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Abstract

This paper develops and analyzes a new numerical scheme for solving hyperbolic conser-
vation laws that combines the Lax Wendroff method with /; regularization. While prior
investigations constructed similar algorithms, the method developed here adds a new critical
conservation constraint. We demonstrate that the resulting method is equivalent to the well
known lasso problem, guaranteeing both existence and uniqueness of the numerical solution.
We further prove consistency, convergence, and conservation of our scheme, and also show
that it is TVD and satisfies the weak entropy condition for conservation laws. Numerical
solutions to Burgers’ and Euler’s equation validate our analytical results.
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1 Introduction

Hyperbolic conservation laws define a set of partial differential equations of hyperbolic type
that describe the dynamics of some conserved quantities, such as mass and energy, in the
physical domain. They are largely used in gas dynamics, acoustics, elastodynamics, optics
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and geophysics. Even with smooth initial data, solutions to hyperbolic PDEs often contain
discontinuities, or shocks, such as wave fronts that develop in finite time. To interpret the
meaning of solutions at the discontinuities where the differential operators are invalid, the
concept of weak solutions was developed. There are corresponding numerical challenges,
as most numerical methods rely on some regularity assumptions of the solutions. A broadly
investigated topic in numerical conservation laws is how to modify these methods so that
they are suitable for problems with non-smooth solutions. While high order numerical solvers
usually encode artificial dispersion that brings non-physical oscillations, low order numerical
solvers, such as upwinding schemes, yield too much artificial viscosity that brings non-
physical smoothing effects. Slope limiters were introduced to provide the right balance of
artificial dispersion and artificial viscosity, in particular by accentuating the higher order
methods more in smooth regions, in order to preserve a fast convergence rate, and less in
regions with discontinuities, to prevent oscillations that lead to numerical instability, [5,10,
13-15,20-22]. A hybrid, spatially-adaptive, weighted, essentially non-oscillatory (WENO)
scheme was developed in [5]. At each iteration, shocks are detected by comparing solution
values in a neighborhood of 5 to 7 grid cells, and a weighted combination of several difference
operators is then used to approximate the differential operator in the equation. Slope limiting
methods and other spatially varying diffusion techniques are also used in global spectral
methods. For example, in [22] the spectral viscosity (SV) method was adapted to include
a step that locates the region containing the shock location. By doing so, less viscosity is
enforced in the smooth regions of the solution. High order post-processing, which typically
requires knowledge of each shock location, is required to recover spectral accuracy from the
SV solution [7,19]. Finally, a scheme that combines non-uniform and adaptively re-defined
spatial meshes with entropy conservative schemes to compute the shock was proposed in [3].

Regardless of the underlying type of numerical method, the key to its success for hyperbolic
conservation laws lies in its ability to capture shocks. The classical solvers discussed above
all resolve the issue by carefully monitoring the solution’s behavior at every grid point. They
are all highly nonlinear, and heavily rely on a very delicate local manipulation of the local
numerical solutions, bringing obvious computational complexity, as well as high numerical
cost. A natural question, then, is to look for a systematic way of “detecting” shocks.

The recent advances in /{ minimization may provide an answer. Specifically, /{ minimiza-
tion, as a surrogate of /o minimization, promotes sparsity in solutions. For conservation law
equations in particular, since singular points are indeed scattered sparsely on the domain,
the application of /1 regularization could be potentially useful for extracting such informa-
tion. Several approaches in this vein were taken in [8,10-12]. In [11,12], an /; minimization
technique was applied for computing steady-state conservation laws in one and two dimen-
sions respectively. In particular, the finite volume approximation of the corresponding
non-singularly perturbed problem was written as an overdetermined system and then solved
by minimizing the /; norm of the system residual. However, the method did not include time
integration, and it is not apparent how such techniques could be adapted to time dependent
problems when /1 solutions are not explicitly available. In [10], the solution was divided into
two components: while the discontinuous component can be explicitly obtained, the smooth
part can be computed with standard high order methods. In [18], the authors assumed that
the solutions are sparse in the Fourier space and included the /; constraints for updating
the dynamics. However, the validity of the assumption was not justified and singularities
in the physical domain were not considered. Moreover, the algorithm consists of advancing
the PDE forward in time and then projecting the updated solution onto a sparse subset. This
requires additional transformations between spatial and coefficient domains at each iteration,
thereby adding another layer of complexity.

@ Springer



Journal of Scientific Computing

The approach we take in this paper was initially proposed in [17], where a two-stage
procedure was developed for solving numerical conservation laws. The first stage applies a
standard high order numerical PDE solver. Such a solver, while obtaining a high order of
accuracy, may lead to wild artificial oscillations. Hence in the second stage, an /; minimiza-
tion problem is solved to eliminate the oscillations and enforce the sparsity of discontinuities.
A related technique developed in [16] combined several time steps of Lax—Wendroff scheme
followed by a Lax—Friedrichs step, which ostensibly keeps the desired features of both meth-
ods. No theoretical analysis was provided, however. In [17], the “discontinuities” are captured
through a polynomial annihilation (PA) operator, which provides a systematic way to detect
shock locations. The difference between the solution sought and the standard numerical
solution is used as the fidelity term. The primary advantage of the method is that it does not
require the delicate monitoring of local solution behavior, as the PA operator could automat-
ically extract discontinuities. Depending on the order of PA operator, the final scheme can
potentially achieve high order of accuracy. It was also numerically demonstrated in [17] that
the algorithm has a less restrictive time step than that imposed by the usual CFL condition,
resulting in a fewer number of time step iterations.

While numerical examples in [17] demonstrated the power of the method, no theoreti-
cal results were provided. The well-posedness of the minimization problem, as well as its
convergence properties, were left open, similar to most other works that employ /; minimiza-
tion. The main goal of the current paper to fill this gap—first to improve the algorithm by
adding a mass conservation constraint to the minimization procedure, and further to study
the theoretical aspects of solver. We will demonstrate that the problem is equivalent to a lasso
problem, and the existence and uniqueness of a numerical solution is guaranteed. We further-
more present that the solution to the minimization problem converges to the true solution.
Properties such as convergence to the weak solution and total-variation-diminishing (TVD)
will also be shown. Finally, we will discuss how physical intuition can be used to optimally
tune the algorithm parameters.

