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Abstract

This paper studies the problem of identifying
any k distinct arms among the top p frac-
tion (e.g., top 5%) of arms from a finite or
infinite set with a probably approximately
correct (PAC) tolerance e. We consider two
cases: (i) when the threshold of the top arms’
expected rewards is known and (ii) when it
is unknown. We prove lower bounds for the
four variants (finite or infinite, and threshold
known or unknown), and propose algorithms
for each. Two of these algorithms are shown
to be sample complexity optimal (up to con-
stant factors) and the other two are optimal
up to a log factor. Results in this paper pro-
vide up to pn/k reductions compared with
the “k-exploration” algorithms that focus on
finding the (PAC) best k arms out of n arms.
We also numerically show improvements over
the state-of-the-art.

1 INTRODUCTION

Background. Multi-armed bandit (MAB) prob-
lems (Berry and Fristedt, 1985) have been studied
for decades, and well abstract the problems of deci-
sion making with uncertainty. It has been widely ap-
plied to many areas, e.g., online advertising (Li et al.,
2010), clinical trials (Berry and Eick, 1995), network-
ing (Bubeck and Cesa-Bianchi, 2012; Buccapatnam
et al., 2017), and pairwise ranking (Agarwal et al.,
2017). In this paper, we focus on stochastic multi-
armed bandit. In this setting, each arm of the bandit
is assumed to hold a distribution. Whenever the deci-
sion maker samples this arm, an independent instance
of this distribution is returned. The decision maker
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adaptively chooses some arms to sample in order to
achieve some specific goals. So far, the majority of
works in this area has been focused on minimizing the
regret (deviation from optimum), (e.g., (Auer et al.,
2002; Auer and Ortner, 2010; Garivier and Cappé,
2011; Bubeck and Cesa-Bianchi, 2012; Agrawal and
Goyal, 2012; Liu et al., 2018)) i.e., how to trade-off
between the exploration and exploitation of arms to
minimize the regret.

Instead of regret minimization, this paper focuses on
pure exploration problems, which aim either (i) to
identify one or multiple arms satisfying specific condi-
tions (e.g., with the highest expected rewards) and try
to minimize the number of samples taken (e.g., (Man-
nor and Tsitsiklis, 2004; Kalyanakrishnan and Stone,
2010; Kalyanakrishnan et al., 2012; Cao et al., 2015;
Agarwal et al., 2017; Kaufmann and Kalyanakrishnan,
2013; Goschin et al., 2013; Chaudhuri and Kalyanakr-
ishnan, 2017; Aziz et al., 2018)), or (ii) to identify one
or multiple best possible arms according to a given
criteria within a fixed number of samples (e.g., (Au-
dibert and Bubeck, 2010; Carpentier and Valko, 2015;
Bubeck et al., 2011)). In some applications such as
product testing (Kohavi et al., 2009; Audibert and
Bubeck, 2010; Scott, 2010), before the products are
launched, rewards are insignificant, and it is more in-
teresting to explore the best products with the least
cost, which also suggests the pure exploration setting.
This paper focuses on (i) above.

We investigate the problem of identifying any k arms
that are in the top p fraction of the expected rewards
of the arm set. This is in contrast to most works in the
pure exploration space that have focused on the prob-
lem of identifying k best arms of a given arm set. We
name the former as the “quantile exploration” (QE)
problem, and the latter as the “k-exploration” (KE)
problem. The motivations of studying the QE prob-
lem are as follows: First, in many applications, it is
not necessary to identify the best arms, since it is ac-
ceptable to find “good enough” arms. For instance, a
company wants to hire 100 employees from more than
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10,000 applicants. It may be costly to find the best
100 applicants, and may be acceptable to identify 100
within a certain top percentage (e.g., 5%); Second, the-
oretical analysis (Kalyanakrishnan et al., 2012; Man-
nor and Tsitsiklis, 2004) shows that the lower bound
on the sample complexity (aka, number of samples
taken) of the KE problem depends on n. When the
number of arms is extremely large or possibly infinite,
it is not feasible to find the best arms, but may be fea-
sible to find arms within a certain top quantile; Third,
by adopting the QE setting, we replace the sample
complexity’s dependence on n of the KE problem with
k/p (Chaudhuri and Kalyanakrishnan, 2017), which
can be much smaller, and can greatly reduce the num-
ber of samples needed to find “good” arms.

This paper adopts the probably approximately cor-
rect (PAC) setting, where an e bounded error is tol-
erated. This setting can avoid the cases where arms
are too close—making the number of samples needed
extremely large. The PAC setting has been adopted
by numerous previous works (Mannor and Tsitsiklis,
2004; Kalyanakrishnan et al., 2012; Kalyanakrishnan
and Stone, 2010; Cao et al., 2015; Goschin et al., 2013;
Chaudhuri and Kalyanakrishnan, 2017; Aziz et al.,
2018; Kaufmann and Kalyanakrishnan, 2013).

Model and Notations: Let S be the set of arms. It
can be finite or infinite. When S is finite, let n be its
size, and the top p fraction arms are simply the top
|pn| arms. If S is infinite, we assume that the arms’
expected rewards follow some unknown prior identi-
fied by an unknown cumulative distribution function
(CDF) F. F is not necessarily continuous. In this pa-
per, we assume the rewards of the arms are of the same
finite support, and normalize them into [0, 1]. For an
arm a, we use R, to denote the reward of its ¢-th sam-
ple. (R.,t € Z") are identical and independent. We
also assume that the samples are independent across
time and arms. For any arm a, let u, be its expected

reward, i.e. p, := ERL. To formulate the problem,
for any p € (0,1), we define the inverse of F as
F(p) :=sup{z : F(x) < p}. (1)

The inverse F~! has the following two properties (2)
and (3), where X ~ F means that X is a random
variable following the distribution defined by F.

F(F ) = p, (2)
Px s {X>F '(p)}>1-p (3)

To see (2), by contradiction, suppose F(F1(p)) < p.
Since F(x) is right continuous, there exists a number
x1 such that z; > F~!(p) and F(z1) < p. This implies
that z7 is in {x : F(z) < p}, and thus contradicting
(1). Define G(z) := Px.rs{X > z}. Similar to (2),
the left continuity of G implies (3).

In the finite-armed case, an arm a is said to be (e, m)-
optimal if p1q + € > Ay, Where Ap,) is defined as the
m-th largest expected reward among all arms in S. In
other words, the expected reward of an (e, m)-optimal
arm plus € is no less than Af,,). The QE problem is to
find & distinct (e, m)-optimal arms of S. We consider
both cases where Ap, is known and unknown.

Given a set S of size n, k € ZT and ¢,6 € (0, %), we
define the two finite-armed QE problems Q-FK (Quan-
tile, Finite-armed, A,,) Known) and Q-FU (Quantile,
Finite-armed, A(,,) Unknown) as follows:

Problem 1 (Q-FK). With known A, we want to
find k distinct (e, m)-optimal arms with at most § error
probability, and use as few samples as possible.

Problem 2 (Q-FU). Without knowing \j,), we want
to find k distinct (e,m)-optimal arms with at most §
error probability, and use as few samples as possible.

