
ShadowBlock: A Lightweight and Stealthy Adblocking Browser

Shitong Zhu
University of California, Riverside

shitong.zhu@email.ucr.edu

Umar Iqbal
The University of Iowa

umar-iqbal@uiowa.edu

Zhongjie Wang
University of California, Riverside

zwang048@ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Zubair Shafiq
The University of Iowa

zubair-shafiq@uiowa.edu

Weiteng Chen
University of California, Riverside

wchen130@ucr.edu

ABSTRACT

As the popularity of adblocking has soared over the last few years,

publishers are increasingly deploying anti-adblocking paywalls that

ask users to either disable their adblockers or pay to access content.

In this workwe propose ShadowBlock, a newChromium-based ad-

blocking browser that can hide traces of adblocking activities from

anti-adblockers as it removes ads from web pages. To bypass anti-

adblocking paywalls, ShadowBlock takes advantage of existing

filter lists used by adblockers and hides all ad elements stealthily in

such away that anti-adblocking scripts cannot detect any tampering

of the ads (e.g., absence of ad elements). Specifically, ShadowBlock

introduces lightweight hooks in Chromium to ensure that DOM

states queried by anti-adblocking scripts are exactly as if adblocking

is not employed. We implement a fully working prototype by modi-

fying Chromium which shows great promise in terms of adblocking

effectiveness and anti-adblocking circumvention but also more effi-

cient than the state-of-the-art adblocking browser extensions. Our

evaluation on Alexa top-1K websites shows that ShadowBlock

successfully blocks 98.3% of all visible ads while only causing minor

breakage on less than 0.6% of the websites. Most importantly, Shad-

owBlock is able to bypass anti-adblocking paywalls on more than

200 websites that deploy visible anti-adblocking paywalls with a

100% success rate. Our performance evaluation further shows that

ShadowBlock loads pages as fast as the state-of-the-art adblocking

browser extension on average.

CCS CONCEPTS

· Information systems→ Browsers; Online advertising; · Se-

curity and privacy→ Usability in security and privacy;

KEYWORDS

Adblocking; Anti-adblocking; Browser Modification

ACM Reference Format:

Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq,

and Weiteng Chen. 2019. ShadowBlock: A Lightweight and Stealthy Ad-

blocking Browser. In Proceedings of the 2019 World Wide Web Conference

(WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3308558.3313558

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313558

1 INTRODUCTION

The deployment of adblocking technology has been steadily in-

creasing over the past few years. PageFair reports that more than

600 million devices globally use adblockers as of December 2016 [1].

Many reasons contribute to the popularity of adblocking. First, lots

of websites show flashy and intrusive online ads that negatively

impact user experience. Second, the pervasiveness of targeted or

personalized ads has incentivized a global ecosystem of online track-

ers and data brokers, which in turn raises concerns for user privacy.

Third, the inclusion of numerous advertising and tracking scripts

causes excessive website bloat resulting in slower page loads. The

rise of adblocking has jeopardized the ad-powered business model

of many online publishers. For example, U.K. publishers lose nearly

3 billion GBP in revenue annually due to adblocking [2].

In response to adblocking, many publishers have deployed JavaScript-

based, client-side anti-adblockers to detect and circumvent adblock-

ers. An anti-adblocker typically consists of two components: de-

tection and reaction. For adblocker detection, common practices

include checking the absence of ad elements and proactively in-

jecting bait ad elements [33]. Both practices exploit the fact that

adblockers make observable changes to the DOM by either blocking

relevant requests or hiding DOM elements directly [37]. As a result,

these DOM changes can be perceived by the detection part of anti-

adblockers through invocation of JavaScript APIs such as getEle-

mentById(). After adblocker detection, the reaction component

can perform different subsequent operations. It can be aggressive

paywalls that prevent users from accessing the content or even

switching ad sources.