The rest of this paper is organized as follows: in Sect. 2 we introduce the two-stage
algorithm incorporating the PA operator that approximates the jump function. The /; mini-
mization problem will be reduced to a lasso problem, and we employ the LARS algorithm
to solve it. Some modifications to the algorithm are also illustrated in the same section. In
Sect. 3 we present all theoretical justification, including the existence and uniqueness of the
minimization problem, and some properties the scheme satisfies, such as mass conservation,
TVD and /1 contraction. In Sect. 4, we present numerical results on four examples using our
scheme together with modifications. Concluding remarks are provided in Sect. 5.

2 Proposed Algorithm

A model hyperbolic conservation law equation with a periodic boundary condition is given
by
du+ 0 f(w) =0, (1,%) € R* x [a, b]

(D
u(t =0,x) =upnx), ula) =ub)

Here u is the conserved quantity and f'(u) is the flux. In the linear case, f (u) linearly depends
on u and one obtains the simple advection equation. But typically f () is a nonlinear function
of u, which could potentially introduce singularities and shock fronts.

The numerical method developed in this section is designed to approximate u in the smooth
regions with high accuracy while also capturing the sparsely located jump discontinuities.
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The idea is to separate these goals and tackle them in two stages. In the first stage a higher
order numerical method is applied to approximate u(x, ¢). Since this may trigger artificial
oscillations at the discontinuous points, in the second stage an /; minimization is encoded.
The /1 minimization term is applied on the polynomial annihilation (PA) operator, [2], which
closely approximates the jump function of the underlying solution. By minimizing this term
we are able to reduce artificial oscillations and sharpen shocks without compromising the
accuracy of the solution in the smooth regions.

2.1 Proposed Algorithm

We first introduce some unifying notation. Although not required for our algorithmic devel-
opment, for ease of presentation we consider only uniform grids, with

a
xj=a+jAx, j=0,1,...,N, and Ax:T,

in space, and time discretization denoted by Af. The final time 7 for solving (1) is

given by T = M At. We denote U}’ as the numerical approximation to u(t,, x;), and
U =[U] ..., Uy] as the vector solution at time #,.

As described above, there are two stages in the method for updating numerical solution
from U” to U"*! . In Stage 1, one applies the standard Lax—Wendroff (LxW) method. It is well
known that artificial oscillations will occur near the shock locations, and eventually lead to
numerical instability unless otherwise mitigated. Hence in Stage 2 an /| penalty term is added,
yielding a numerical solution that is close to the LxW solution but with artificial oscillations
eliminated. This method, which we will refer to as the /1 -Modified-Lax—Wendroff Algorithm,
is detailed in Algorithm 1.

Algorithm 1: /| modified Lax—Wendroff scheme

Input: Initial value at each grid point U]Q =upn(x;),j=12,....N

Output: Numerical solution at final time: U ]M ,ji=12,...,N

1forn=0,---,M—1do
2 Stage 1 updates the numerical solution according to classical higher order PDE solvers, such as the
Lax-Wendroff (LxW) method:

n+1/2 _ on A1 n n
Uit = v = [ W) — £ ] )

where the fluxes are evaluated at:
U1 = U+ UL ) = e (FU, ) = 7))
J+1/2 7 N Jj+1 2Ax Jj+1 j’’

3 Stage 2 improves the numerical solution given by the LxW by encoding /1 regularizer on the PA
operator to eliminate artificial oscillations:

1 2
Uty = argn{}n(i ‘ ynt/z VH2 + 1™V D

3

st. el (v—urtl/2y—o.

4 end
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In (3) of Algorithm 1, £™ is the PA operator so that
(L"U)i ~ [ul(x;),

where [u] is the jump function defined as

(] (v) = u(y®) —u@y7). ©)
Observe that (4) takes value 0 when the function is smooth but records the jump value at the
discontinuities. Clearly then {u(t,,x;) : j =0,...,N},foralln =0,..., M, is sparse in

its jump function domain. Hence it is appropriate to use (£”U") ; to approximate [u](t,, x )
in the /1 regularization term.

Note that Algorithm 1 differs from the method introduced in [17] in one important way—
namely conservation of (1) is added as a constraint:

1
el (U —U/2y =0 with e= —[1,1,...,1]",

VN

Y urttoy =Y Uit a).

We emphasize the dependence in U"T! (1) since the final solution relies on the choice of A.
As will be demonstrated later, the mass conservation constraint is crucial. The conservation
property, combined with the consistency of the algorithm, leads to the convergence to the
weak solution.

which imposes

2.2 PA Operator

A good approximation to the jump function is critical to the success of Algorithm 1. Solutions
to hyperbolic conservation laws have sparse discontinuities, and it is imperative that the /;
operator is applied to accurately capture this sparsity. The polynomial annihilation (PA)
operator £™, introduced in [2], yields an m-th order approximation to the jump function of
its corresponding piecewise smooth function from a (local) set of grid points. The general
definition of the PA operator is given by

m 1
L) = —— Y cif(x)), )
qm ) =
J
where m is the order of approximation to the jump function [f](y), and § = {x;,j =
1,...,m+ 1} is any given local set of m + 1 grid points. The annihilation coefficients c; are
computed from
S empt) =p™ ), j=1..m+1,

Xj

where {p; : [ =0, ..., m} is abasis for the space of polynomials of degree less than or equal
to m. The normalization factor ¢” is given by

9" =Y ¢,

)C./'ES+

where ST = {x; € S : x; > y}. Suppose f has m continuous derivatives in smooth regions,
then the operator £™ approximates the jump function with m-th order accuracy, namely, it
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captures the discontinuities at singular points and yields an m-th order accurate approximation
to 0 in the smooth regions, as summarized in the following theorem:

Theorem 1 (Theorem 3.1 in [2]) Let m € N and L™ be defined as in (5) using a local set Sy
with m + 1 elements. Then we have

[f1E)+O*(x)) ifxj1 =& x=<x;

LY f(x) = {O(hmin(m,k)(x)) iff e Ck(Ix)fork >0

where h(x) = max {|x; — x;_1| : xj—1, x; € Sy} and I, is the smallest closed interval such
that S, C I,.

Furthermore, when the grids in S are uniform and f has periodic boundaries, the PA operators
have explicit form:

3 =31 —1
-1 3 =31

rl— == S
2 -1 3 =31

1 -1 3 -3

-3 1 -1 3 |

(©)

It was shown in [17] that using the PA operator instead of the standard TV regularization
(which is equivalent to m = 1) better captures the variation in the smooth regions. This is
especially true when problems are not well resolved. Using m = 1 in this case will cause a
staircasing effect since the solution space is comprised of piecewise constant functions.