In the infinite-armed case, an arm is said to be [e, p]-
optimal if its expected reward is no less than F~1(1 —
p) — €. Here we use brackets to avoid ambiguity. To
simplify notation, we define A\, :== F~1(1 — p). An
[€, p]-optimal arm is within the top p fraction of S with
an at most € error. We consider both cases where A, is
known and unknown. Note that in both cases, we have
no knowledge on F except that A, is possibly known.

Given a set S of infinite number of arms, k € Z*, and
p,0,€ € (0,1/2), we define the two infinite-armed QE
problems Q-IK (Quantile, Infinite-armed, A, Known)
and Q-IU (Quantile, Infinite-armed, A\, Unknown).

Problem 3 (Q-IK). Knowing \,, we want to find
k distinct [e, p]-optimal arms with error probability no
more than §, and use as few samples as possible.

Problem 4 (Q-IU). Without knowing X,, we want to
find k distinct [e, p]-optimal arms with error probability
no more than 6, and use as few samples as possible.

2 RELATED WORKS

To our best knowledge, Goschin et al. (2013) was the
first one who has focused on the QE problems. They
derived the tight lower bound Q(E%(% + log 3))! for
the Q-IK problem with & = 1. They also provided
an Q-IK algorithm for £ = 1, with sample complexity
O(p% log %), higher than the lower bound roughly by

a log% factor. In contrast, our Q-IK algorithm works
for all k£ values and matches the lower bound.

Chaudhuri and Kalyanakrishnan (2017) studied the Q-
IU and Q-FU problems with £ = 1. They derived the
lower bounds for £ = 1. In this paper, we general-
ize their lower bounds to cases where k > 1. They

L All log, unless explicitly noted, are natural log.
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Table 1: Comparison of Previous Works and Ours. All Bounds Are for the Worst Instances.

PROBLEM WORK

SAMPLE COMPLEXITY

1 oo L _
QIK Goschin et al. (2013) © (1“2 log 5) for k=1
Q (E% (l —|—log%)> for k=1
This Paper (—2 ( + log 6)) for k€ Z*
Goschin et al. (2013) O (Zlogg) for k=1
Q—FK 1 m+1 k < <
This Paper O(E (nlog i k+k10g5)) for k <m <n/2
QL (2 +1og6)) for k <m <n/2
Chaudhuri et al. (2017) O (Tgl L) for k=1
Q10 and Aziz et al. (2018) Q (p% log %) for k=1
O(% (108 +k (L +10gk))) for ke z*
This Paper (62 <P 6 ( P 5)))
Q(L(Llog:+k(L+1logk for k € Z+
O( n lp z l) for kp:
Chaudhuri et al. (2017) me? 7O ¢
Q <m€2 log 3) fork=1
Q-FU Aziz et al. (2018) O (2log”3) for k=1
1 (npe2 L m+2 k <
This Paper O <52 (m log® 5 + nlog 550 + klog 5)) for 2k <m < n/2
Q(5 (%log%—l—k(%—i—log%))) for k <m <n/2

also proposed algorithms for these two problems with
k = 1, and the upper bounds (O(-1; e log? 3) for Q-IK,

O(% log? 1) for Q-FK) are the same as ours. For
k> 1, by sunply repeating their algorithms k times
and setting error probability % for each repetition, one
can solve the two problems with sample complexity
O(p%log2 %) and O( 7= log? %), respectively. This
paper proposes new algorithms for all k£ values with
log % reductions over the sample complexity.

Aziz et al. (2018) studied the Q-IU problem. They pro-
posed a Q-IK algorithm which is higher than the lower
bound proved in this paper by a log % factor in the
worst case. Under some “good” priors, its theoretical
sample complexity can be lower than ours. However,
numerical results in this paper show that our algorithm
still obtains improvement under “good” priors.

Although the KE problem is not the focus of this
paper, we provide a quick overview for comparative
perspective. An early attempt on the KE problem
was done by Even-Dar et al. (2002), which proposed
an algorithm called Median-Elimination that finds an
(¢, 1)-optimal arm with probability at least 1 —¢ by us-
ing at most O(% log %) samples. Mannor and Tsitsik-
lis (2004); Kalyanakrishnan et al. (2012); Kalyanakr-
ishnan and Stone (2010); Agarwal et al. (2017); Cao
et al. (2015); Jamieson et al. (2014); Chen et al.
(2016); Kaufmann and Kalyanakrishnan (2013) stud-
ied the KE problem in different settings. Halving
algorithm proposed by Kalyanakrishnan and Stone
(2010) finds k distinct (e, k)-optimal arms with prob-

ability at least 1 — § by using O(e%logg) samples.
Kalyanakrishnan and Stone (2010); Kalyanakrishnan
et al. (2012); Jamieson et al. (2014); Chaudhuri and
Kalyanakrishnan (2017); Aziz et al. (2018); Kaufmann
and Kalyanakrishnan (2013) used confidence bounds
to establish algorithms that can exploit the large gaps
between the arms. In practice, these algorithms are
promising in most situations, while in the worst case,
their sample complexities can be higher than the lower
bound by log factors.

3 LOWER BOUND ANALYSIS

We first establish the Q-FK lower bound.

Theorem 1 (Lower bound for Q-FK). Given k <
m < n/2, e € (0,7), and 6 € (0,e78/40), there is a
set such that to find k distinct (e,m)-optimal arms of
it with error probability at most §, any algorithm must
take Q(E (2 +log %)) samples in expectation.

Proof Sketch. Mannor and Tsitsiklis (2004, Theo-
rem 13) show that for the worst instance, to find
an (e, 1)-optimal arm with confidence 1 — §, at least
Q(Z(2 + log §)) samples are needed in expectation.
We will show that any algorithm that solves the Q-FK
problem with k£ = 1 can be transformed to find (¢, 1)-
optimal arms, and derive the desired lower bound for
k = 1. Then, we construct a series of Q-IK problems
with k& = 1 that all match the lower bound proved
above. We show that the problem of solving any k of
these problems with at most § total error probability
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needs at least Q(% (2 +log %)) samples in expectation.
Any algorithm that solves the Q-FK problem with pa-
rameter k can be transformed to solve the above prob-
lems. The desired lower bound follows. O

By Theorem 1, we prove the lower bound for the Q-IK
problem, which is stated in Theorem 2.

Theorem 2 (Lower bound for Q-IK). Given k, p €
(0,3], € (0,), and 6 € (0,e78/40), there is an infi-
nite set such that to find k distinct [e, p]-optimal arms
of it with error probability at most §, any algorithm

must take Q(F%(% + log %)) samples in expectation.

Proof. By contradiction, suppose there is an algorithm
A that solves all instances of the Q-IK problem by us-
ing 0(6%(% + log %)) samples in expectation. Choos-
ing m > k(k—1)/5 and n > 2m, we construct an
n-sized set C that meets the lower bound of the Q-
FK problem. By drawing arms from C with replace-
ment, we can apply A to it with p = 7*. Now, we use
A to find k possibly duplicated (e, m)-optimal arms
of C with error probability 6/2. The probability that
there is no duplication in these k£ found arms is at least
Hle % > 1—2?21 % > l—g. Thus, with prob-
ability at least 1 — ¢, A finds k distinct (e, m)-optimal
arms of C by 0(6%(% + log %)) samples in expectation,
contradicting Theorem 1. The proof is complete. [J

The lower bound for the Q-FU problem directly fol-
lows Theorem 3.3 of (Chaudhuri and Kalyanakrishnan,
2017) and Theorem 1. Theorem 3.3 (Chaudhuri and
Kalyanakrishnan, 2017) gives an Q(:2; log ) lower
bounds for £ = 1. Corollary 3 applies for all k.