Adblockers have addressed anti-adblockers in one of the follow-

ing three ways: (i) blocking the JavaScript code of anti-adblockers

using filter lists [29], (ii) disrupting anti-adblocker code based on

program analysis [39], and (iii) hiding the trace of adblocking to

fool anti-adblockers [37]. The first countermeasure is currently

adopted by the adblocking community using filter lists such as

Anti-Adblock Killer and Adblock Warning Removal [29]. However,

the coverage and accuracy of these filter list is lacking. Our man-

ual evaluation on 207 websites using anti-adblockers with visible

reactions (i.e. warning message or paywall), only less than 30% of

them are correctly identified by Adblock Warning Removal [4] or

Anti-Adblock Killer [5]. This is likely due to the manual nature

of filter list curation and maintenance which is cumbersome and

error-prone. The second countermeasure of rewriting JavaScript to

deactivate anti-adblockers is prone to false positives causing site

breakage with unacceptable user experience degradation [39]. The

1

third countermeasure of hiding the trace of adblocking, as imple-

mented in prior work [37], is not stealthy because it injects new

JavaScript which is easily detectable by anti-adblockers.

In this paper, we aim to completely hide the traces of adblocking

in a stealthy manner by going deep into the browser core. This is

analogous to the rootkits in the OS kernel where user applications

are unable to detect the presence of a malicious process [36]. Since

the browser core is at a lower level (more privileged), it is in theory

capable of hiding the states of adblockers from the anti-adblockers

while presenting an ad-free view to the user. Specifically, since

anti-adblocker is implemented as client-side JavaScript, it can only

access web-page states through a number of predefined Web APIs

including the ones used to probe the the presence/absence of ad

elements. These APIs are standardized by W3C and implemented

eventually by web browsers. ShadowBlock hooks any JavaScript

API that can potentially distinguish the difference before and after

hiding ad elements, and assures no information about the element

hiding can be leaked through such API.

We tackle three major challenges in designing and implement-

ing ShadowBlock. First, existing adblockers’ model of blocking

ad-related URLs (e.g., scripts, iframes, images) does not fit well in

our requirement of presenting the same exact DOM view as if no

adblocker is employed. For example, if a DOM element is not even

retrieved, ShadowBlockwould have no way to fake its size, dimen-

sion, and other properties. Second, given that the Web APIs suite

and the rendering process implemented in modern web browsers

are highly complex and intertwined, there may exist unexpected

channels that leak information about adblocking deployment. To

achieve stealthy adblocking, we need to ensure that no such channel

discloses differentiable information about our element hiding action

in a conclusive way. Third, modern web browsers make significant

efforts in improving their page loading and rendering performance.

As we develop ShadowBlock on open-sourced Chromium, we

need to minimize the overhead it incurs during the page load pro-

cess.

Contributions. We summarize our key contributions as follows.

(1) We design a well-reasoned solution where we present two

different views to anti-adblockers and users. On one hand, ad

elements are never directly blocked (so they remain visible to

anti-adblockers); on the other hand, these ads are stealthily

hidden from users.

(2) We reuse the rules fromfilter lists used by adblocking browser

extensions to element hiding decisions. On top of exist-

ing lists that are community-backed and have been widely

adopted, we replicate 98.3% of their ad coverage according

to manual inspection over Alexa Top 1K websites, with less

than 0.6% breakage rate.

(3) We design and implement a fully functional prototype which

is open-sourced at the time of publication. We evaluate the

effectiveness of ShadowBlock prototype on 207 websites

with visible anti-adblockers. We pick real anti-adblockers

with different trigger mechanisms and of different complex-

ity. All of them are successfully evaded by our new adblocker

design.

(4) Our performance evaluation of ShadowBlock shows that

it loads pages comparably fast as Adblock Plus on average,

in terms of Page Load Time and SpeedIndex.

2 BACKGROUND AND RELATED WORK

2.1 Adblockers And Filter Lists

Mechanisms. Adblockers rely on manually curated filter lists to

identify ads on web pages. EasyList and EasyPrivacy are two most

widely used filter lists to block online ads and trackers, with about

71000 and 15000 rules [8], respectively. These lists consist of two

types of rules which are basically regular expressions. One of them

is HTTP rules that block HTTP requests to URL addresses that are

known to serve ads. For example, the first filter rule below blocks all

third-party HTTP requests to amazon-adsystem.com, preventing

any resource on this domain from being downloaded. The other

type is HTML rules, which generally hides HTML elements that

are identified as ads. For example, the second filter below hides all

HTML elements with ID promo_container on wsj.com.

||amazon-adsystem.com^$third-party

wsj.com###promo_container

It is noteworthy that HTML rules are mostly only introduced

to complement HTTP rules while dealing with first-party text ads.