Remark 1T We note that the PA operators were originally designed to detect edges in images,
where a similar /; regularization is applied to promote the sparsity of edges:

. m )\‘ 2l
f=argmgm<H£ el +5|7e -7 Hz) -

Here f is the reconstructed signal or image, f are the acquired data measurements, and F is
a model that projects f to f. Applications for when the acquired data are Fourier samples
are thoroughly discussed in [1].

2.3 LARS Algorithm

The minimization problem, (3) in Stage 2 of Algorithm 1, contains mass conservation as a
separate constraint. However, through change of variables and by the properties of the PA
transform operator £, it could be reduced to the unconstrained minimization problem given
by

1
argmbin <2||J/ —Xb||%+)\||b||1> , @)

which has the form of the standard lasso (least absolute shrinkage and selection operator)
problem. The translation from (£, U, V) to (X, y, b) will be presented in Theorem 2. In the
new formulation, y is the data to fit, b is the parameter whose linear transform is expected to
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be close to y, while its sparsity is promoted through the /; term, and A is the regularization
parameter.

Several algorithms are widely accepted as good candidates for solving lasso problems. For
example, the alternating direction method of multipliers (ADMM) translates an unconstrained
problem into a constrained one and applies an augmented Lagrangian scheme that uses
partial updates for the dual variables. The glmnet algorithm was developed in [6] to compute
the solution path for generalized linear models with convex penalties, including the lasso
problem, by using the coordinate descent method for convex problems. In the solver SPGL1
[24], an iterative method is used to solve the lasso problem by applying the spectral gradient-
projection method at each iteration [25].

Here we use the well-known LARS (least-angle regression) algorithm, which we choose
for two reasons. First, LARS provides not only the solution to any prior chosen A, but also a
solution path that characterizes its dependence on 1. As will be discussed in Sect. 3, the choice
of X is critical, with only a small range of suitable A yielding both convergence and total-
variation-diminishing (TVD). Although this range of XA is not known a-priori, the LARS
algorithm reveals the solution’s dependence on A which in turn provides guidance on its
tuning. Second, the method gives the “exact” solution, meaning that it obtains up to machine
precision accuracy. Numerical solutions to hyperbolic conservation laws are typically very
sensitive to errors. Indeed, small perturbations in the solution profile, especially close to
shock locations, can significantly change the shock speed and/or location, inevitably leading
to large errors. Most other algorithms used for solving (7) follow some variation of gradient-
descent and stop at certain preset thresholds. In these cases, the accuracy depends heavily
on the conditioning of the problem (determined by X). On the other hand, as noted above,
LARS provides exact numerical solutions (up to machine precision). We stress that we are not
proposing that LARS generally be used for solving (3), as it is computationally inefficient.
Rather we are using it to demonstrate the suitability of our approach. ADMM was used in
[17], and we anticipate other algorithms will also provide similar results, although theoretical
justification will not be readily available.

The general form of lasso problem is the following: given the outcome vector y € R”,
and the matrix X € R"*? of predictor variables, one looks for b € R” so that Xb fits y in
> norm with b expected to have as few non-trivial entries as possible. More specifically, the
minimization formulation is

A 1
b = argmin 7|y — Xbl3 + 2 b - ®)

Clearly (8) reduces to the simple least square problem when A = 0. Here we only consider
A > 0 to exploit the sparsity in b. Since (8) is convex, it is optimized when its gradient is 0.
While the gradient of the /> term is simply determined as X T (Xb — ), for the /; term, which
is not differentiable, we look at the subgradient n with components

' {sign(b;} ifb; #0
TEN-1 1 it =0

Thus the optimal solution b satisfies
XT(y —Xb) = Ap.

Let us now denote £ as the equi-correlation set by

5:[ie{1,...,p}:

X! (y —XIS)’ :A} .
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That is, £ is the set of indices having equal (and maximal) absolute correlation with the
residual y — Xb. We further denote the equi-correlation signs by

s = sign(X (y — Xb)),

where Xg comprises the columns of X with indices in £. Applying the KKT condition, in
[23] it was proven that any lasso solution b has the form

bee =0, and be = (Xe)'(y — (X[)Tas) +c,
where £¢ denotes the complement of £ and ¢ € null(X¢). There are two immediate takeaways:

1: If £ can be determined a-priori, the lasso solution can be viewed as a linear function of
A. In particular, the solution’s dependence on X is explicit.

2: If X¢ is not full rank, null(X¢) is not empty, and there are infinitely many choices for c.
This leads to the non-uniqueness of the solution.

It is apparent that finding the equi-correlation set £ is the key to solving the problem, and
finding the optimizer space is equivalent to finding £. Determining £, however, is not straight-
forward, except in the case where A = oo, which yields £ = {J. More precisely, at A = oo, the
sparsity term dominates, and the optimizer has the trivial solution and all entries are zeros.

LARS fully makes use of the fact that £ determines the solution space (including that
E = () at A = 00) by tracing £’s dependence on X and gradually adding indices into it. The
solution path is provided in the sense that a solution is determined for each A as A decreases
from oo [or a big enough value so that b(}) is trivial] to 0. By construction, as A decreases,
the /1 penalty term increasingly makes room for the mismatch (fidelity) term to become
more significant, allowing more non-zero entries in the (sparse) vector solution. Indices are
correspondingly added to or deleted from €. To determine at which A indices are added to or
deleted from &, we use the explicit solution in (9). As suggested by the formula, each entry
in the solution path is a piecewise linear function, and the “joining” and “crossing” times can
be precomputed simply by setting B[ = 0 for i € £. Details for computing the joining and
crossing times can be found in [23]. Algorithm 2 summarizes the method.

As A decreases, Ay records all the times where adding (deleting) is taking place. As is
evident in (9), the entries of the lasso solution b are linear functions of Ak. This allows us to
explicitly compute the next joining time and crossing time as in (10) and (11), where tgom
is the joining time of the ith entry and 77" is the crossing time of the jth entry. We update
Ak+1 as the closest time when a variable joins or leaves the equi-correlation set £.

The LARS algorithm enjoys a number of good properties that will be heavily used in our
later applications. We summarize them below.

Proposition 1 Denote b the LARS lasso solution to (8), then [), X[), and H BH | all continuously
depend on A.