Corollary 3 (Lower bound for Q-FU). Given k <
m < n/2, e (0,1/4/32), and & € (0,e~8/40), there is
a set such that to find k distinct (e, m)-optimal arms
with probability at least 1 — 6, any algorithm must take
Q(H(2 + klog & + Zlog 1)) samples in expectation.

The lower bound for the Q-FU problem directly fol-
lows Corollary 3.4 of (Chaudhuri and Kalyanakrish-
nan, 2017) and Theorem 2. Corollary 3.4 of Chaud-
huri and Kalyanakrishnan (2017) gives an (4 log )
lower bound for k = 1. Corollary 4 applies for all k.

Corollary 4 (Lower bound for Q-IU). Given k, p €
(0,1], € € (0,1/V/32), and § € (0,e=8/40), there is
an infinite set such that to find k distinct [e, p]-optimal
arms with probability at least 1—3, any algorithm must
take Q(e%(%—&—k log %—l—% log 1)) samples in expectation.

4 ALGORITHMS FOR THE Q-IK
PROBLEM

In this section, we present two Q-IK algorithms: AL-
Q-IK and CB-AL-Q-IK. “AL” stands for “algorithm”
and “CB” stands for “confidence bounds”.

A worst case order-optimal algorithm. We first
introduce AL-Q-IK. It calls the function “Median-
Elimination” (Even-Dar et al., 2002), which finds an
(e, 1)-optimal arm with probability at least 1 — § by
using O(%log%) samples. AL-Q-IK is similar to
Iterative Uniform Rejection (IUR) (Goschin et al.,
2013). At each repetition, IUR draws an arm from
S, performs 6(}2 log %) samples on it, and returns it
if the empirical mean is large enough. It solves the
Q-IK problem with & = 1, and its sample complex-
ity is O(%log #). This is higher than the lower
bound roughly by a % log% factor (compared with the
Q(%41log}) term). The %log% factor is because the
random arm drawn from § is [e, p]-optimal with prob-
ability p (in the worst case). Inspired by their work,
we add Lines 2 and 3 to ensure that a; is [e, p]-optimal
with probability at least % By doing this, we replace
the %log% factor by a constant while adding O(p%)
samples for each repetition. Repetitions continue until
k arms are found, and the number of repetitions is no
more than 4k in expectation. The choice of ny guaran-
tees that for each arm added to Ans, it is [€, p]-optimal
with probability at least 1 — %. We state its theoretical
performance in Theorem 5.

Algorithm 1 AL-Q-IK(S, k, p,€,6, A)

Input: S,k,p, 6,0, and A\ < F1(1 - p);
Initialize: Choose €1,e5 > 0 with €1 + 265 = €
t <+ 0; Ans < 0; nq + [%logiﬂ; ng fﬁlog%];
> €1, €2 = Q(e), Ans stores the chosen arms;
1: repeat t <t + 1;
2: Draw n; arms from S, and form set Ay;
3: arm a; <+ Median-Elimination(Ay, €1, i);
4: Sample a; for ny times;
5: iy <— the empirical mean;
6 if ﬂtz)\p—Gl—GQ then
7: Ans + AnsU {a:};
8: end if
9: until |Ans| > k
10: return Ans;

Theorem 5 (Theoretical performance of AL-Q-IK).
With probability at least 1 — 6, AL-Q-IK returns k dis-
tinct arms having expected rewards no less than A — €.
The expected sample complexity is O(E%(% +log %)).

Proof Sketch. Correctness: Here we note that A\, > A.
At each repetition, n; arms are drawn from S to
guarantee that with probability at least 2/3, the set
Ay contains an arm of the top p fraction. Then in
Line 3, Median-Elimination(A4,, €1, 1) is called to get
an az, which is [e1, p]-optimal with probability at least
2(1 - ) = 4. At Line 5, by Hoeffding’s Inequality,
we can prove that if a; is [e1, p]-optimal, fi; is greater
than A\ — e; — e; with probability at least 1 — %, and if
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ta, < A—¢€, [iz is less than A\ — €1 — e with probability
at least 1 — %. By some computation, we show that
given a; is added to Ans, g, > A — € with probability
at least 1 — %. Thus, with probability at least 1 —4, all
arms in Ans having expected rewards > A —e. Sam-
ple Complexity: For each t, a; is [e1, p]-optimal with
probability at least %, and if a; is [e1, p]-optimal, then
with probability at least 1 — %, it will be added to Ans.
Thus, in the t-th repetition, with probability at least
(1—2)-1>1 onearm is added to Ans. Thus, the
algorithm returns after average 4k repetitions. In each
repetition, Line 3 takes O(%} log4) = O(p%) samples,
and Line 4 takes ny = O(e 2log(k/d)) samples, prov-
ing the sample complexity. [

Remark: The expected sample complexity of Algo-
rithm 1 matches the lower bound proved in Theorem 2.
Even for k = 1, this result is better than the previous
works O(p% log 3) (Goschin et al., 2013).

Alternative Version Using Confidence Bounds
AL-Q-IK is order-optimal for the worst instances, and
provides theoretical insights on the Q-IK problem, but
in practice, it does not exploit the large gaps between
the arms’ expected rewards. In this part, we use
confidence bounds to establish an algorithm that is
not order-optimal for the worst instance but has bet-
ter practical performance for most instances. Many
previous works (Kalyanakrishnan and Stone, 2010;
Kalyanakrishnan et al., 2012; Jamieson et al., 2014;
Chaudhuri and Kalyanakrishnan, 2017; Aziz et al.,
2018) have shown that this kind of confidence-bound-
based (CBB) algorithms can dramatically reduce the
actual number of samples taken in practice. Given
an arbitrary arm a with expected reward pu,, we let
XN (a) be its empirical mean after N samples. A
function u(-) (I(-)) is said to be an upper (lower) §-
confidence bound if it satisfies

P{u(XN(a), N,0) > pa} > 14, (4)
P{I(XN(a),N,0) < pg} >1—96. (5)

There are many choices of confidence bounds, e.g., the
confidence bounds using Hoeffding’s Inequality can be

w(X™N(a),N,8) = XN (a) + log—1/(2N),  (6)
I(XN(a),N,6) = XN (a) — /logé-1/(2N).  (7)

In this paper, we propose a general algorithm that
works for all confidence bounds satisfying (4) and (5).
We first introduce PACMaxing (Algorithm 2), an algo-
rithm to find one (¢, m)-optimal arm. The idea follows
KL-LUCB (Kaufmann and Kalyanakrishnan, 2013),
except that it is designed for all confidence bounds and
has a budget to bound the number of samples taken.
Adding budget prevents the number of samples from
blowing up to infinity, and helps establish Algorithm 3.