This is because these text ads are directly embedded into the HTML

itself with no associated additional resource loads, making it in-

evitable to be included while the browser downloads the web page.

Otherwise, HTTP rules are preferred as they prevent ad resources

from being loaded in the first place, saving unnecessary network

traffic and avoiding execution of ad-related scripts to speed up page

loading and rendering.

Limitations. A group of volunteers that maintain filter lists carry

out the manual process to add new rules, correct and remove er-

roneous or redundant rules all based on informal feedback from

users [7]. Due to its crowd-sourced nature, this laborious effort

faces challenges from both the completeness and soundness. In

the context of adblocking, the former results in missed ads and

the latter often translates to site breakage or malfunction [23]. At

the same time, as adblockers gain their popularity rapidly (11% of

global Internet population is blocking ads as of December 2016 [1]),

online publishers are also fast adopting countermeasures against

adblockers that we summarize below.

2.2 Countermeasures Against Adblockers

Concealing ad signatures. First, online advertisers can bypass

rules on filter lists by concealing the signatures these lists use to

identify ads. At a high level, this line of countermeasures attempts

include first-party advertising and rotation of ad serving domains.

First-party advertising exploits the fact that many rules on filter

lists are designed to block ads from being loaded from third-party

servers. Instead, ads are served from the same domain of the web

page hosting them and their nature as ads is concealed as normal

content [11]. However, adblockers can easily hide any HTML el-

ement on a web page by applying HTML rules that are crafted

to target elements based on any combination of their CSS/HTML

properties. In other words, any CSS selectors used to create and/or

2

locate ads elements, can also let adblockers identify and hide these

elements in turn.

Domain name rotation is another tactic for obfuscating advertis-

ing content. It relies on ad rotation networks that serve ads from

frequently-changing, or even automatically generated [38] domain

names, which overwhelms volunteers that maintain the filter lists

so they are hard to keep pace with the rule updates. This can result

in, however, the indifferent blocking of all third-party resources on

websites that show such ads [9]. By only whitelisting legitimate

scripts that support core functionalities, any possible ads or tracking

JavaScript are prevented from running, leaving no chance for load-

ing domain rotating ads. Moreover, AdBlock Plus recently launched

its Anti-Circumvention Filter List [3] that specifically counter "cir-

cumvention ads", including ads adapting the two countermeasures

above.

Deploying anti-adblockers. Second, many publishers choose

to deploy anti-adblocker JavaScript code to battle the rise of ad-

blocking. Specifically, such client-side scripts consist of two main

components, trigger that detects the presence of adblockers by

checking whether ads or bait elements are still present, and reaction

that can display warning messages and/or simply report the results

to a remote server [33, 39]. Prior work [29] showed that 686 out of

Alexa top-100K websites detect and visibly react to adblockers on

their homepages. Even worse, these visible ones only account for

less than 10% of all anti-adblockers [39]. Zhu et al. [39] showed that

among Alexa top-10k websites, 30.5% are countering adblockers in

some form, with most of them being silent reporting. In summary,

because of their flexibility and ease of deployment, anti-adblockers

are considered the most widely used countermeasure against ad-

blockers adopted by online publishers.

2.3 Countermeasures Against Anti-adblockers

Dedicated anti-adblocking filter lists. As a response, adblock-

ers attempt to circumvent anti-adblockers by blocking their JavaScript

code snippets, whitelisting bait scripts/elements, or hiding warning

notifications. To this end, adblockers once again rely on manually

curated filter lists such as Anti-Adblock Killer [5] and Adblock

Warning Removal [4]. These lists either trick anti-adblockers’ trig-

ger so they cannot detect adblockers, or mute their reaction com-

ponent to prevent responses after successful detection.

/kill-adblock/js/function.js$script

@@||removeadblock.com/js/show_ads.js$script

ilix.in,urlink.at,priva.us###blockMsg

For example, the first HTTP rule above blocks the code snippets con-

taining implementation of an anti-adblocking library KillAdBlock,

and the second whitelists a bait script file named show_ads.js that

is used to detect adblockers. The third HTML rule hides the warning

message with ID blockMsg issued by the associated anti-adblocker.