Proof By construction of the LARS algorithm and LARS lasso solution in (9), we can easily
determine that each entry of the solution b is a continuous piecewise linear function of A
(piecewise linear or piecewise 0). Furthermore, both matrix multiplication and /; norms are

continuous functions. Hence b, Xb, and ” bH | are all continuous functions of A. ]

There is also a loose upper bound of the computational cost which depends on the size of
matrix X [23]:
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Algorithm 2: LARS algorithm

Input: y, X
Output: Solution path of the lasso problem
1 Start withk =0, A0 = 00, & = &, and s = &;
2 while 1; > 0do
3 Compute the LARS lasso solution at A; by least squares:

bee =0, and bg(y) = Xe) (r — XD hgs), )

and continue in a linear direction from the solution for A < Ag, that is, compute the linear solution
path between Ay and Agy1;

4 Compute the next joining time )‘Jk(inl’ i.e. when a variable outside the equi-correlation set achieves
the maximal absolute inner product with the residual:

Join _ w (10)
! £1-XT(xDTs

join join
)‘k+1 = rg;zg(t[ ,  where
Note that exactly one of +1 and —1 will lead to tgom € [0, A
5 | Compute the next crossing time A7'P}®, when the coefficient path of an equi-correlation variable
crosses through zero:

(o], .
b
[xExerts] ~ [ v

[xe)fy].
[xExeris]

i

ACTOSS — 1y fCTOSS cross _
+1 ie&

where 1;

i

6 | Setigy) = max { Ajkoﬂ , kzrﬁs}. If Ajk(inl > A{P}, then add the joining variable to £ and its sign to
s; otherwise, remove the crossing variable from £ and its sign from s;

7 Update k =k + 1;

8 end

Proposition 2 For any y, X, the LARS algorithm for the lasso path performs at most
pa- (f)Zk = 3P iterations before termination.

The LARS algorithm is used as a black box to treat (8). Many of the useful properties
of LARS algorithm described in Propositions 1 and 2 are maintained when applied to our
numerical conservation law problem. This will be discussed in Sect. 3.2.

2.4 Modification

While Algorithm 1 provides the general blue print for solving a conservation law exploiting
the sparsity of the shocks and ensuring conservation, there are several issues that must be
addressed to ensure its efficient and accurate implementation, namely how the regularization
parameter A is chosen, how to ensure computational efficiency, and what properties are needed
for the £ operator.

2.4.1 Choice of A
Choosing 2 is critical for the minimization problem in the second stage of the algorithm, as it

balances the weight on the fidelity function in /> norm and the sparsity of the discontinuities.
Large X enforces strong sparsity but drives the solution away from the LxW result, while
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small A is not enough to eliminate oscillations. As A goes from oo to 0, the oscillations
gradually becomes stronger, until the scheme eventually recovers the LxW solution at A = 0.

One way to choose A is to enforce the total variation diminishing (TVD) property. It is
widely accepted that a meaningful numerical solution should preserve the properties satisfied
by the true solution. For instance, since analytic solutions to hyperbolic conservation laws are
total-variation diminishing in time, the corresponding numerical solution should be as well.
The standard LxW method is not TVD, however, since the artificial oscillations introduced
by LxW increase the total-variation of the solution. Therefore, in Stage 2, when the lasso
problem is applied to eliminate the oscillations, a natural criterion is to set A bigger than Atv,
that is, the minimum A to ensure a TVD solution. We therefore modify the LARS algorithm
to trace the TV norm of the numerical solution and stop at the biggest A where the TV norm
is smaller than the previous time step. This will be further explained in Sect. 3.

2.4.2 Reducing Number of Minimization Problems

Many efficient methods exist for solving the lasso problem, see e.g. [6,23-25]. Neverthe-
less solving the lasso problem as part of the numerical PDE solver adds another layer of
computation. To avoid excessive numerical costs and complexity, it is natural to ask if the
minimization problem truly needs to be solved at each time step. One possible way of reduc-
ing numerical cost is to implement the minimization stage every few time steps, or even only
as a post-processing final time step if stability can be maintained.

2.4.3 Choosing L™

In this investigation we use the PA operator, which can be regarded as high order total
variation (HOTV), to approximate the jump function. The PA order m can significantly
affect the results. Observe that £!, when applied to a function, is numerically equivalent to
taking the TV norm of the discrete version of that function. By contrast, £3 provides a higher
(third) order approximation to the jump function.! Neither has full rank, however. Due to the
periodic boundary condition, the rank of the matrix is one smaller than the size, which leads
to some difficulties when translating to the lasso problem. This is easily overcome by simply
removing the last row, meaning that the TV norm is taken only in the interior. In this case
the matrix becomes full rank with the following form:

= o : (12)

Without any theoretical justification of the algorithm’s convergence, it is difficult to decide
in advance how these three issues—parameter tuning, cost of implementation, and choosing
the regularization operator—should be addressed, nor understand what the trade offs may be.
Hence in Sect. 3 we will establish some theoretical results and in Sect. 4 we extensively test
our numerical algorithm to determine what these trade offs are. In so doing we provide the
intuition needed to associate certain types of solution behaviors with the different choices
we make. This will allow practitioners to develop schemes based on Algorithm 1 for their
particular application.

! For simplicity we consider only odd orders which yield symmetric stencil for uniformly distributed grid
points.
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3 Theoretical Results

Asnoted above, the /1-Modified-Lax—Wendroff scheme provided in Algorithm 1 is composed
of two stages: the standard LxW method is used in Stage 1, and the mass-conservation-
constraint minimization problem with an /; penalty term is solved in Stage 2.

To understand why our algorithm works, we separate the discussion of the two stages.
Convergence for the LxW method has been established for conservation laws, see e.g. [9,14,
15]. Hence in this paper we mainly focus on analyzing Stage 2. To this end in Sect. 3.1 we first
reduce the problem to a standard lasso format, and utilize the well-posedness result for lasso
to show our minimization problem has a unique solution for every pre-chosen regularization
coefficient 1. We demonstrate that this unique solution, in the zero limit of A, converges to
the LxW solution. The result is summarized in Theorem 4.

Numerical methods for hyperbolic conservation laws should satisfy properties such as
conservation and total-variation-diminishing (TVD). We discuss these properties in Sect. 3.2.
As will be established in the corresponding proof, the PA operators have beneficial properties
that are key to the success of our scheme.

3.1 Well-Posedness

A natural question to ask in Stage 2 is whether or not the minimization formulation (3) has
a unique solution. We investigate this question by first writing (3) in a lasso formulation,
for which well-posedness has been frequently analyzed. To do so, we first observe that the
constraint-minimization problem in Stage 2 can be summarized as

. 1
V(A = argmin [ = ||[U = V|2 + A |£V|
gm (2 2 1 ’ 13)

st. e’ (V=U)=0

where we have omitted the super-indices of U and £ for simplicity. Although (13) is not a
standard lasso formulation, below we demonstrate that with some manipulation it is possible
to reduce it to one, and then apply well-posedness results for lasso problems. To do so, we
first must write (13) as an unconstrained problem, which is accomplished in Lemma 1.