In PACMaxing, we let U'(a) := u(it(a), N*(a), sV (@)
and Lf(a) := I(i(a), N'(a), 0N (@), For every arm a,
PACMaxing guarantees that during the execution of
algorithm, with probability at least 1 — %, its expected
reward is always between the lower and upper confi-
dence bounds, and thus, is correct with probability at
least 1—6 (see Lemma 6). Lemma 6’s proof is similar to
that of KL-LUCB (Kaufmann and Kalyanakrishnan,
2013), and is provided in supplementary materials.

Algorithm 2 PACMaxing(A, ¢, 6, budegt)
Input: A an n-sized set of arms; d,¢ € (0, 1);
Vs, 6% = Iﬁ%’ where v > 1 and k1 > 2(1 + Ti1>7
t < 0 (number of sample taken);
B(t) «+ oo (stopping index);
Sample every arm of A once; t < n;
Nt(a) + 1, Ya € A;(number of times a is sampled)
Let fi*(a) be the empirical mean of a;
at « arg max, ji*(a);
bt + argmax,zqt Ut(a);
while B(t) > e At < budget do
Sample a’ and b once; t « t + 2;
Update ji(a), (), N*(a), N*(b);
Update a and b' as Lines 7 and 8;
B(t) «+ Ut(b') — Lt(at);
: end while
: if B(t) < e then return o
: else return a random arm
end if

el e el el el e
NP TR Wy

Lemma 6 (Correctness of PACMaxing). Given suf-
ficiently large budget, PACMazing returns an (e, 1)-
optimal arm with probability at least 1 — .

Lemma 6 does not provide any insight about PAC-
Maxing’s sample complexity because it depends on the
confidence bounds we choose. For Hoeffding bounds
defined by (6) and (7), we give the sample com-
plexity of PACMaxing in Lemma 7. Here we define
Ay = %max{e, maXge A fbg — Mo} for all arms b.

Lemma 7 (Sample complexity of PACMaxing). Us-
ing confidence bounds (6) (7), and for budget no less
=1l -1
than 3n + max{5 log &2, 8(1+i2 N Jog 4(1+:2 )y
with probability at least 1 — §, PACMazing returns a
correct result after O(3,c 4 2z log o) samples.

Its proof is similar to that of KL-LUCB (Kaufmann
and Kalyanakrishnan, 2013), and is relegated to sup-
plementary materials due to space limitation.

Using PACMaxing, we establish the CBB version of
AL-Q-IK, presented in Algorithm 3. In the algorithm,
we choose gg,g1 be the corresponding budget lower
bounds as in Lemma 7. CB-AL-Q-IK is almost the
same as AL-Q-IK, except that it replaces Median-
Elimination and the sampling of a; by PACMaxing.
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Algorithm 3 CB-AL-Q-IK(S, k, p,€,6,\)
Input: S,k,p, 6,0, and A < F~1(1 — p);
Initialize: ¢ < 0; Ans + (); ny + (% log 3];
1: repeat t + t+1;
2: Draw n; arms from S, and form set Ay;
3 arm a; < PACMaxing(Ay, 3¢ 1 747go)
4: Let ¢ be an arm with constant rewards A — %e;
5
6
7

b; <~ PACMaxing({as, c}, ¢, k,gl),
if bt = Q¢ then
: Ans <+ AnsU {a;};
8: end if
9: until |Ans| > k
10: return Ans;

Theorem 8 states the theoretical performance of CB-
AL-Q-IK. Tts worst case sample complexity is higher
than the lower bound and that of AL-Q-IK roughly by
a log iﬁ factor. However, since it can exploit the large
gaps between the arms, its empirical performance can
be much better (See Section 7 for numerical evidences).

Theorem 8 (Theoretical — performance  of
CB-AL-Q-IK). With probability at least 1 — 9§,
CB-AL-Q-IK returns k distinct arms having expected
rewards no less than A — €. When using confidence
bounds (6) and (7) it terminates after at most
Oo(% ( log— +log £)) samples in expectation.

Proof. The correctness follows by directly using the
same steps as in the proof of Theorem 5. In each rep-
etition, by Lemma 7, the sample Complexity of Line 3
is at most O(‘#log 7t) = O(-% log =), and that of

Line 5 is at most O(E1 log £). The “at most” comes
from the choice of budget in Lemma 7. The algorithm
returns after at most 4k repetitions in expectation.
The desired sample complexity follows. [

pe?

5 ALGORITHMS FOR THE Q-IU
PROBLEM

Chaudhuri and Kalyanakrishnan (2017) proposed an
O(p62 log? ) sample complexity algorithm for the k =
1 case. Obv1ous1y, performing it for k times with §/k
error probability for each can solve the problem for
all k£ values. However, this method will yield unneces-
sary dependency on log? k. If we can first estimate the
value of \,, we can use (CB-)AL-Q-IK to solve this
problem and replace the quadratic log dependency by
logk. We first use LambdaEstimation (LE) to get a
“good” estimation of A,, and then use AL-Q-IK to
solve the Q-IU problem. We note that this idea may
perform poorly for small k values as evaluating )\, can
take more samples than finding several [e, p]-optimal
arms.

We first present algorithm LE for estimating A, in Al-
gorithm 4. LE calls Halving (Kalyanakrishnan and
Stone, 2010), which finds k distinct (e, k)-optimal arms
of an n-sized set with probability at least 1 — 0 by
taking O(% log %) samples. Halving, is an algorithm
similar to Halving that finds (PAC) worst arms.

Algorithm 4 LambdaEstimation(S, p, €, d)
Input: S an infinite set of arms; p, d, € € (0,1/2);
1: Choose €1, €2, €5 = Q(e) With €1+ €2+ 2e3 = ¢
2: n3  [Zlog 3]s ny + [53 7 log Dim « |1+
$oms);
Draw n3 arms from S, and form Aj;
As + Halving(Aq,m, €1, g);
a + Halvingg(A27 1, e, g),
Sample a for ny times, fig <the empirical mean;
return \ < [lo — €2 — €3;

In LE, we ensure that with probability at least 1 — %5 ,
the m-th most rewarding arm of A; isin M :={a € S :
Ap < pra < Apj2}. After calling Halving and Halvings,
we get d, whose expected reward isin [N\, —€1, A, 2 +€]
with probability at least 1 — 22. Finally, a is sampled
for ny times, and its empirlcal mean is in [)\p — € —
€3, A\p/2 €2+ €3] with probability at least 1 —4§. Thus,
the returned value \ is in [Ap—€, Ay /2] with probability
at least 1 — ¢. Detailed proof of Lemma 9 is provided
in supplementary materials.

Lemma 9 (Theoretical performance of LE). After at

most O(p62 log® L) samples, LE returns A that is in
Ao — €, A,)2] wzth probability at least 1 — 4.

Now, we use LE to establish the Algorithm for the Q-
IU problem (AL-Q-IU) (Algorithm 5). Its theoretical
performance is stated in Theorem 10.

