


NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 126

syList misses more than one-third of mobile ads in our dataset,

which NoMoAds successfully detects. We evaluate different

feature sets on our dataset and provide insights into their use-

fulness for mobile ad detection. In particular, network-layer

features alone achieve 87.6% F-score, adding URL features

achieves 93.7% F-score, adding other header features achieves

96.3% F-score, and finally, adding personally identifiable in-

formation (PII) labels and application names achieves up to

97.8% F-score. Furthermore, when tested on applications not

included in the training data, NoMoAds achieves more than

80% F-score for 70% of the tested apps. We also evaluate the

efficiency of NoMoAds operating in real-time on the mobile

device and find that NoMoAds can classify a packet within

three milliseconds on average. To encourage reproducibil-

ity and future work, we make our code and dataset publicly

available at http://athinagroup.eng.uci.edu/projects/

nomoads/.

The rest of this paper is organized as follows. Section

2 discusses the background and prior work related to mo-

bile ad-blocking. Section 3 describes NoMoAds’ design and

implementation. Section 4 describes our data collection and

ground truth labeling procedure. Section 5 evaluates NoMo-

Ads in terms of effectiveness and efficiency and compares it to

state-of-the-art filtering approaches. Section 6 concludes the

paper and outlines directions for future work.

2 Background

Deployment of ad-blockers has been steadily increasing for

the last several years due to their usability, performance, pri-

vacy, and security benefits. According to PageFair [9], 615

million desktop and mobile devices globally use ad-blockers.

While ad-blocking was initially aimed at desktop devices

mainly as browser extensions such as AdBlock, Adblock Plus,

and uBlock Origin, there has been a surge in mobile ad-

blocking since 2015 [10]. Mobile browsing apps such as UC

Browser and Adblock Browser are used by millions of iOS

and Android users, particularly in the Asia-Pacific region due

to partnerships with device manufacturers and telecommuni-

cation companies [10]. Moreover, Apple itself began offering

ad-blocking features within their Safari browser since iOS9

[11]. As we discuss next, mobile ad-blocking is fundamentally

more challenging as compared to desktop ad-blocking.

2.1 Challenges

Cross-App Ad-Blocking. It is challenging to block ads across

all apps on a mobile device. Mobile operating systems, includ-

ing Android and iOS, use sandboxing to isolate apps and pre-

vent them from reading or modifying each other’s data. Thus,

ad-blocking apps like UC Browser or Adblock Browser can

only block ads inside their own browser unless the device is

rooted. Specifically, Adblock has an Android app for blocking

ads across all apps, but it can work only on rooted devices, or it

has to be setup as a proxy to filter Wi-Fi traffic only [12]. Nei-

ther of these options are suitable for an average user who may

not wish to root their device and may not know how to setup a

proxy. A recent survey of ad-blocking apps on the Google Play

Store found that 86% of the apps only block ads inside their

browser app [13]. Recent work on leveraging VPNs for mobile

traffic monitoring has considered interception in the middle of

the network (e.g., ReCon [14]) as well as directly on the mo-

bile device (e.g., AntMonitor [15], Lumen [16]), primarily for

the purpose of detecting privacy leaks and only secondarily for

ad-blocking [3, 17].

Cross-app ad-blocking is not only technically challeng-

ing but is also considered a violation of the Terms of Service

(ToS) of the official Apple and Android app stores [18]. How-

ever, there are still ways to install cross-app ad-blocking apps

without rooting or jailbreaking a mobile device (e.g., through

a third-party app store). Legally speaking, ad-blockers have

withstood legal challenges in multiple European court cases

[19]: acting on users’ behalf with explicit opt-in consent, ad-

blockers have the right to control what is downloaded. We are

unaware of any successful challenges against ad-blockers un-

der the Computer Fraud and Abuse Act (CFAA) in the U.S.