Lemma 1 Let @ be the minimizer of the following unconstrained optimization problem
. 1 )
@ = argmin §||)/—Ot||2+?»||£fot||1 ; (14)

where E is any n x (n — 1) matrix with orthonormal columns that satisfies ' E = 0, and
y = ETU. Assuming U is known, the optimization problem (14) is equivalent to (13) in the
following sense:

V=ee'U+Ea, a=E (V—ee'V). (15)
Proof Suppose V is the solution to the minimization problem (13). Since E has orthonormal
columns with eTE = 0, R" = span{e, E}, and there exists« € Rand & € R@=DxLgych that

V=ae+Eax.

Taking the inner product with e and utilizing the fact that e"U=eTV, weseethata =e'U
and & = ET (V — eeT U). Thus, for y = ETU, we have

IV—Ul3 = IE& —Ey I3 = ll&d — v 113, (16)
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where we have used the orthonormality of E to obtain the result.
Observe now that £ € R"*" is a rank n — 1 finite difference matrix. The null space and
the space perpendicular to the range are explicitly determined as

Le=LTe=0, A7)

which means £V = LE@. For any «, we can define V = ae + Ea. Similar to the analysis
leading to (16), we have ||V — U||% =l —y ||% and LV = LEw. Since V is the minimizer of
(13), we immediately have

1 2 . 1 A2 N
sly —alh +rfeeal, = 5 |u—9], +2]c¥],

1

A

1
51U = VI3 + 2 12V

1
;w—m6+Mwmm,

which means & is a solution to the unconstrained problem (14).
To prove the other direction, we start with the solution & to the unconstrained problem
(14) and let V = ee " U + E&. Since

I:eeT+EET,

then
Ey =EE'U=(1—ee")U.

Utilizing this fact, two terms in the minimization problem can be rewritten:

a— y||§ = |Ea - Ey||§ = H(\?—eeW) —( —eeT)qu = H\?— UHz ,

and
| cE&

= -, = e,

For any V, there exists o = ET (V—eeTU) with similar equivalence of /; norms and /; norms.
Therefore, since ¢ is a minimizer to (14),

24| cEa|

: Tl Y £V ! §
S lU=9[, 2] =5l -a 1

1
;w—m@+mwmm

IA

1
=S IU=VIZ+ 21V .
To complete the proof, we derive the constraint
e'(V—U)=e"(ee"U+Ed —ee'U—Ey)=e'E@—y)=0.
O

To further reduce it to the formulation of the standard lasso problem, the matrix £E must be
moved to the fidelity term. However, since LE is not guaranteed to be of full rank, the inverse
may not exist, depending on which form of £ is taken. To address this issue, we will use the
pseudoinverse of LE, as described in the following theorem.
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Theorem 2 Let E be any n x (n — 1) orthonormal matrix satisfying e E=0, y = E' U, and
define X as the (n — 1) x n matrix X = (CE)T, the pseudoinverse of LE. Then the optimization
problem (13) is equivalent to the lasso problem,

N 1
b=argmgn <2||J/—Xb||%+)h||b||1> . (18)

where equivalence means that the optimizers are connected through

V=ee'U+Exb

b= LCEET(V—eeTU)
while the corresponding I, norms and 1} norms are equivalent with

IU= V2 = lly — Xbll2,
1LV = lb]l: -

Proof From Lemma 1 we know that (13)is equ1valent to (14). Hence here it suffices to show
that (18) is equivalent to (14) in the sense that b = LE& and & = Xb.

We first notice that the map between b in (18) and « in (14) is one-to-one. For any given
«, define b = LE«, then

LEG = LE(CE)'CEG = LE(CE)™D = LEXD,

meaning that « — Xb belongs to the nullspace of LE. From (17) we have Null(£) = span {e},
and since e E = 0, we can conclude that Null(£E) = {0} and thus « = Xb. Similarly, for
any given b, define « = Xb, then

(LE)X(LE)& = LE& = (LE)Xb.

meaning o — Xb is in the nullspace of LE and thus b = LEa.
The equivalence between « and b then quickly yields

[blly = [ICExfly, and [y —Xbl2 = |ly —«ll2,

naturally leading to the conclusion. O

Note that the last row of operator £ defined in (12), which contains the periodic boundary
conditions, is deleted. Thus the (n — 1) x (n — 1) matrix LE is full rank, since E is perpendicular
to e. Hence the pseudoinverse of LE is the true inverse and is given by

X=(cE)f = «E)~!. (19)

By successfully reducing the optimization problem in Algorithm 1 to a standard lasso
problem (13), we are now able to apply the analytical results for the lasso problem directly
to our technique. Two results pertaining to the existence and uniqueness of the lasso problem
in a general setting will be particularly useful:

Theorem 3 (Well-posedness of the lasso problem [23]) For any y, X, and fixed . > 0, the
lasso problem

A 1
be argmbin (2 ly = Xbl3 + A IIbI|1>
has the following properties:
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1. There is either a unique solution or an (uncountably) infinite number of solutions.
2. Every solution b gives the same fitted value Xb.
3. If . > O, then every solution has the same [ norm HBH -

Proposition 3 (Convergence of LARS [23]) For any y, X, the numerical solution to Prob-
lem (8) by LARS converges to the least square solution that has the minimum 1y norm as
A — 0T, that is,

lim HHARS(n) = pLSI

A—>07T

where bLSh e argminy, ||y — Xb||% is a least square solution that achieves the minimum [
norm.

Theorem 3 shows the well-posedness of standard lasso, while Proposition 3 shows that the
LARS solution, in the zero limit of A, recovers the least square solution, and furthermore,
when the least square problem does not have unique solutions, LARS picks the one that has
the minimum /; norm. Combining the Lemma 1, Theorems 2, 3, and Proposition 3 we are
ready to show Theorem 4.

Theorem 4 The optimization problem (13) has a unique solution with L being a PA operator.
Moreover, the optimizer V(A) converges to U as . — 0t

Proof According to Theorem 2, one needs the uniqueness of V which can be computed as
V=ee'U+EXb,

where b is the solution the lasso problem (18) By the second property in Theorem 3, although
b is not unique, the linear combination Xb however, is. This gives the unique evaluation of
V.