Algorithm 5 AL-Q-IU(S,k, p,¢€,0)

Input: S infinite; k € ZT; p, 6, ¢ € (0,1/2);
1: A + LambdaEstimation(S, p, 2, 5k
2: return AL-Q-TK(S, %, 2, 5,2, \);

723232a

Theorem 10 (Theoretical performance of AL-Q-IU).
With probability at least 1 — §, AL-Q-IU returns k
distinct [e, p|-optimal arms. With pmbability at least
13, it terminates after O(E%(%log —l—k( +log £)))
samples in expectation.

Proof. With probability at least 1 — g, \ is in Ay —
£,M\p/2). When X is in [\, —
Llne 2 takes O(%

and, with probablhty at least 1 — &, all returned arms
are [¢, p]-optimal. The correctness of AL-Q-IU follows.

5+ Ap/2), by Theorem 5,
( + log 5)) samples in expectation,


jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight

jialiu
Highlight


Wenbo Ren', Jia Liu?, Ness

B. Shroff!

The desired sample complexity follows by summing up
O(% (5 +log §)) and O(% log? §) (Lemma 9). O

Remark: By Corollary 4, AL-Q-IU is sample com-
plexity optimal up to a log% factor. When log% =
O(k), i.e., 6 > e~ for some constant ¢ > 0, AL-Q-IU
is sample complexity optimal up to a constant factor.

6 ALGORITHMS FOR THE FINITE
CASES

In this section, we let & be a finite-sized set of arms.
By drawing arms from it with replacement, these arms
can be regarded as drawn from an infinite-sized set.
We use T (S) to denote the corresponding infinite-sized
set, and call it the infinite extension of S.

Q-FK. When k£ = 1, obviously, calling AL-Q-
IK(T(S),1,™,¢,0,),) can solve the Q-FK problem.
When k£ > 1, we can solve the Q-FK problem by
repeatedly calling AL-Q-IK(T(S), 1, pt,€,0/k, A,) and
updating S by deleting the chosen arm, where p; =
:’:"’11 —L. We present the algorithm AL-Q-FK (ALgo-
rithm for Q-FK) in Algorithm 6, and state the theo-
retical performance in Theorem 11. The proof is rele-

gated to supplementary materials.

Algorithm 6 AL-Q-FK(S,m, k,¢,0, )
Require: S n-sized, k <m <n/2, A < Ay
Initialize: Ans < (; © stores the chosen arms;

repeat
S’ = T(S — Ans); p « =gl
a; +AL-Q-TK(S', 1, p,€,6/k, \);
Ans + Ans U {a:};

until [Ans| > k

return Ans;

Theorem 11 (Theoretical performance of AL-Q-FK).
With probability at least 1—06, AL-Q-FK returns k dis-
tinct arms having mean rewards at least A—e. Its takes

O(E%(n log m’i‘ﬁk + klog %)) samples in expectation.

Remark: If k: < cm for some constant ¢ < 1,
log mnﬁrlk < m+1 s = O( ), and thus, the expected

sample complexity becomes O(% (£ +]og %)), meeting
the lower bound (Theorem 1). When k is arbitrarily
close to m, the Q-FK problem (almost) reduces to the
KE problem. The tightest upper bound for the KE
problem (with the knowledge of Ay;) is O(Z% log %)
(Kalyanakrishnan et al., 2012) to our best knowledge.
When k is arbitrary close to m, as O(Z&(nlog 241+
klog %)) = O(L(nlogk + klog %)), AL-Q-FK is still
better than the literature asymptotically.

Q-FU. Algorithm 7 AL-Q-FU (Algorithm for Q-FU)
solves the Q-FU problem. Its idea follows AL-Q-1U

and AL-Q-FK. We only consider the case k < 7.
For k > 7, it is better to use KE algorithms instead.
Corollary 12 states its theoretical performance and di-

rectly follows Theorem 11 and 10.

Algorithm 7 AL-Q-FU(S,m, k,€,9)

Require: S n-sized; 2k < m < n/2;

Corollary 12  (Theoretical = Performance of
AL-Q-FU). With probability at least 1 — §,
AL-Q-FU  returns k  distinct  (e,m)-optimal
arms. With probability at least 1 — g, the ex-
pected number of samples it takes

is at most
O(E%(%logQ%—&—nlog#%—kklog%)).

Remark: By Corollary 3, when & < c¢m for some
constant ¢ € (0 ,2) AL-Q-FU is sample complexity
optimal up to a log$ factor. If log3 = O(k) also
holds, i.e., § > e~°* for some constant ¢ > 0, AL-Q-
FU is sample complexity optimal in order sense.

7 NUMERICAL RESULTS

In this section, we illustrate the improvements of our
algorithms by running numerical experiments. We
present the comparisons of CBB algorithms, and that
of the non-CBB algorithms are presented in supple-
mentary material. Besides, additional numerical re-
sults for the finite cases are also presented in sup-
plementary materials. We first compare CB-AL-Q-IK
with the literature, and then illustrate the comparison
of CB-AL-Q-IU with previous works.

In the simulations, we adopt Bernoulli rewards for all
the arms. For fair comparisons, for all CBB-algorithms
or versions, we use the KL-Divergence based confi-
dence bounds given by Aziz et al. (2018). Every point
in every figure is averaged over 100 independent trials.
Previous works only considered the case where k& = 1.
In the implementations, for k > 1, we repeat them for
k times, each of which is with error probability %

First, we compare CBB algorithms for the Q-IK prob-
lem: CB-AL-Q-IK (choose ¢ = 0.8¢) and («, €)-KL-
LUCB (Aziz et al., 2018) (we name it KL-LUCB in
this section). KL-LUCB is almost equivalent to P
(Chaudhuri and Kalyanakrishnan, 2017) with a large
enough batch size. The only difference is that they
choose different confidence bounds. Here we note that
KL-LUCB does not require the knowledge of A,, but
we want to show that our algorithm along with this
information can significantly reduce the actual num-
ber of samples needed. The priors F of this part are
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all Uniform([0,1]). The results are summarized in Fig-

ure 1 (a)-(d).
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Figure 1: Comparison of CB-AL-Q-IK and KL-LUCB

It can be seen from Figure 1 that CB-AL-Q-IK per-
forms better than KL-LUCB except two or three
points where p is large. According to (a), the number
of samples CB-AL-Q-IK takes increases slightly slower
than KL-LUCB, consistent with the theory that CB-
AL-Q-IK depends on klog k while KL-LUCB depends
on klog®k. According to (b), we can see that KL-
LUCB’s number of samples increases obviously with
5, while that of CB-AL-Q-IK is almost independent
of 6. The reason is that CB-AL-Q-IK depends on
(% log% + log%) term, and when p is small enough,
log  can be dominated by %log %. According to (c),
CB-AL-Q-IK takes less samples than KL-LUCB for
p < 0.005, and the gap increases with %. According
to (d), CB-AL-Q-IK performs better than KL-LUCB
given under the given e values.