Efficient Traffic Interception. While a mobile app can inter-

cept network traffic from all other apps in user-space by setting

up a VPN, it is challenging to efficiently analyze packet head-

ers and/or payload to block ads. Ad-blocking typically oper-

ates by filtering URLs pointing to advertising domains. Given

limited battery and processing capabilities of mobile devices,

it is particularly challenging to open up network traffic headers

to inspect URLs of every packet from all apps. As compared to

remote traffic interception (through a VPN server), local (on-

device) mobile traffic interception provides local context but

needs to be done efficiently due to the limited CPU, mem-

ory, and battery resources on the mobile device. We build on

AntMonitor [15], a system for analyzing network traffic at the

mobile device, to efficiently implement a cross-app mobile ad-

blocker.

Avoiding Blacklists. Desktop ad-blockers rely on manually

curated filter lists consisting of regular expressions such as the

ones depicted in Tables 2 and 3. Unfortunately these lists are

not tailored to the app-based mobile ecosystem, and hence we

cannot simply reuse them to effectively block mobile ads. We

either have to replicate the crowdsourcing effort for the mo-



NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 127

bile ecosystem or design approaches to automatically generate

blacklist rules to block mobile ads.

Ad-blocking apps on the Google Play Store also rely

on blacklists to block ads [13, 20]. More than half of these

apps rely on publicly-maintained lists such as EasyList and

some rely on customized filter lists. In addition, cross-app ad-

blockers that are not allowed on the Google Play Store, such

as DNS66 [21] and Disconnect [22], also rely on both public

and customized blacklists. Unfortunately, these blacklists are

manually curated, which is a laborious and error-prone pro-

cess. They are also slow to update and do not keep up with

the rapidly evolving mobile advertising ecosystem [23]. Fur-

thermore, they contain obsolete filter rules that are redundant,

which results in undesirable performance overheads on mobile

devices.

2.2 Related Work

In this section, we survey the most closely related literature to

this paper. Bhagavatula et al. [24] trained a machine learning

classifier on older versions EasyList to detect previously un-

detected ads. More specifically, they extracted URL features

(e.g., ad-related keywords and query parameters) to train a k-

nearest neighbor classifier for detecting ads reported in the

updated EasyList with 97.5% accuracy. Bau et al. [25] also

used machine learning to identify tracking domains within the

web ecosystem. Later, Gugelmann et al. [26] trained classi-

fiers for complementing filter lists (EasyList and EasyPrivacy)

used by popular ad-blockers. They extracted flow-level fea-

tures (e.g., number of bytes and HTTP requests, bytes per re-

quest) to train Naive Bayes, logistic regression, SVM, and tree

classifiers for detecting advertising and tracking services with

84% accuracy. Rodriguez et al. [17] leveraged graph analysis

to discover 219 mobile ad and tracking services that were un-

reported by EasyList. They identified third-party domains by

noting the domains contacted by more than one app, and then

inspected each third party domain’s landing page for certain

keywords that would mark it as an ad or tracking service. In a

similar fashion, PrivacyBadger [27] learns which domains are

potential trackers by analyzing the number of web pages a cer-

tain domain appears on. Going a step further, to avoid broken

pages for cases where domains are multi-purposed (i.e., both

functional and tracking), PrivacyBadger only blocks cookies

belonging to such domains.

Compared to prior work, our approach trains per-packet

classifiers (thus maintaining less state than per-flow) to detect

ad-requesting packets in mobile traffic. By efficiently analyz-

ing full packets, as we discuss later, our approach can make

use of more information than just flow-level or URL-based

features. To the best of our knowledge, prior research is lack-

ing an effective approach to automatically detect ads directly

on the mobile device.

Aside from inspecting network traffic, there have been

other approaches for blocking ads on Android devices. For in-

stance, PEDAL [28] decompiles applications and trains clas-

sifiers to distinguish the bytecode of apps from that of ad-

libraries. However, static analysis and code re-writing can lead

to unusable apps (e.g., due to broken third party functional-

ity), and cannot deal with native code. Modifications to the

Android Operating System (OS) have also been proposed to

mitigate privacy exposure to ad libraries (e.g., AdDroid [29]).

However, OS modification is not suitable for mass adoption

as most users are not comfortable with the complex procedure

of changing their mobile OS. In the future, we plan to build

on the OS modification approach to automatically label ads in

packet traces, which can then be used as ground truth to train

our machine learning classifiers.

