates that calibration has been lost to a certain de-
gree in those two months, despite the fact that the array/switch
combination was not altered consciously. We cannot exclude
the possibility that aging of the material of the patches (copper
oxidization), small movement of cables due to vibrations
during transport, and other irreproducible effects lead to the
change in calibration. We stress that while such miniscule
calibration change strongly affected the channel extrapolation
error, it did not affect the HRPE parameters, so that it would
not be noticed in a regular high-resolution channel sounding
campaign.

V. CONCLUSION

We have provided experimental results for frequency extrap-
olation of the channel transfer function based on HRPE. Our
experiments resulted in an MSE that in most outdoor cases
was above −10 dB outside 35 Mhz training band, implying
that the extrapolation of the instantaneous channel response
is highly sensitive to calibration errors. On the other hand, in
terms of beamforming gain, the results looked more promising.
This implies that a large MSE does not necessarily induce a
high loss in beamforming power.

In conclusion, our results do not necessarily imply that
the channel extrapolation for FDD massive MIMO cannot
be used in practice. Other papers [6], [11], [12] showed its
possibilities using other figures of merit and methods. For our
future works, we will study other figures of merit to evaluate
the performance of channel extrapolation using various HRPE
algorithms. Also, the methods to keep calibration as consistent
as possible will be studied. Lastly, the measurements will be
extended to full MIMO system to see effects of number of
antennas on both TX and RX ends.
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