However, our manual evaluation (§4) shows that these lists tar-

geting anti-adblockers are generally ineffective. Only less than

30% of the anti-adblocking warning messages can be removed by

the state-of-the-art filter lists. This is again partly because of the

crowdsourcing nature of these lists, and also the rising popularity

of third-party anti-adblocking services that deploy sophisticated

techniques dedicated for detecting/circumventing adblockers [33].

Disrupting anti-adblocker code. Other than the filter lists that

have been officially adopted by adblockers, there are also research

efforts for detecting and evading anti-adblockers. One solution

to measure the anti-adblockers is to perform program analysis

techniques that automatically determine if a script functions for

anti-adblocking purposes. Such analysis can be static that is based

on syntactic and structural features extracted from JavaScript code,

and utilizes machine learning approaches to classify the code from

ground-truth-labeled training data [29]. It can also be dynamic that

captures JavaScript behavior at runtime by collecting and analyzing

differential execution trace with the adblocker turned on and off

[39]. After successfully pinpointing the critical conditions that are

used by anti-adblockers to assert/react against the presence of

adblockers, one can choose to rewrite these conditions to prevent

the anti-adblockers from functioning. This approach is generally

intrusive (patching Javascript can be tricky and cause breakage)

and easy to evade. Indeed, the overall success rate of this strategy

is shown to be only less than 80%.

Hiding adblockers. Besides disrupting the functionalities of anti-

adblockers, researchers also have proposed away to hide the trace of

using adblockers, or known as stealthy adblocking. In [37], Storey et

al. created a shadow copy of the DOM that anti-adblockers operate

on before any adblocking actions take place, and then redirects all

JavaScript APIs (e.g. getElementById()) that can be used to detect

the presence of ad elements to the copy instead of the original

DOM. However, this so-called rootkit-style stealthy adblocker has

inherent drawbacks. First, unless it lives in browser core and with

significant engineering efforts, the underlying DOM mirroring and

propagation are difficult to be complete in all cases. This is especially

problematic in the context of web browsing as any site breakage

causes unacceptable user experience degradation. Second, evenwith

a perfect implementation, maintaining a live copy of complicated

data structures such as DOM poses a prohibitively high overhead

onto the rendering performance of modern web browsers. Given

that modern browsers place significant emphasis on performance,

heavy operations like such at runtime are generally not acceptable.

3 SHADOWBLOCK

In this section, we first provide an overview of ShadowBlock’s

architecture. We then discuss ShadowBlock’s two building blocks:

(1) the identification of ad elements by translating filter list rules to

per-element hiding decisions and (2) the concealment of our hiding

actions. Finally, we summarize the modifications we make in the

relevant modules of Chromium.

3.1 ShadowBlock Overview

Figure 1 illustrates ShadowBlock’s architecture. It consists of two

sub-systems: one translates rules from filter lists and use them

for identifying ad elements in DOM to hide; the other hooks nec-

essary points in Chromium to ensure that the hiding actions are

transparent to the trigger/detection component of anti-adblockers.

Recall from Section 2.1 that filter lists contain tens of thousands of

rules that either block HTTP requests to fetch ad resources or hide

HTML ad elements. To prevent exposing adblocking actions to anti-

adblockers, we need to hide the changes in DOM or other states (e.g.

resource loads) introduced by adblocking because these changes

3

Element and match the URL against filter lists, if it is a match

we mark this element as ad. For element hiding rules, we adopt

libadblockplus [10], a C++ wrapper library around the core func-

tionality of Adblock Plus to parse filter lists and generate the CSS

selectors for matching ad elements for a particular domain. Then,

we mark the ad elements that match the generated CSS selectors

by calling ContainerNode::QuerySelectorAll().