3 The NoMoAds Approach

Fig. 1 provides an overview of our cross-app mobile ad-

blocking system. It consists of user-space software NoMoAds

and a server used for training classifiers. The NoMoAds app

intercepts every packet on the device and inspects it for ad re-

quests, extracting features and passing them on to a classifier

(Sec. 3.1). To obtain the ground truth, we match packets with

blacklists (Sec. 3.2.1), log the labeled packets, and then upload

them to the server for training (Sec. 3.3.1). While the detection

of ad packets is done in real-time on the device itself, the se-

lection of features and the training of classifiers is done offline

at a server in longer time scales (Sec. 3.3.2).

3.1 Packet Monitoring

NoMoAds relies on the ability to intercept, analyze, and filter

network traffic from all apps on a mobile device. To that end,

NoMoAds leverages the APIs of the AntMonitor Library [15],

as described next.

Packet Interception. We make the design choice to inter-

cept packets at the network layer, because it provides a uni-

versal vantage point to traffic from all mobile apps and al-

lows us to build a cross-app mobile ad-blocker. We leverage

our prior work on the AntMonitor Library [15], which is a

lightweight VPN-based tool for monitoring packets coming in

and out of the device. The AntMonitor Library has the follow-

ing desirable properties: it operates in real-time at user-space,

without the need for root access, proxy or special configura-

tion. As shown in Fig. 1, we use the acceptIPDatagram





NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 129

the ad network into thinking that it served an ad, when it ac-

tually did not (this keeps attribution analytics and payments

for ad placements honest and correct). Third, this approach

circumvents the need to modify the rendered HTML content

(e.g., CSS values).

The rest of this section compares two approaches for

blocking ad requests: the traditional, blacklist-based approach

(Sec. 3.2.1) and the proposed machine learning-based ap-

proach taken by NoMoAds (Sec. 3.2.2).

3.2.1 Blacklists

According to a recent survey [13], mobile ad-blocking apps

on the Google Play Store rely on blacklists to block ads [13].

These blacklists (such as EasyList in AdblockPlus) capture

the ad-blocking community’s knowledge about characteristics

of advertisements through informal crowdsourcing. However,

blacklists suffer from the following limitations.

1. Maintenance. Blacklists are primarily created and main-

tained by humans domain-experts, often assisted by

crowdsourcing. This is a tedious, time-consuming, and

expensive process. Furthermore, as the characteristics of

ad traffic change over time, some filer rules become obso-

lete and new filter rules need to be defined and added to

the blacklist.

2. Rules Compactness and Expressiveness. Humans may not

always come up with the most compact or explanatory fil-

ter rules. For example, they may come up with redundant

rules, which could have been summarized by fewer rules.

We faced this issue ourselves when coming up with our

own set of rules tailored to mobile traffic (e.g., see rows

20 and 25 in Table 3). In addition, filter rules in today’s

blacklists are limited in their expressiveness: they are an

“OR” or an “AND” of multiple rules. On the other hand,

classifiers can come up with more complicated but intu-

itive rules, such as the decision tree depicted in Fig. 3.

3. Size. Blacklists can be quite lengthy. For instance, Ea-

syList contains approximately 64K rules. This is a prob-

lem for implementations on the mobile device with lim-

ited CPU and memory resources.

4. URL-focused Rules. Most of today’s blacklists were

specifically created for browsers and web traffic, and they

typically operate on the extracted URL and HTTP Referer

header. As we show later, this is one of the reasons that

these lists do not translate well when applied to mobile

traffic. By exploiting AntMonitor Library’s visibility into

the entire payload (beyond just URLs), we can leverage

the information from headers and payload to more accu-

rately detect ads in mobile traffic.