Second, we compare CB-AL-Q-IU and («,¢)-KL-
LUCB. CB-AL-Q-IU is the CBB version of AL-Q-
IU by replacing its subroutines by CBB ones. (CB-
)JAL-Q-IU is designed for large k values, and it does
not perform well under small k values, even if it is
always in order-sense better or equivalent compared
to KL-LUCB. The reason is that its subroutine (CB-
)LambdaEstimation has a large constant factor. How-
ever, since the sample complexities of these two al-
gorithms both depend at least linearly on k while
that of (CB-)LambdaEstimation is independent of &,

when k is large, the
influence  of  (CB-
)LambdaEstimation

vanishes, and  the
improvement of (CB-

JAL-Q-IK emerges. ey
The results are summa- 108 - e

. . . 2 4 6
rized in Figure 2. In 0 o "

Figure 2, the algorithms
are tested under a “hard
instance” Fp, where
p fraction of the arms
has expected reward
% +0.55¢ and the others
have 3 — 0.55¢. The
results are consistent with the theory, and suggest
that CB-AL-Q-IK can use much less samples than
KL-LUCB when £ is sufficiently large.

We admit that AL-Q-IU may not be practical as it
takes 10® samples even for k = 1, but it also has sev-
eral contributions. (I) It gives a hint for solving the
Q-IU problem. If we can improve LE, we can get a
practical algorithm for the Q-IU problem that works
much better than the literature for large k values. (II)
We can see from Figure 2, KL-LUCB increases faster
as k. It is consistent with the theory that KL-LUCB
depends on klog? k while (CB-)AL-Q-IU depends on
klogk. When k is extremely large (though may not be
practical), (CB)-AL-Q-IU can be much better. (IIT) In
order sense, the performance of (CB-)AL-Q-IU is bet-
ter than the literature. Thus, our work gives better
theoretical insights about the Q-IU problem.

10"

100

o
E)

number of samples

Figure 2: Comparison
of CB-AL-Q-IU and KL-
LUCB under prior Fj.
p = 0.05, ¢ = 0.1, and
0 = 0.01.

8 CONCLUSION

In this paper, we studied the problems of finding &
top p fraction arms with an ¢ bounded error from a
finite or infinite arm set. We considered both cases
where the thresholds (i.e., A, and Ap,)) are priorly
known and unknown. We derived lower bounds on the
sample complexity for all four settings, and proposed
algorithms for them. For the Q-IK and Q-FK prob-
lems, our algorithms match the lower bounds. For the
Q-IU and Q-FU problems, our algorithms are sample
complexity optimal up to a log factor. Our simulations
also confirm these improvements numerically.
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10 PROOF OF THEOREM 1

Proof. For k = 1. We first prove the lower bound for
k=1.

Claim 1 (Lower bound for Q-FK with k = 1). There
is a priorly known n-sized set such that after randomly
reordering it, to find an (e, m)-optimal arm of it, any
algorithm must use Q(% (2 + log 1)) samples in ex-
pectation.

Proof. Let parameters n, m, ¢, and 6 be given. For
these parameters, by contradiction, suppose there is
an algorithm 4; which solves every Q-FK instance
with average sample complexity o(4 (2 +log 1)). We
introduce the following problem P;.

Problem P;: Given [n/m] coins, where a toss of coin
i has an unknown probability p; to produce a head,
and produce a tail otherwise. We name p; the “head
probability” of coin i. Let pp,q. be the largest one
among all p;’s. Knowing the value of p,,q., We want
to find a coin whose head probability is no less than
Pmaz — €, and the error probability is no more than 9.

Mannor and Tsitsiklis (2004, Theorem 13) proved that
the worst case sample complexity lower bound of Py
is Q(4 (2 +log1)). Particularly, this lower bound is
met by the |n/m|-sized set {3 +e, 2 —€, 2 —€, ..., 2 —€}.
Here we will show that we can construct an algorithm
from A; that solves P; with average sample complex-
ity 0(}2(% + log %)), implying a contradiction.

Let C; be the set of the coins in P;. Before solving
‘P1 by using A;, we need do some operations over Cj.
For each coin i, we “duplicate” it for m — 1 times and
construct m—1 “duplicated” coins such that whenever
one wants to toss a duplication of coin ¢, coin ¢ will be
tossed but the result is regarded as that of the dupli-
cation. Thus, we guarantee that all the duplications
of coin 7 have the same head probability as coin 1.

With these duplications, we construct a new set Cs
of coins with size n. Co consists of all the coins of
Cy, all the duplications of all coins in set C;, and
(n — m|n/m]) negligibl coins with head probability
0. Obviously, Cy consists of n coins. In Py, for each
head probability p;, there are m coins with head prob-
ability p; in Co. The negligible coins are used to make
the size of Cy be n.

Then, we perform A; on the set C;. It returns an
(e,m)-optimal coin (coins can be regarded as arms
with Bernoulli(p;) rewards) of Co with probability at
least 1 — &, and uses 0(6%(% + log 1)) samples in ex-
pectation. We use ¢, to denote the returned coin. Let

coin #* be one of the coins whose head probability are
Pmaz (i-€., one of the most biased coins of Cy). Since
coin ¢* is duplicated for m — 1 times, there are at least
m coins in Cy having head probability p.,q.. This im-
plies that if ¢, is an (e, m)-optimal coin of Co, then its
head probability is at least pna. — €. If ¢ is a negli-
gible coin (i.e., with head probability 0), we return a
random coin of Cy as the solution of Py. If ¢, is coin
i or one of its duplications, we return coin ¢ as the so-
lution of P;. Noting that the negligible coins are not
(e, m)-optimal, so if ¢, is an (e, m)-optimal coin of C,
there is a corresponding coin in C; having the same
probability as ¢.. Thus, if A; finds an (¢, m)-coin of
Cs, it finds a coin of C; whose head probability is at
least Pyae — €, which gives a correct solution of P;. To
conclude, A; solves P; with average sample complex-
ity o(% (2 +1log §)), contradicting Theorem 13 (Man-
nor and Tsitsiklis, 2004). We note that we can choose
Ci={:+¢3—¢..,2—¢€ by (Mannor and Tsitsik-
lis, 2004, Theorem 13), and thus, Cy is priorly known.
This completes the proof of Claim 1. O

For k > 1. Now we consider the case where & > 1.
From now on, we only consider the case where m > 2k.
For m < 2k, since by enlarging m, the Q-IK problem
becomes no harder, if the desired lower bound holds
for m > 2k, it also holds for m < 2k. By contradiction,
suppose there is an algorithm As that solves all the in-
stances of the Q-FK problem by using 0(6%(% +log %))
samples in expectation.

Let C3 be a priorly known | 57 |-sized set such that af-
ter randomly reordering it, no algorithm can find one
(€, | g ])-optimal arm of it with probability 1 — 4§ by
o(% (2 +log $)) samples in expectation, i.e. C3 meets
the lower bound given in Claim 1. Claim 1 guarantees
that this set must exist. Choose a large enough posi-
tive integer L. By randomly reordering the indexes of
arms in C3, we can construct L sets that also meet the
lower bound stated in Claim 1. We refer to these sets
as hard sets. Now we define problem P by these L
hard sets.

Problem P5: Given the above L hard sets, we want to
find & distinct arms such that each of them is (e, | 37 | )-
optimal for a different hard set, and the error proba-
bility is no more than §.

Claim 2 (Lower bound of Py). To solve Pz, at least
Q& (2 +log %)) samples are needed in expectation.