Since many web pages are dynamic due to JavaScript execu-

tion over time, we also need to monitor attribute changes of each

element. For this purpose, we instrument the AttributeChanged

event andmatch any element with newly changed attributes against

CSS selectors from HTML rules. We mark an element as ad if it is

a match, or un-mark the element if this element has been marked

but it is not matched this time. Note that in order for minimiz-

ing the number of matches needed to perform, we conduct the

first batch match (via QuerySelectorAll()) after the load event

of DOM is fired, and then match elements upon their attribute

changes. This design choice leaves a short period of time (few

milliseconds) between page navigation and load DOM event in

which ads are displayed. We make this trade off to reduce the

overhead incurred by QuerySelectorAll(). In comparison, ad-

blocking extensions such as Adblock Plus inject CSS rules when

document.readyState turns interactive [26], which happens

before the load event. However, it is important to note that most

ads in current web ecosystem are loaded in an asynchronous man-

ner and are unlikely to appear before the load event in first place.

Stealthy modifications for hiding ad elements. As mentioned

earlier, we leverage visibility CSS property to hide identified ad

elements by creating a new fake-visible enumerate and visually

hide elements with this enumerate, as if it behaves as hidden. In the

meantime, we hook relevant modules in both Blink and its bindings

with V8 to ensure the stealthiness of our hiding action. More specifi-

cally, for eliminating traces accessible by CSS/Style-related APIs, we

hook CSSComputedStyleDeclaration::GetPropertyCSSValue in

Blink and force return visible to queries about hidden elements.

For event-related APIs, we hook Element::IsFocusableStyle()

and other conditions that determine if an element can receive events.

Lastly, we hook ComputedStyle::VisibleToHitTesting() so ad

elements are still regarded "visible" from the viewpoint perspective

of Blink. In principle, our hooking guarantees that the identified

ad elements are invisible to user’s display as pixels on screen but

appear as visible to APIs accessible to client-side JavaScript.

4 EVALUATION

We evaluate ShadowBlock in terms of its (1) stealthiness against

anti-adblockers, (2) ad coverage, and (3) performance as as com-

pared to adblocking extensions.

4.1 Stealthiness Analysis

Takeaway: ShadowBlock has 100% success rate against anti-adblockers

whereas state-of-the-art anti-adblocking filter lists have only 29%

success rate.

Experimental Setup. To evaluate the stealthiness of Shadow-

Block, we use previously reported [39] 682 websites with visual

anti-adblockers. We manually analyze these websites and find that

Tool Notification Ad switching Crypto-mining

Total 201 5 1

ShadowBlock 201 (100%) 5 (100%) 1 (100%)

Filter lists 59 (29%) 1 (20%) 0 (0%)

Table 1: Breakdown of stealthiness analysis

207 of them still use visible anti-adblockers. For each website, we

perform stealthiness comparison as follows.

(1) Open a website with four Chromium instances simultane-

ously. Each instance has a different profile configuration:

(i) no modification or extension; (ii) Adblock Plus exten-

sion with EasyList only; (iii) Adblock Plus extension with

EasyList, Anti-Adblock Killer list, and Adblock Warning Re-

moval list; and (iv) ShadowBlock using EasyList.

(2) Scroll the page down to the bottom and wait for 30 seconds

after the load event has fired to ensure complete page load.

(3) Capture the full-page screenshots (including content after

scrolldown) for all browser instances.

(4) Manually inspect the screenshots: compare (i) and (ii) to

determine if the page has visual anti-adblocker. If so, further

compare (ii) and (iii) to check whether anti-adblocking filter

lists evade the anti-adblocker, compare (iii) and (iv) to check

whether ShadowBlock achieves the evasion.

Results. In addition to visible anti-adblocking notifications, we

also consider ad switching and crypto-mining reactions from web-

sites. Table 1 compares ShadowBlock with anti-adblocking filter

lists for each of these anti-adblocking reactions. "Notification" refers

to websites that show anti-adblocking notifications such as pay-

walls. "Ad switching" refers to websites that switch their ad sources

upon detection of adblockers. "Crypto-mining" refers to the web-

sites that load crypto-mining scripts to mine crypto-currencies on

detection of adblockers [28]. We note that ShadowBlock has 100%

success rate as compared to 29% success rate of anti-adblocking

filter lists.