In this work, we used EasyList (the most popular publicly-

maintained blacklist [13]) as (i) a baseline for comparison

against our proposed learning approach – see Section 5.1, and

for (ii) partially labeling packets as containing ads or not – see

Section 4. In order to match packets against EasyList, we in-

corporated the open source AdblockPlus Library for Android

[31] into NoMoAds, as shown in Fig. 1. The AdblockPlus Li-

brary takes as input the following parameters: URL, content

type, and HTTP Referer. The content type is inferred from

the requested file’s extension type (e.g., .js, .html, .jpg)

and is mapped into general categories (e.g., script, document,

image). Relying on these parameters to detect ad requests re-

stricts us to HTTP and to successfully decrypted HTTPS traf-

fic. Hence, we first have to parse each TCP packet to see if

it contains HTTP, and then extract the URL and HTTP Ref-

erer. Afterwards, we pass these parameters to the AdblockPlus

Library, which does the matching with EasyList.

3.2.2 Classifiers

NoMoAds uses decision tree classifiers for detecting whether

a packet contains an ad request. While feature selection and

classifier training is conducted offline, the trained classifier is

pushed to the NoMoAds application on the mobile device to

match every outgoing packet in real-time. To extract features

from a given packet and pass them to the classifier, one typi-

cally needs to invoke various Java string parsing methods and

to match multiple regular expressions. Since these methods are

extremely slow on a mobile device, we use the AntMonitor Li-

brary’s efficient DPI mechanism (approximately one millisec-

ond per packet) to search each packet for features that appear

in the decision tree. We pass any features found to the classi-

fier, and based on the prediction result we can block (and send

an empty response back) or allow the packet.

Classifiers vs. Blacklists. NoMoAds essentially uses a set of

rules that correspond to decision tree features instead of black-

list rules. The decision tree classifier approach addresses the

aforementioned limitations of blacklists.

1. Mobile vs. Desktop. Since EasyList is developed mostly

for the desktop-based web browsing ecosystem, it is prone

to miss many ad requests in mobile traffic. In contrast,

NoMoAds uses decision tree classifiers that are trained

specifically on mobile traffic. This leads to more effective

classification in terms of the number of false positives and

false negatives.

2. Fewer and more Expressive Rules. A classifier contains

significantly fewer features than the number of rules in

blacklists. While EasyList contains approximately 64K



NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 130

rules, our trained decision tree classifiers are expected to

use orders of magnitude fewer rules. This ensures that the

classifier approach scales well – fewer rules in the deci-

sion tree result in faster prediction times. Decision tree

rules are also easier to interpret while providing more ex-

pressiveness than simple AND/OR.

3. Automatically Generated Rules. Since decision tree clas-

sifiers are automatically trained, it is straightforward to

generate rules in response to changing advertising char-

acteristics. These automatically generated rules can also

help human experts create better blacklists.

3.3 Training Classifiers

This section explains our approach to training classifiers,

which is done offline and at longer time scales. The trained

classifier (i.e., decision tree model) is pushed to the mobile de-

vice and is applied to each outgoing packet in real-time (Sec.

3.2.2).

3.3.1 Labeling Packets (on the mobile)

In order to train classifiers, we first need to collect ground

truth, i.e., a dataset with packets and their labels (whether or

not the packet contains an ad request). As shown in Fig. 1, we

use the AntMonitor Library’s API to store packets in PCAPNG

format, i.e., the packets in PCAP format plus useful informa-

tion for each packet, such as the packet label. We make mod-

ifications to the AntMonitor Library to allow us to block ad-

related packets from going to the network, but still save and

label them to be used as ground truth. We use tshark to con-

vert PCAPNG to JSON, extracting any relevant HTTP/S fields,

such as URI, host, and other HTTP/S headers. The JSON for-

mat offers more flexibility in terms of parsing and modifying

stored information, and hence is a more amenable format for

training classifiers.

We further extend the AntMonitor Library to annotate

each packet with the following information: (i) its label pro-

vided by AdblockPlus (ii) the name of the app responsible for

the packet (available via AntMonitor Library’s API calls); and

(iii) whether or not the packet contains any personally identi-

fiable information, as defined next.