Proof. Let these L hard instances be indexed by
1,2,..., L. For each set i, by the definition of hard sets,
to find an (e, | 5z |)-optimal arm of it with probability
1 — 6, at least Q(% (£ +log ,)) samples are needed
in expectation. For an algorithm that solves Ps, it
returns k arms, each of which belongs to a different
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hard set. Without loss of generality, we say these k
returned arms belong to hard sets 1,2,....k. Let d;
denote the probability that the returned arm for hard
set 7 is not (e, | g ])-optimal. Obviously, to solve P,
with probability 1 — §, we need Hle (1-6;)>1-0.
Besides, since these sets are generated by reordering a
priorly known set Cs3, the samples of one set provide
no information for the others. Thus, to solve Py, the
expected sample complexity is at least

Q(min{z log(s H1_ >1—5}>.(8)

We note that the function f(x) log(1/x) is con-
vex, and thus, Zf 13 L log L 5 is convex over domain

specified by the constraint Hi:l( —6;) > 1-04.
Also, this constraint on (d;,4 € [k]) is symmetric. By
the property of convex functions, to get the minimal,

we need to set §y = o = .-+ = ;. Thus, given
Hle (1-9;) >1—94, we have

R G

Applying Eq. (9) to Eq. (8), we can get the desired
lower bound. This completes the proof of Claim 2. [

Claim 3. If there exists an algorithm As that can use
0((%(% +log %)) samples in expectation to find k dis-
tinct (e, m)-optimal arms of any n-sized set with prob-
ability 1 — 61 for 81 € (0,9], then we can construct an-
other algorithm As that solves Py by o(% (2 +1log %))
samples in expectation.

Proof. We use A to construct a new algorithm Ajs,
which works as follows:

Step 1, pick 2k arbitrary hard sets (indexed by
1,2,...,2k), and form a new set Cy. Let T' = [2log %]

Step 2, it performs algorithm A5 on C4 with error prob-
ability %, and As returns k£ arms. We refer to these
returned arms as found arms.

Step 3, for each found arm, tag the hard set it belongs
to.

Step 4, if at least k hard sets have been tagged, return
one found arm for each of the first k tagged hard set.
Otherwise, go to Step 2.

We will prove that A3z solves P, with expected sample
complexity o(% (2 +log £)).

First we prove the correctness of Az. We note that for
each hard set i, the probability that an arbitrary found
arm belongs to it is i After T calls of As, there are

Tk found arms, and thus, the probability that hard
set ¢ is not tagged is at most

Tk 2k log 2&
1 1 ° 1)
1—— <|{1l-—— < —. 1
( 2k> = ( Qk) = 2% (10)

Thus, with probability at least 173, hard sets 1,2, ..., k
are tagged after T calls of Ay. When a hard set is
tagged, at least one arm of it has been found by some
call of .A2 Also, each call is erred with probability
at most 2T’ so, with probability at least 1 — %, the
first T calls of Ay all return correct results. Therefore,
we can conclude that with probability at least 1 — 6,
the constructed algorithm A3 solves problem P, with
error probability at most 4.

Next, we prove the sample complexity of Az. The calls
of Aj return a series of arms, and we use a1, as,as, ...
to denote them. Define a map s such that s(a;) is
the hard set that a; belongs to. For ¢ € [k], define
7; = inf{j : {s(a1),s(az),...,s(a;)}| > i}, ie., 7 is
the number of arms returned when ¢ hard sets have
been tagged. Also, let 79 = 0.

To calculate E7;, we observe that when there are (i—1)
tagged hard sets, the probability that a new hard set
will be tagged after one more found arm is 1 — 2—;
Thus, by the property of geometry distributions, we

have

2k

E(r _ 11
(i %+ 11—k (11)

—Ti—1) =

which implies

ETk—ZE

k
2k
—_ <
22k+1—k*2k (12)

Ti — Ti— 1

Each call of A returns k& arms, and thus, after O(1)
expected number of calls of As, algorithm Az returns.
Each call of As is with error probability % (recall
=2 log‘ ), so by the definition of Ay, each call
conducts 0( (7= +log 2}““T)) = o( (7= +1log 5)) sam-
ples. This completes the proof of sample complexity.

The constructed algorithm Ajs solves Ps with expected
sample complexity o(% (2 +log %)). This completes
the proof of Claim 3. O

If the Ay assumed in Claim 3 exists, it will lead to

a contradiction against Claim 2. This completes the
proof of Theorem 1. 1.

11 PROOF OF THEOREM 5

Let k € Z*,p,¢,6 € (0, %),/\ < X, be given. For p,z €
(0,1), we define U, :={a € S : pig > A\p}, B :={a €
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Sipe>rA—zhand F, i =S—E, ={a €8 :pu, <
A—z}

In the ¢t-th loop, by (2) and the choice of n; in AL-Q-
IK, we have that
P{lA:NU,|=0} < (1—p™

— ™ log(1—p) < e~mp <

. (13)

Wl

Given the condition |[A; N U,| > 0, since a; is the re-
turned value of Median-Elimination (4, €1, 1), by The-
orem 4 (Even-Dar et al., 2002), a; is with probability
at least % in F,. Thus, we can conclude that

IP{at S Eel} Z (1 —

A (14)

W =
]
[N}

In Line 4, we sample a; for ny times, and its empirical
mean is ji;. Define & := the event that a; is included
in the returned value Ans. Since & happens if and
only if ji; > X\ — €1 — €2, by Hoeffding’s inequality and
ng = [% log %], it holds that

P {EE | a; € Eﬁ} < exp {—2n2 (e%)} < %, (15)
P& e By <ep{-2m (@)} <t (16)

Since {a; € Eq,} N{fiy > X\ —e1 —ea} C &, by (14)
and (15), we have

P&} > J0- ) >

2) 2 (17)

] =

Besides, by (14), (15), and (16), we have

P {at S | 51&} ]P{(lt € Eq ‘ gt}
IP{atEFE|€t} - ]P{atGFe\Et}
_]P{ateEel}]P{gt|at€Eel}
o IP{atGFe}IP{&|at€FE}
b0

=5s-L  (18)

= L3
2k
Since P{a; € E. | &} +P{as € F. | &} = 1, we can

conclude that

lP{ateEE|8t}21—% (19)

This shows that when an arm a; is added to Ans, with
probability at least 1 — %, ay is in E.. Thus, we have

P{Va, € Ans,a; € E.} > 1—0. (20)

Thus, the returned arms of AL-Q-IK all have expected
rewards no less than A\—e with probability at least 1—4.
This completes the proof of correctness.