Case Studies. Below we discuss a few interesting examples of anti-

adblockers that ShadowBlock successfully handles but filter lists

do not. Note that besides visible anti-adblocking notifications, we

also include one example discovered in the wild that uses non-visual

countermeasure against adblocker users.

Ad source switching. On detecting adblockers, some websites switch

their ad sources to sources that are currently not blocked by filter

lists. Figure 5a and 5b show an example from golem.de. Since Shad-

owBlock stealthily hides the original ads, the ad source switching

script is never triggered. Therefore, unlike what Figure 5b shows

in which adblocking extensions fail to remove the replaced ad,

ShadowBlock successfully hides it.

Silent reporting. Besides visible reaction, anti-adblockers can also

choose to silently report the adblocking status to back-end servers

to collect adblocking statistics. For example, varmatin.com uses

Code 4 to place a bait with keywords on EasyList to track adblock-

ing users and report the status to back-end server. ShadowBlock

handles such cases and these statistics are never reported.

7

this issue by checking whether or not the overridden API alters the

elements and hiding the elements altered by ad scripts.

False Negative Analysis. From Table 2, it can be seen that Shad-

owBlock has only 2.8% FNs. We further investigate FNs and iden-

tify that they are again caused by corner cases not covered by

ShadowBlock and that they can be handled by performing taint

analysis.

sohu.com is an example of false negative. On further investiga-

tion, we find that sohu.com uses a non-ad script (not on Easylist)

to load both ads and non-ad content on the page. Since Shad-

owBlock only attributes elements created by ad scripts as ads,

it misses dual-purpose scripts. It’s noteworthy that this should

be a rare case, as it is contrary to the common practice of us-

ing dedicated third-party scripts to create and load ad elements

that most ad publishers exercise today. These publishers normally

deploy third-party ad scripts because they have a complex bid-

ding system and prefer dominant control over their ad modules

1 "resource": {

2 "type": "text",

3 "text": "Guangzhou , Audi TT 82.2K RMB off",

4 "md5": "",

5 "click": "http :// dealer.auto.sohu.com /882054/ promotion/

article?id =7360579",

6 "imp": [],

7 "clkm": [],

8 "adcode": "Guangzhou , Audi TT 82.2K RMB off",

9 "itemspaceid": "15770"

10 }

Code 6: JSON snippet on sohu.com for loading ads

(translated from Chinese)

We can tackle this issue by implementing the taint analysis ap-

proach discussed in Section 3.2. Specifically, Code 6 shows the

snippet of a JSON file on sohu.com containing parameters required

to create ad elements. In this case, we will need to first mark the

JSON object as ad-related, or tainted, and whenever any piece of the

data derived from it propagates to any element field (e.g. the URL

in JSON’s click field is used to set an element’s src attribute), we

mark the element as ad. In comparison, extension-based adblockers

intercept the network request to load such ad JSON based on its

URL in the first place, which effectively prevents the resulting ad

HTML element from being created.

Similarly, we observe FNs on youtube.comwhere ShadowBlock

is unable to hide all video ads. Our manual analysis shows that

youtube.com leverages the Media Source Extensions (MSE) API

[25] to load video segments through AJAX requests as byte streams.

Unlike the standard HTML video tag that loads videos as HTTP

requests, youtube.com loads ad videos in Blob objects [24] which

are downloaded by JavaScript on the fly. ShadowBlock cannot

identify video ads loaded as Blob objects, because both ad and non-

ad objects are generated by the same non-ad script and assigned

to a single HTML video element. Unlike our strategy that relies

on differentiating ad scripts, extension-based adblockers block the

AJAX requests to fetch ad video segments based on their URLs,

which achieves the goal of ad removal. As discussed earlier, taint

tracking can be used to address this challenge.

Even through we show that tainting is the ultimate solution to

the FN cases encountered during our evaluation, we argue that

it a comprehensive taint engine poses prohibitively high runtime

overhead in the context of web browsing [27, 31]. More importantly,

our evaluations have shown the sufficient accuracy of Shadow-

Block with the lightweight stack-based execution approximation,

as discussed in Section 3.2.

4.3 Performance

Takeaway: we use two web performance metrics: Page Load Time

(PLT) and SpeedIndex. ShadowBlock speeds up page loads by

5.96% in terms of median PTL and 6.37% in terms of median SpeedIn-

dex, on Alexa top-1000 websites.