We consider the following pieces of information as per-

sonally identifiable information (PII): Device ID, IMEI, Phone

Number, Email, Location, Serial Number, ICC ID, MAC ad-

dress, and Advertiser ID. Some of these identifiers (e.g., Ad-

vertiser ID) are used by major ad libraries to track users and

serve personalized ads, and hence can be used as features in

classification. PII values are available to the AntMonitor Li-

brary through various API calls provided by Android. Since

these values are known, the library can easily search for them

with DPI. The full discussion of PII is out of the scope of

this paper, and we refer the reader to [15] and [14] for de-

tails. Within the NoMoAds system, we use the AntMonitor

Library’s capability to find PII and label our packets accord-

ingly.

3.3.2 Training Classifiers (at the server)

We train decision tree classifiers to detect outgoing packet con-

taining an ad request. We use the decision tree model for the

following reasons. First, in our past experience this model has

performed well in terms of accuracy, training and prediction

time [32, 33]. Second, decision trees provide insight into what

features are useful (they end up closer to the root of the tree).

Finally, decision trees make the real-time implementation on

the device possible since we know which features to search

for.

During training, we adopt a bag-of-words model to extract

features from a given packet. This approach has been used in

the past, e.g., by ReCon [14], as a general way to detect PII

leakage. We adapt this idea for ads and learn which specific

words are useful features when it comes to predicting ad traf-

fic.

In particular, we break the packet into words based on de-

limiters (e.g., “?”, “=”, “:”) and then use these words as fea-

tures in classification. As a preliminary phase of feature se-

lection, we discard words that appear too infrequently, since

ad requests typically follow the same structure in each packet

sent. We also discard words that are specific to our setup, such

as version numbers and device/OS identifiers (e.g., “Nexus”

and “shamu”), since we would like our classifier to be applica-

ble to other users. We systematically extract features from dif-

ferent parts of the packet (i.e., TCP/IP headers, URL, HTTP

headers, and payload) to compare and analyze their relative

importance (Sec. 5.1.1).

4 The NoMoAds Dataset

In order to train and test our classifiers for detecting ads, we

collected and analyzed our own dataset consisting of packets

generated by mobile apps and the corresponding labels that

indicate which packets contain an ad request. Sec. 3.3.1 de-

scribes the format of our packet traces and the system used to

collect them. In this section, we describe the selection process

of mobile apps for generation of these packet traces.

















NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 138

to minimize timing the overhead of possible thread switching.

The results are as follows.

• The total time for NoMoAds to extract features and apply

the decision tree classifier is: 2.96 ms ± 2.07 ms.

• The total time for HTTP parsing and applying the Adblock-

Plus Library is: 1.95 ms ± 0.75 ms.

Although the AdblockPlus Library outperforms NoMoAds by

one millisecond (on average), it does so at the cost of a nearly

20% degradation in the F-score performance (Table 4).

In order to understand how much latency overhead pre-

diction by itself adds, we tested the same 10 HTTP packets

(100 times each) and timed the prediction time of each vari-

ant of our classifier (see the last column in Table 4). As we

can see, the prediction time closely follows the tree size – the

smaller the tree, the quicker we can make a prediction. Hence,

it is important to know which features to train on in order to

produce a small and efficient tree that can be used on mobile

devices in real-time without significantly degrading user expe-

rience. Our tree of choice (URL, HTTP Headers, and PII), on

average, predicts within three milliseconds. For comparison,

we repeated the experiment with the AdblockPlus Library, this

time isolating the matching of URL, Content Type, and HTTP

Referer. We report the result in the last column of Table 4. The

AdblockPlus Library is more efficient than our classifier in

prediction time, indicating that most of the delay, when using

the AdblockPlus Library approach, comes from HTTP pars-

ing. Conversely, in the NoMoAds approach, most of the delay

comes from the prediction itself, and not the search for fea-

tures.

5.2.2 (Re)training Time

In Table 4, we reported the training time when using our entire

dataset, as well as the size of the initial feature set extracted

from all packets, and the final size of the tree (number of non-

leaf nodes in the decision tree). We note that only a small sub-

set of the features is selected by the decision tree. The selected

features are up to an order of magnitude less in size than the

initial feature set. This results in relatively small and intuitive

classifiers, like the one depicted in Fig. 3. Furthermore, the se-

lection of features significantly affects the training time and

has a moderate effect on classification performance. In this

paper, our training dataset was relatively small, and training

our classifiers from scratch did not take more than 13 minutes

(Table 4). This is acceptable since training is currently done

offline at a remote server. In future work, we plan to further

investigate training time as a function of the size of the train-

ing dataset and the selected features. Our goal is to be able to

train and retrain our classifiers within a couple hours, in order

to be able to push them from the server to mobile devices at

least once a day, or a few times a day, as EasyList does.