To show convergence, we can simply apply Proposition 3 on the equivalence of (13), as
shown in Theorem 2:

. ~LARS A LS 0
lim b ) = ,
A—>0F

~LS,[; . . . . ..
where b € argminy, ||y — Xbllg is the least square solution that contains the minimum

~LS,l
[ norm. Equivalently, b " is the solution to the minimization problem (18) when A = 0.
~LS,!
By Theorem 2, b ' can be computed using the constrained problem (13), which has the

minimizer \7(A) = U when A = 0 given by

~LS,!
b~ = LEET(U—ee'U).
From Theorem 2 we have
N T ~LARS
V(L) =ee' U+ EXb Q). (20)

Finally, by the equivalence conditions in Lemma 1 and Theorem 2, we can conclude that

lim V(L) =
r—0t ()
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3.2 Scheme Properties

Upon showing the uniqueness of the minimization problem in Stage 2, we can continue to
discuss the properties of the /1-Modified-Lax—Wendroff scheme. Generally speaking, for a
numerical conservation law method to be reliable, the following numerical properties must
hold:

e Property 1 The numerical solution is conservative.

e Property 2 The numerical solution is consistent.

e Property 3 The numerical solution converges to a weak solution as 7 — 0.
e Property 4 The numerical solution satisfies entropy condition.

e Property 5 The numerical solution is total variation diminishing (TVD).

It is relatively straightforward to demonstrate Property 1. Indeed, in Stage 1, a finite
volume type method was used and U” is updated through the flux term, and in Stage 2,
the mass conservation is encoded in the optimization constraint. Since mass is conserved
in both stages, the whole scheme is automatically conservative. To address Property 2, we
know that the LxW method is second order and is therefore consistent. New errors may be
introduced into the numerical solution in Stage 2, however. In what follows we show that
the LARS algorithm keeps the numerical error small enough to maintain consistency. Since
the method is conservative and consistent it automatically converges to a weak solutions,
yielding Property 3. These properties are proved in Theorem 5, while the TVD properties
and entropy condition are demonstrated in Propositions 4 and 5 respectively.

Theorem 5 (Consistency, conservative and convergence) The numerical solution of the [
modified Lax—Wendroff scheme converges to a weak solution of the hyperbolic conservation
law (1). In particular:

(a) There exists Ao such that for any . < X\ the minimization solution (13) is of O(Ax?)
away from the LxW solution.

(b) The |y modified Lax—Wendroff scheme is a second order consistent method for A < Ao.

(c) The ly modified Lax—Wendroff scheme is conservative.

(d) The ly modified Lax—Wendroff scheme converges to a weak solution to (1) in the zero
limit of Ax.

Proof Without loss of generality, we consider the solution at time step #,. To show (a), we
can simply utilize the convergence result in Theorem 4, namely,
lim UYH—](A) — Uf’l+1/2

A—>07F ’

which means that there exists Ao such that for any A < 1o we have
UGy = U2 < 0(ax?)
To show (b) we simply use the triangle inequality:
U G) = Utnll < U Q) = U2 4 U2 — U] = O(Ax?),

where U(#,41) denotes the true solution at #,,;1. Here we have used the fact that the LxW is
second order, and that an appropriate & < A is chosen.

Observe that (c) is a natural consequence from the design of the problem since LxW
method is a standard finite element method with conservation of mass encoded, and the
mass-conservation constraint is added in Stage 2.
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To demonstrate (d) and conclude the proof, recall that according to Lax—Wendroff The-
orem, a conservative and consistent numerical scheme naturally converges to the weak
solutions of a hyperbolic conservation law. O

Proposition 4 (Total Variation Diminishing (TVD)) There exists Aty so that for all . > Aty,
the 11-Modified-Lax—Wendroff scheme is Total Variation Diminishing (TVD), that is

VU () < VWY 2

Proof We first show that the method is TVD in Stage 2, namely that
TV(U”+1) S Tv(Un+1/2) .
To do so, we first observe that if £ = £!, then by definition, TV(U) = || £U|| 1- Thus

)\.TV(U”+1) =\ “ﬁun+l ”1 < % H UVI+1/2 _ Un+1 H2 + A ||£Ul’l+l ”1

1
< 5 H Un+l/2 _ Un+1/2 ||2 A ||£Un+]/2||l
- ||£Un+1/2 ”1 _ kTV(uﬂ‘i’l/Z).

The inequality holds for all A, meaning the solution has its TV norm suppressed regardless
of the choice of the regularization parameter. To show (21), however, some constraints on A
must be imposed. In fact LxW increases the TV norm of the solution and thus TV(U”+1/ 2) >
TV(U™). To compensate for this, let us first denote B(A) as the solution to the corresponding
lasso problem (18). Then according to Proposition 1, ||6(A) |l1 continuously depends on X.
Furthermore, by Theorem 2, we have ||E)(k)||1 = [|LU™ ()|11, meaning TV(U" (1)) =
12Ut oo continuously depends on A. Notice that

(1) V(U1 (L)) = 0 for A = o0
(2) TV(U"TL (W) = TVU™t1/2) > TV(U") for A = 0.

Hence the TV norm of U"! (1) continuously goes from 0 to a value bigger than TV(U") as
A decreases, implying that there must be a Aty so that for all A > A1y, the TV norm of the
new solution is smaller than that from the previous step, which finishes the proof. O

Proposition 5 The [1-modified-Lax—Wendroff scheme satisfies the weak entropy condition.
More specifically, for every fixed convex function ¢, there exists a constant o such that

P ) < apUT) + 00

Here U™\ (L) is the optimizer of (13) with A being the regularizer coefficient. In particular,
for p(U) = |UII3, a = 1.

Proof We first note that U"*!(0) = U"*!/2 and the entropy condition is automatically satis-
fied. For A # 0, we first set ¢ (X) = %||x||%. Then

p(U () < pU T () + AILUTT OV I
< pUT () — UMY 4 (U)o LU ) I

1
=Ew“%m—uﬁmﬁ+¢w““%+uwwHawl
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< %”Un+1/2 _ UVH—]/ZH% +¢(Ul’l+1/2) + )\,”EU’H_I/ZHI

In the derivation, the second inequality comes from Jensen’s inequality, and the third comes
from the fact that U+ ()) is the minimizer of the lasso problem. Note that lcum172), is
pre-determined by the LxW solution. If ¢ is not a quadratic function, given it is a convex
function, one can always find two constants ¢ and C such that

clIx|I* < ¢p(x) < ClIx|1%,

then considering the optimizer U"+! (%)

A A A
Uty ) < ¢ (U= Aoyt =
¢>< (ZC)>_¢( ) ) T 50 )
A A
< Un+1 e 2 A Un-H e
<C| (2C)II2+ (re 5C (it