Page LoadTime (PLT). PLT has been the de-facto standardmetric

for measuring web performance. PLT can be computed by timing

the difference between certain browser events using the Navigation

Timing API [12]. In order to minimize variations introduced by

the initial network setup (e.g., establishing TCP connection with

server), we measure the time between responseStart [15] and

loadEventStart [14] events.

SpeedIndex. PLT does not capture a real user’s visual perception

of webpage rendering process. For example, two pages A and B

can have exactly the same PLTs, but page A can have 95% of its

visual content rendered by a certain time point while page B has

only rendered 30%. From the user perception perspective, page A

outperforms page B but they are equally good in terms of PLT.

To address this issue, SpeedIndex [17] was proposed to capture

the visual progress of above-the-fold content, i.e., content in the

viewport without scrolling. Unlike PLT, SpeedIndex measures how

visually complete a webpage looks at different points during its

loading process. Specifically, the page loading process is recorded as

a video and each frame is compared to the final frame, for measuring

completeness. SpeedIndex is computed using the following formula:

SpeedIndex =

∫ tend

tbeдin

1 −
VisualCompleteness

100

, where tbeдin and tend represent the time points of the start (i.e.

responseStart event in our case) and end (i.e. loadEventStart

event in our case) of video recording, respectively.VisualCompleteness

measures the difference of the color histogram for each frame in the

video versus the histogram at frame tbeдin , and compares it to the

baseline (difference of histogram at tbeдin and tend) to determine

how "complete" that video frame is.

We emulate DSL network condition by throttling Chromium

[13] to 4 Mbps downlink bandwidth and 5ms RTT latency for all

responses to best mitigate measurement volatility across different

browser instances. 3 For each site, we first load the webpage to

generate its resource cache, then we re-load the webpage 10 times

and average the measured PLT and SpeedIndex for each page load.

Note that our warm-up strategy ensures most of the static non-ad

resources are cached, while ad resources dynamically generated by

JavaScript execution are not. This is intended, because we want to

minimize the variability introduced by irrelevant factors such as

processing non-ad network traffic.

3We also run another configuration with 750 Kbps downlink bandwidth and 100ms
RTT latency to emulate a regular 3G condition [13] and observe similar median trends
for both PLT (DSL -5.96% vs 3G +0.30%) and SpeedIndex (DSL -6.37% vs 3G -7.07%)
with respect to Adblock Plus.

9

REFERENCES
[1] The state of the blocked web 2017 Global Adblock Report. PageFair.

https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf,
2017.

[2] Uk publishers lose nearly 3bn in revenue annually due to adblocking, 2017.
[3] Abp anti-circumvention filter list. https://github.com/abp-filters/

abp-filters-anti-cv, 2018.
[4] Adblock warning removal list. https://easylist-downloads.adblockplus.org/

antiadblockfilters.txt, 2018.
[5] Anti-adblock killer: Don’t touch my adblocker! https://reek.github.io/

anti-adblock-killer/, 2018.
[6] Blink - the chromium projects. https://www.chromium.org/blink, 2018.
[7] Easylist forum. https://forums.lanik.us/, 2018.
[8] Easylist: Overview. https://easylist.to/, 2018.
[9] Issues with yavli advertising. https://easylist.to/2015/08/19/

issues-with-yavli-advertising.html, 2018.
[10] libadblockplus: A c++ library offering the core functionality of adblock plus.

https://github.com/adblockplus/libadblockplus, 2018.
[11] Native advertising: A guide for businesses. https://www.ftc.gov/tips-advice/

business-center/guidance/native-advertising-guide-businesses, 2018.
[12] Navigation timing api - web apis | mdn. https://developer.mozilla.org/en-US/

docs/Web/API/Navigation_timing_API, 2018.
[13] Optimize performance under varying network conditions | tools for web

developers | google developers. https://developers.google.com/web/tools/
chrome-devtools/network-performance/network-conditions, 2018.

[14] Performancetiming.loadeventstart - web apis | mdn. https://developer.mozilla.
org/en-US/docs/Web/API/PerformanceTiming/loadEventStart, 2018.