6 Conclusion and Future

Directions

To the best of our knowledge, NoMoAds is the first mo-

bile ad-blocker to effectively and efficiently block ads served

across all apps using a machine learning approach. Our

work complements blacklist-based ad-blocking approaches,

such as EasyList (which uses only the URL and HTTP Ref-

erer), DNS66 [21] (which operates on the coarse granular-

ity of domains), and recent work on learning flow-based fea-

tures [26]. To encourage reproducibility and future work,

we make our code and dataset publicly available at http:

//athinagroup.eng.uci.edu/projects/nomoads/.

We conclude by discussing the limitations of NoMoAds

and outline future research directions to address them.

First, the size of the training set used in this paper is lim-

ited. We currently manually label packets, which is not scal-

able if larger datasets are desired for training. Hence, in the

future, we will explore options for automatic labeling of pack-

ets by separating ad library code from application code, ei-

ther with static analysis and re-compilation (as done in [28])

or with OS-level modifications (as done in [39]). This will en-

able us to not only expand our dataset, but also to map each

packet to the ad library responsible for generating (e.g., by

tracing API calls). An alternative way to increase the size of

the dataset is through crowdsourcing, along the lines of Lumen

[17].

Second, ad libraries may be able to circumvent our system

by employing certificate pinning. However, certificate pinning

is currently not widespread. Oltrogge et al. [30] reported only

45 out of 639,283 mobile apps employing certificate pinning.

The authors explained that there are certain implementation

hurdles that come with certificate pinning and it is generally

not recommended that third-parties (such as ad libraries) use

pinning since certificates must be kept up-to-date and it is dif-

ficult for app and ad library developers to coordinate certificate

updates. Furthermore, network-level features can still be used

to classify certificate-pinned packets: as shown in Table 4, des-

tination IP and port, or destination domain lead to F-scores of

86% and above on our current dataset. In addition, with the au-

tomatic labeling approach proposed above, we will be able to

label encrypted packets and explore using TCP/IP and various

TLS-specific fields (e.g., cipher suites, TLS extension headers)

as features for classifying pinned packets.



NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 139

Third, ad libraries may attempt to obfuscate other features

in order to circumvent NoMoAds. While some apps and li-

braries do already obfuscate PII, the practice is uncommon

as was shown in [40]. Even when PII are obfuscated, NoMo-

Ads can use keys that correspond to PII values (e.g., “uid=”,

“idfa=”) as was done in [14] to detect PII that are a priori un-

known to a system. Such features, as well as URL paths, are

difficult to change, making NoMoAds resilient to feature ob-

fuscation. Apps may also attempt to use anti ad-blockers to

detect presence of ad-blockers [41, 42]. While we did not ob-

serve such behavior, if and when that happens, we can block

anti ad-blocking scripts that are downloaded from third-parties

[23] or use more sophisticated dynamic analysis techniques to

circumvent anti ad-blocking logic that is part of the app [43].

Acknowledgements

This work is supported in part by the National Science Founda-

tion under grant numbers 1715152 and 1649372, by the Data

Transparency Lab (DTL), and CPCC at UCI. A. Shuba has

been partially supported by an ARCS Fellowship. We would

like to thank the anonymous reviewers whose thorough com-

ments helped improve this paper.

References

[1] AppBrain. https://www.appbrain.com/stats/

libraries/ad.

[2] Daniel G Goldstein, R Preston McAfee, and Siddharth Suri.

The Cost of Annoying Ads. In Proceedings of the 22nd in-

ternational conference on World Wide Web, pages 459–470.

ACM, 2013.

[3] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore,

Yan Grunenberger, Konstantina Papagiannaki, Hamed Had-

dadi, and Jon Crowcroft. Breaking for Commercials: Charac-

terizing Mobile Advertising. In Proceedings of the 2012 ACM

conference on Internet measurement conference, pages

343–356. ACM, 2012.