A A
< c|lunt12 g+t 2 oqun 22 4o cunt!
=<C| 3 2+ Cll Iz + All 2 [F

1 A A
<2c| = Ul’l+1/2 _ Ul’l+l g2 s EUH+1 C Uﬂ+1/2 2
=< <2|| (2C)||2 t3¢ Il ( +Cll 53

oy
2c’M
< AICU2 |y 4 o U213

C
< ALUmT2| + =t
Cc

Once again we used the Jensen’s inequality and the fact that U"+! (%) is the optimizer of
FIUmF2 — g2 4 2y Ut in the third and the forth inequalities. The proof is

complete by setting @ = % O

4 Numerical Experiments

In this section we discuss how to choose regularization parameter A and PA operator £ order
parameter m for a few problems. We start with a simple example to gain physical intuition
for the behavior of £™. Various choices of A and £™ will then be compared for Burgers’
equation with a stationary shock, Burgers’ equation with a moving shock, and finally Euler’s
equations.

4.1 Effects of Adding an /; Penalty Term

To demonstrate how adding the /; penalty term affects a numerical solution, we first consider
the 6-grid toy example displayed in Fig. 1. In each subfigure, the blue line represents the true
solution which contains a shock between the fourth and the fifth grid point, while the green
line shows the initial guess containing oscillations that resembles those resulting from the
artificial numerical dispersion term in the LxW solution. The red lines in each subfigure are
the resulting solution using the LARS algorithm of the corresponding lasso problem, each
using different values of X, aimed to mitigate the oscillations. It is immediately evident that
while using a small A ensures that the lasso solution remains close to the initial guess, as A
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Fig. 1 Toy model used to demonstrate how the /; penalty term affects an oscillatory solution. (blue) true
solution; (green) oscillatory solution; (red) solution using the LARS algorithm to the corresponding lasso
problem. Observe that as A increase, the solution tends to the constant function (Color figure online)

gradually increases, the oscillations gradually do get eliminated. Finally, for large enough 2,
the solution becomes a constant function.

4.2 Burgers’ Equation with a Stationary Shock

Burgers’ equation provides the simplest model in the study of nonlinear hyperbolic conser-
vation laws. In this first example we choose the initial data so that the solution contains a
stationary shock:

2
0.5
dutd () =0, (t,x) eRYx[0,1] with uc=0,x)=1" *=77 (2
2 x—1 x>0.5

and apply periodic boundary conditions. For this particular example, the analytical solution
is explicitly given by

X
— x <05

u(t,x) = ;"'1 .
— x>0.5
t+1

Thus we see that the solution has a stationary shock at x = 0.5, but that the shock strength
decays in time. To numerically calculate this solution, we use Ax = 0.01, At = ?—g, and set
the final time tobe 7 = 0.1 (i.e. M = 100 time steps). The solutions for m = 1 and 3 in £

for various choices of A are discussed in Sects. 4.2.1 and 4.2.2 respectively.
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Fig.2 Numerical solution from Algorithm 1 using £ with different choices of A to (22) at time T = .1 with
Ax = 0l,and At = 9%

4.2.1 Setting £ = L'

We first consider using the first order PA operator, £!, in Stage 2 of Algorithm 1 for solving
(22). Figure 2 compares the solution at final time 7 = .1 for various choices of A. It is
evident that larger values of A yield greater “smoothing” effects, with the best (visual) solution
occurring when A ~ .01.

Applying /1 minimization at each time step is clearly cost prohibitive for most problems.
Thus it is natural to ask if it is possible to apply it less often, or even just one time after
the final time of 7 = .1, as a way to post-process the solution. Figure 3 demonstrates that
using the /1 regularization as a post-processor performs comparably to the method provided
in Algorithm 1. In both cases larger values for A yield greater smoothing effects, and for
some critical threshold & > Ac7, the smoothing is so strong that the numerical solution
no longer can recover the true solution. It is interesting to observe that the A used for the
post-processing /| regularization is nearly 100 (M) times the threshold for the case when the
minimization is conducted at each time step.

From the results in Figs. 2 and 3, it is apparent that at least in the case of a stationary
shock, the /; minimization should be used only as a post-processing step. We could still gain
more insight into choosing A, by asking if it is possible to choose A a-priori based on the
desirable properties of numerical conservation laws. Specifically, as shown in Proposition 4
we know that there does exist a threshold Aty so that the scheme is TVD for all A > Aty.
Determining Aty is not trivial. Fortunately, however, the LARS algorithm provides the entire
solution path, which allows us to record the TV norm of the solution as a function of A.
Hence to shed more light on how to choose A for the stationary shock problem, we traced
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Fig.3 Numerical solution using different choices for A obtained by applying /| regularization as a single post
processing step on the LxW solution for (22) at time 7 = .1 with L', Ax = .01, and At = %

Lax-Wendroff (lambda = 0) lambda = 0.996 lambda = 1.138
0.50- 0.50-

0.25- 0.25-

=0) 3 0.00- S 0.00-
-
-0.25+ -0.25-
colour colour colour
-2- —numerical soln — numerical soln — numerical soln
—true soln —true soln — true soln
-0.50 - -0.50 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X

Fig.4 Solution to (22) using regularization at the final time step with different A. (left) A = 0, or LxW solution.
(middle) Solution using the smallest A that guarantees the TVD property as obtained by the LARS algorithm
at the final time step. (right) Solution using the smallest A that guarantees the TVD property as obtained from
the analytical solution at 7 = .1. Here we use cl

the solution’s TV norm by following as A decayed from oo to 0, while stopping the LARS
algorithm whenever the TVD property was achieved. Note that while it is technically possible
to calculate a different A = A(n) at each time step in Stage 2 in Algorithm 1, it would be
extremely costly. Hence to obtain a TVD approximation, we simply compare the TV norm
of the final time step solution, TV(UM ), to that of the initial value, TV(UO). In this way,
we found that Aty = 0.996 provided the smallest A guaranteeing TVD. The corresponding
solution is shown in Fig. 4. Finally we note that for the stationary shock problem we have
the exact solution, with the TV norm of u(.1, x) being smaller than that of # (0, x). By using
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Fig.5 Numerical solution from Algorithm 1 using £3 with different choices of A to (22) at time T = .1 with
Ax = 0l,and At = 9%

TV (u(.1, x)) as a threshold, we obtain Aty = 1.138. The corresponding solution is plotted
in Fig. 4 (right).