[15] Performancetiming.responsestart - web apis | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/PerformanceTiming/responseStart, 2018.

[16] Render-tree construction, layout, and paint. https://developers.google.com/web/
fundamentals/performance/critical-rendering-path/render-tree-construction,
2018.

[17] Speed index - webpagetest documentation. https://sites.google.com/a/
webpagetest.org/docs/using-webpagetest/metrics/speed-index, 2018.

[18] Subresourcefilter in chromium source code. https://cs.chromium.org/chromium/
src/components/subresource_filter/, 2018.

[19] V8 javascript engine. https://v8.dev/, 2018.
[20] V8stacktraceimpl in chromium source code. https://cs.chromium.org/chromium/

src/v8/src/inspector/v8-stack-trace-impl.h, 2018.
[21] visibility - css: Cascading style sheets | mdn. https://developer.mozilla.org/en-US/

docs/Web/CSS/visibility, 2018.
[22] Web apis | mdn. https://developer.mozilla.org/en-US/docs/Web/API, 2018.
[23] Yavli filters issues - easylist forum. https://forums.lanik.us/viewtopic.php?f=64&

t=36091, 2018.
[24] Blob - web apis | mdn. https://developer.mozilla.org/en-US/docs/Web/API/Blob,

2019.

[25] Media source extensions api - web apis | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/Media_Source_Extensions_API, 2019.

[26] preload.js in adblock plus extension that injects css selectors into
web pages. https://github.com/adblockplus/adblockpluschrome/blob/
c742bcc37b459c03bd564aea941ef6f05834e7fd/include.preload.js#L259, 2019.

[27] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1687ś1700. ACM, 2018.

[28] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z. Qian, and H. Duan. How you get shot in the back: A systematical study
about cryptojacking in the real world. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 1701ś1713. ACM,
2018.

[29] U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: retrospective measurement and
analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement
Conference, pages 171ś183. ACM, 2017.

[30] U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and B. Livshits. Adgraph: A
machine learning approach to automatic and effective adblocking. arXiv preprint
arXiv:1805.09155, 2018.

[31] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Platform-independent dynamic taint
analysis for javascript. IEEE Transactions on Software Engineering, 2018.

[32] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci. Jsgraph: Enabling reconstruction
of web attacks via efficient tracking of live in-browser javascript executions. In
25th Annual Network and Distributed System Security Symposium, 2018.

[33] M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.
Proceedings on Privacy Enhancing Technologies, 2017(3):130ś146, 2017.

[34] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: Deceiving fingerprinters
with little white lies. In Proceedings of the 24th International Conference on World
Wide Web, pages 820ś830. International World Wide Web Conferences Steering
Committee, 2015.

[35] X. Pan, Y. Cao, and Y. Chen. I do not know what you visited last summer: Protect-
ing users from third-party web tracking with trackingfree browser. In Proceedings
of the 2015 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2015.

[36] E. Rudd, A. Rozsa, M. Gunther, and T. Boult. A survey of stealth malware: Attacks,
mitigation measures, and steps toward autonomous open world solutions. IEEE
Communications Surveys & Tutorials, 19(2):1145ś1172, 2017.

[37] G. Storey, D. Reisman, J. Mayer, and A. Narayanan. The future of ad blocking: An
analytical framework and new techniques. arXiv preprint arXiv:1705.08568, 2017.

[38] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster. Webranz:
web page randomization for better advertisement delivery and web-bot preven-
tion. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 205ś216. ACM, 2016.

[39] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin. Measuring and disrupting anti-
adblockers using differential execution analysis. NDSS, 2018.

11

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Adblockers And Filter Lists
	2.2 Countermeasures Against Adblockers
	2.3 Countermeasures Against Anti-adblockers

	3 ShadowBlock
	3.1 ShadowBlock Overview
	3.2 Identifying Ad Elements
	3.3 Stealthily Hiding Ad Elements
	3.4 Chromium Modification

	4 Evaluation
	4.1 Stealthiness Analysis
	4.2 Ad Coverage Analysis
	4.3 Performance

	5 Discussions and Limitations
	6 Conclusions
	Acknowledgments
	References