[4] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and

Wenke Lee. The Price of Free: Privacy Leakage in Personal-

ized Mobile In-App Ads. In Network and Distributed System

Security Symposium (NDSS), 2016.

[5] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringh-

ini, Thorsten Holz, Christopher Kruegel, and Giovanni Vigna.

The Dark Alleys of Madison Avenue: Understanding Mali-

cious Advertisements. In Proceedings of the 2014 Confer-

ence on Internet Measurement Conference, pages 373–380.

ACM, 2014.

[6] Adblock Browser. https://adblockbrowser.org/.

[7] UC Browser. https://play.google.com/store/apps/

details?id=com.UCMobile.intl.

[8] EasyList. https://easylist.to/.

[9] PageFair. The state of the blocked web – 2017 Global Ad-

block Report. https://pagefair.com/downloads/

2017/01/PageFair-2017-Adblock-Report.pdf, 2017.

[10] James Hercher. Mobile Ad Blocking Takes Off In

Asia, Sparked By User Data Costs. https://

adexchanger.com/mobile/mobile-ad-blocking-

takes-off-asia-sparked-user-data-costs/, 2017.

[11] Alex Hern. A proxy war: Apple ad-blocking software

scares publishers but rival Google is target. https:

//www.theguardian.com/technology/2016/jan/01/

publishers-apple-ad-blockers-target-google/,

2016.

[12] Adblock Plus for Android. https://adblockplus.org/

en/android-about.

[13] Muhammad Ikram and Mohamed Ali Kaafar. A First Look

at Mobile Ad-Blocking Apps. IEEE Network Computing and

Application (NCA), 2017.

[14] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout,

and David Choffnes. ReCon: Revealing and Controlling

PII Leaks in Mobile Network Traffic. In Proceedings of the

14th Annual International Conference on Mobile Systems,

Applications, and Services, pages 361–374. ACM, 2016.

[15] Anastasia Shuba, Anh Le, Emmanouil Alimpertis, Minas

Gjoka, and Athina Markopoulou. AntMonitor: System and

Applications. arXiv preprint arXiv:1611.04268, 2016.

[16] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth

Sundaresan, Christian Kreibich, Phillipa Gill, Mark Allman,

and Vern Paxson. Haystack: A Multi-Purpose Mobile Vantage

Point in User Space. arXiv:1510.01419v3, Oct. 2016.

[17] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas

Razaghpanah, Rishab Nithyanand, Mark Allman, Christian

Kreibich, and Phillipa Gill. Tracking the Trackers: Towards

Understanding the Mobile Sdvertising and Tracking Ecosys-

tem. arXiv preprint arXiv:1609.07190, 2016.

[18] Adblock Plus for Android Removed from Google Play Store.

https://adblockplus.org/blog/adblock-plus-

for-android-removed-from-google-play-store.

[19] Ben Williams. Adblock Plus and (a little) more. https:

//adblockplus.org/blog/five-and-oh-look-

another-lawsuit-upholds-users-rights-online,

2016.

[20] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick

Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and

Edgar Weippl. Block Me If You Can: A Large-Scale Study of

Tracker-Blocking Tools. In Security and Privacy (EuroS&P),

2017 IEEE European Symposium on, pages 319–333. IEEE,

2017.

[21] DNS-based Host Blocker for Android. https://

github.com/julian-klode/dns66.

[22] Disconnect. https://disconnect.me/.

[23] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. The Ad Wars:

Retrospective Measurement and Analysis of Anti-Adblock

Filter Lists. In ACM Internet Measurement Conference (IMC),

2017.

[24] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi

Gupta, and Brian Ziebart. Leveraging Machine Learning

to Improve Unwanted Resource Filtering. In Proceedings

of the 2014 Workshop on Artificial Intelligent and Security

Workshop, pages 95–102. ACM, 2014.



NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking 140

[25] Jason Bau, Jonathan Mayer, Hristo Paskov, and John C

Mitchell. A Promising Direction for Web Tracking Counter-

measures. Proceedings of W2SP, 2013.