To conclude our remarks for solving the stationary shock problem with £!, we note that
the accuracy of the solution heavily depends on how X is chosen. If X is too small, there
will still be artificial oscillations. On the other hand, if A is too large, the solution will
dissipate to strongly. As noted previously, the appropriate A will balances the accuracy and
the smoothness, or equivalently the fidelity and regularization terms. To accomplish this, we
apply the LARS algorithm to obtain a solution path that stops when the TVD property is
achieved.

4.2.2 Setting £ = L3

Higher order PA operators yield faster convergence to the approximation of a jump function
in smooth regions. To study these effects on numerical hyperbolic conservation laws, we
consider using £3 for the /1 regularization. As in Sect. 4.2.1, here we use various choices
for As and observe the accuracy of the corresponding numerical solution. Figures 5 and 6
respectively show the numerical solution when the /; minimization is applied at every time
step and at the final time step (as a post-processor). We then again look for the threshold Aty
that yields the TVD property at the final time step-first by comparing the TV norms of the
numerical solution UM and U° (yielding Aty = .538), and then by using the TV norm of the
analytic solution at 7 = .1 (yielding Aty = .571). The corresponding solutions are plotted
in Fig. 7.
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Fig.6 Numerical solution using different choices for A obtained by applying /| regularization as a single post
processing step on the LxW solution for (22) at time 7 = .1 with £3, Ax = .01,and At = %
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Fig.7 Solution to (22) using regularization at the final time step with different . (left) A = 0, or LxW solution.
(middle) Solution using the smallest A that guarantees the TVD property as obtained by the LARS algorithm
at the final time step. (right) Solution using the smallest A that guarantees the TVD property as obtained from
the analytical solution at 7 = .1. Here we use L3

As is readily observed, the results using £3 are too oscillatory for this problem. More
study is needed to determine if using £ would yield relatively better results than using £' in
under-resolved environments, as is demonstrated to be the case for function reconstruction
in [1], or if the conservation law solution has more variation in smooth regions. It may also
be advantageous to use a weighted /; norm in this case, see e.g. [4]. This will be the topic of

future investigations.
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Fig.8 Numerical solution using different choices for A obtained by applying /| regularization as a single post
processing step on the LxW solution for (23) at time 7 = .1 with LY, Ax = .01, and At = %

4.3 Burgers’' Equation with a Moving Shock

As our third example, we consider Burgers’ equation with a moving shock, given by

2

2

U+, (”—):0, (t.x) € RTx[0,1] with u(t =0, x) =

x+1 x<05

. (23
x > 0.5 @3)

The solution has a shock which moves right with shock speed 1. The analytical solution is

computed as

x+1
x<054¢
w=11+1
X
x>054+1
t+1

for t < 0.5. We compute the equation up to 7 = 0.1 using LxW method with grid size
Ax = 0.01 and time step At = % (M = 100). Figure 8 shows the numerical solutions
with /1 minimization applied only at the final time step for different values of .. When A = 0
we recover the standard LxW solution, and, as expected, increasing A yields more mitigated
oscillations. As in the previous example, we determine the A that ensures the TVD property
at the final time. Comparing the TV norms of the numerical solutions at UM and U° yields
Aty = 0.281, while using the exact solution for u(.1, x) to obtain the required TV threshold
yields Aty = 0.367. The solutions for these preset A values are plotted in Fig. 9.
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Fig.9 Solution to (23) using regularization at the final time step with different A. (left) A = 0, or LxW solution.
(middle) Solution using the smallest A that guarantees the TVD property as obtained by the LARS algorithm
at the final time step. (right) Solution using the smallest A that guarantees the TVD property as obtained from
the analytical solution at 7 = .1. Here we use £l

4.4 Euler’s Equations

As a final example, we consider the Euler’s equations, given by

af” 3 pu
rrll ol e pu+p | =0,
E Y \u(E + p)

where p, u, and E denote density, velocity, and energy, respectively. Pressure is defined as

2
p = (y — D(E — £5-). For this experiment we set y = 1.4 and use the shock tube problem
initial conditions

po:l,uo:O,Eo:Z.S,po:l x <0

po=0.125, ug =0, Eg=0.25, pp=0.1 x>0
Note the jump discontinuity at x = 0 in the initial data. We compute the solution on
[—0.5,0.5] with grid size Ax = ﬁ and time step At = % up to T = 0.2. Based on

the results in the previous examples, we apply /; minimization only at the final time step as a
post-processor for various choices of A. We note that in this case we also impose conservation
of momentum and energy in (3) of Algorithm 1. Figure 10 illustrates that the oscillations that
appear at the shocks in the standard LxW solution can be effectively reduced by including
an /1 penalty term.

5 Concluding Remarks

The purpose of this paper was to design and analyze the properties of numerical schemes for
conservation laws that combines the Lax Wendroff method with /; regularization. A critical
component in our scheme (and what differentiates it from the scheme introduced in [17])
is the conservation constraint. We demonstrated that our method is equivalent to a lasso
problem, and therefore guarantees the existence and uniqueness of the numerical solution.
In Theorem 5 we proved consistency, convergence, and conservation of our scheme, while
in Propositions 4 and 5 we showed that the method is TVD and satisfies the weak entropy
condition for conservation laws. Our results rely on the use of the LARS algorithm for
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Fig. 10 Solutions of Euler equation with shock tube problem initial conditions. The /| minimization is applied
at the final time step for different choices of A

solving the corresponding lasso problem. In practice using the LARS algorithm would be
cost prohibitive, so a surrogate technique for implementing Algorithm 1 should be used. For
example, the the alternating direction method of multipliers (ADMM) is used in [17] for
similar examples. It is not clear, however, that the convergence and conservation properties
are maintained for surrogate implementation procedures, so more investigation is needed. As
observed in our numerical results, it is not necessary to apply /1 regularization at every time
step. Specifically, it sufficed to apply the regularization only as a post-processing algorithm
(after 100 time steps in the Burgers’ equation examples). This suggests that one might be able
to apply /; regularization after a fixed number of time steps to reduce unwanted oscillations,
maintain stability and be TVD for those problems for which we seek long term solutions.
We observed that the optimal choice of A for the post-processed solution corresponded to
the number of time steps. In particular, for M time steps we saw Ay ~ MA, where X is the
[} regularization parameter corresponding to the minimization performed at every time step,
while 1 s corresponds to the regularization parameter when the minimization is performed
only after M time steps. More rigorous analysis is needed, however, to see if A can always be
chosen accordingly. Finally, numerical PDE solvers other than Lax Wendroff may be better
suited to use in Stage 1 of Algorithm 1. These issues all remain for future investigations.
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