[26] David Gugelmann, Markus Happe, Bernhard Ager, and Vin-

cent Lenders. An Automated Approach for Complementing

Ad Blockers’ Blacklists. Proceedings on Privacy Enhancing

Technologies, 2015(2):282–298, 2015.

[27] Privacy Badger. https://www.eff.org/privacybadger,

2018.

[28] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. Effi-

cient Privilege De-escalation for Ad Libraries in Mobile Apps.

In Proceedings of the 13th Annual International Conference

on Mobile Systems, Applications, and Services, pages 89–

103. ACM, 2015.

[29] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David

Wagner. AdDroid: Privilege Separation for Applications

and Advertisers in Android. In Proceedings of the 7th ACM

Symposium on Information, Computer and Communications

Security, pages 71–72. Acm, 2012.

[30] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew

Smith, and Sascha Fahl. To Pin or Not to Pin-Helping App

Developers Bullet Proof Their TLS Connections. In USENIX

Security Symposium, pages 239–254, 2015.

[31] Adblock Plus Library for Android. https://github.com/

adblockplus/libadblockplus-android.

[32] Anastasia Shuba, Evita Bakopoulou, and Athina

Markopoulou. Privacy Leak Classification on Mobile Devices.

In Signal Processing Advances in Wireless Communications

(SPAWC), 2017 IEEE 18th International Workshop on. IEEE,

2018. To Appear.

[33] Anastasia Shuba, Evita Bakopoulou, Milad Asgari

Mehrabadi, Hieu Le, David Choffnes, and Athina

Markopoulou. AntShield: On-Device Detection of Personal

Information Exposure. arXiv preprint arXiv:1803.01261,

2018.

[34] Wireshark. https://www.wireshark.org/.

[35] AdAway hosts. https://adaway.org/hosts.txt.

[36] hpHosts. https://hosts-file.net/ad_servers.txt.

[37] AdMob. https://www.google.com/admob/.

[38] MoPub. https://www.mopub.com.

[39] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I

Hong, and Yuvraj Agarwal. Does this App Really Need My

Location?: Context-Aware Privacy Management for Smart-

phones. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 1(3):42, 2017.

[40] Andrea Continella, Yanick Fratantonio, Martina Lindorfer,

Alessandro Puccetti, Ali Zand, Christopher Kruegel, and Gio-

vanni Vigna. Obfuscation-Resilient Privacy Leak Detection

for Mobile Apps Through Differential Analysis. In Network

and Distributed System Security Symposium (NDSS), 2017.

[41] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed,

Narseo Vallina-Rodriguez, Marjan Falahrastegar, Julia E.

Powles, Emiliano De Cristofaro, Hamed Haddadi, and

Steven J. Murdoch. Ad-Blocking and Counter Blocking: A

Slice of the Arms Race. In USENIX Workshop on Free and

Open Communications on the Internet (FOCI), 2016.

[42] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq.

Detecting Anti Ad-blockers in the Wild. In Privacy Enhancing

Technologies Symposium (PETS), 2017.

[43] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, , and

Heng Yin. Measuring and Disrupting Anti-Adblockers Using

Differential Execution Analysis. In Network and Distributed

System Security Symposium (NDSS), 2018.


	NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking
	1 Introduction
	2 Background
	2.1 Challenges
	2.2 Related Work

	3 The NoMoAds Approach
	3.1 Packet Monitoring
	3.2 Detecting Ad Requests in Outgoing Packets 
	3.2.1 Blacklists
	3.2.2 Classifiers

	3.3 Training Classifiers
	3.3.1 Labeling Packets (on the mobile)
	3.3.2 Training Classifiers (at the server)


	4 The NoMoAds Dataset
	5 Evaluation
	5.1 Effectiveness
	5.1.1 Testing on Previously Unseen Packets 
	5.1.2 Testing on Previously Unseen Apps 
	5.1.3 Testing on Previously Unseen Ad Libraries 

	5.2 Efficiency
	5.2.1 Classification on the Mobile Device
	5.2.2 (Re)training Time


	6 Conclusion and Future Directions