It remains to derive the sample complexity. In
each repetition, the algorithm calls Median-
Elimination(Ay, €1, %) for once, and sample a;
for ny times. Each call of Median-Elimination takes
at most O(%) = O(p%) samples (Even-Dar et al.,
2002), and ny = O(E%logg). Thus, each repetition
takes 0(6%(% + log %)) samples. By (17), in each rep-
etition, with probability at least %, one arm is added
to Ans, and the algorithm terminates after k arms are
added to Ans. Obviously, after at most 4k repetitions
in expectation, the algorithm returns. Thus, the
expected sample complexity is O(eﬁz(% + log %)) This
completes the proof. [J

12 PROOF OF LEMMA 6

Proof. Let a, be the returned arm. For arm a, define

EN={3t,N'(a) = N, iy < L*(a) V p1a > L'(a)},
(21)

i.e., the event that when N'(a) = N, p, is not
within the interval [L!(a), U?(a)]. Define the bad event
Eout = Ua,N EN. By (4) and (5), we have that

P{eN} <25V, (22)

Thus, by k1 > 23", ¢” and the union bound, we have
that

P{Eut} <> P{EN} <m i 20N <48 (23)

a,N N=1

Since budget is large enough, when returning, B(t) <
€. Let to be the time when the algorithm returns. We
have that for all a # a,, U"(a) < L'(a,) + €. By
the definition of &,,¢, when it does not happen, for all
arms a, fiq € [L'(a),U'(a)] for all ¢, implying that

pa <UY(a) < L'(a,) + € < g, + €. (24)

Thus, the returned arm a,. is (e, 1)-optimal with prob-
ability at least 1 — 4. O

13 PROOF OF LEMMA 7

Proof. In the proof, we assume &,,; does not happen.
This event is defined in the proof of Lemma 6, and
does not happen with probability at least 1 — §.

Let 7 be the number of samples taken till termination.
Define the set T :={n+2i:i € Nyon+2i < 7}. T is
the set of ¢ such that a and b® are computed. For each
arm a, define X, := Y, . Iyi—q, the number of times
that b’ is a. Define pu* := maxgea pla, A, = pu* — a,
and A, := 1 max{e, A, }. Now, we are going to bound
X..
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Let a be an arbitrary arm in A. Assume that at some
time t € T,

Do o)

and we will show that either b’ does not equal to a or
the algorithm returns before the next sample.

L naxdlog 17
A2rnaux og 5

a

N'(a)>

Let 2 = fz (z > 4as A, < 5 and v > 1). Since

)

Nt(a) > (1:— e Hzlog((1 + e ')x) > 4, we have that
Nt(a) @ (1+e Halog((1+e 1))
log Nt(a) = log((1+ e 1)z) +loglog((1+e~1)x)

(I+eVz G
= — > x (26)
loglog((14+e~NHz) — 7
L+ SotireT2)

where (i) is because %
ogy

(ii) is because 10% < L. It implies that

is increasing for y > e, and

1 gl

—N'(a) > log N'* 2

5N'(0) > 7 o N'(a) (21)
Also, by (25) we have that

1 kln

—N*! 1 . 2

V@) = 2A2 %75 (28)

Thus, adding (27) and (28), we have that

1 kln(Nt(a))“f.

t
N'(a) > oAz log 5 (29)
It follows that
1 kin(Nt(a))Y
\/ZNt(a) log 5 <A, (30)

Recall that in the algorithm, for arm a, we de-
fine U'(a) = u(ft(a),N'(a),6V (@) and L'(a) :=
(i (a), Nt(a), 6N (@) as ((6) and (7)). By the choice
of §N'(a) = m in PACMaxing, and the choice
of confidence bounds, we have that

U'(a) — i (a) = p(a) — L'(a) < Aa,  (31)
a) — L'(a) < 2A,. (32)

Now, for this a, we will show that either the algorithm
returns before next sample or b* # a.

£

First we consider the case where A, = §. Here we
assume that £,,; does not happen. This means for
any ¢t and arm b € A, p is in [L*(b),U*(b)]. Since
b' = a and b' := argmaxyec 4 Ut (D), for all arms b # a,
Ut(a) > U(b). By (32), L*(a) > Ut(a)—e > U'(b) —
This means that the algorithm returns arm a before
the next sample as we have B(t) < e.

Next, we consider the case where A, = AQ,"'. Let a*
be the most rewarding arm in A. Since &,,; does not
happen, by the definition of &,,: and (32), we have
Ua) < L*(a)+A < po+A} < p* < U'(a), implying
b" # a. This leads to a contradiction.

Thus, we can conclude that when &£,,; does not hap-
pen,

kin (v+32)
< — — e .
X <1+ 2max{log 5 , (y+ )lg
(33)

Except the first n samples, there is one b sampled out
of every two consecutive samples. Thus, with proba-
bility at least 1—4, the number of samples taken before
termination is at most

n+2ZXa

acA
+2
<3n+ Z max{log 571’ (v+ g) log (’YA; )}
acA a a

(34)
The desired sample complexity follows.

Since A, < 5, the budget value stated in this lemma
is no less than that in (34). This completes the proof.
O

14 PROOF OF LEMMA 9

The ﬁrst step is to prove that with probability at least
1— 22, the m-th most rewarding arm of A; is in M :=
{a 6 S Ao < pta < Apj2}. Here we note that m :=
|3pns] as deﬁned in LambdaEstimation. To do it, we
need to introduce an inequality directly derived from
Chernoff Bound. Let X', X2, ..., X* be ¢ independent
Bernoulli random variables, and for all i, EX® > p.
Define S := 22:1 X% Let B(t,p) denote a Binomial
random variable with parameters ¢ and p. For any
b < tp, we have P{S < b} < IP{B(t,p) < b}, and thus,
by Chernoff Bound,

P{S<b} < exp{—;p (p— 2) } (35)

Define S1 := {a € Ay : pg > A,j2} and Sy := {a €
Ay g > Ay} In this paper, we use a ~ S to denote
that a is randomly drawn from S. By (2) and (3), we
have

P,.s{a € S} < g (36)

]PQNS{G, S SQ} > p. (37)

By the works of Arratia and Gordon (1989), we have
that for z > tp,

P {B(t,p) > 2} < exp {—tDKL (% [ p)} . (39)
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where B(t,p) stands for a Binomial(¢, p) random vari-
able, and Dk (pllq) := plog £+ (1 —p) log 1= Thus,
along with (36), we have that

3 3 1
i {|51| > 4Pn3} < eXp{nSDKL (4P I 2P>}
3 3 3 g
= exp {—’I’Lg [4plog2—( —4p>10g (1—&-1_?)1}
<expq—n §10 3.1
S exp 3P 1 g2 4

Also, by (35), it holds that

3 ns (1 \? 5
IP{52| < 4pns} _eXP{ 2% (4/)) }_ E (40)

The above two statement (39) and (40) implies that
w1th probability at least 1—22, |S;| < 3pn3 and |Ss| >
3 pns. Recalling that m = | pns + 1], the m-th most

rewarding arm of A; is in M with probability at least
1-%,
5

The second step is to prove that g is in [A, —e, Apj2t
€3] with probability at least 1 — 45—‘5. The call of
Halving(A1,m, €1, g) returns an m- sized set of arms
Ao, and with probability at least 1 —

a in it has pu, > )\[m} — €1, where )\[

every arm
is the m-

57

th most rewarding arm in A; (Kalyanakrishnan and
Stone 2010). We note that with probability at least

1- 5 , the m-th most rewarding arm of A; is in M,
implying )\[m} > Ap. Thus, we have that
3 0
P A2 C Eel |Sl‘ < an& < |SQ| >1-— g (41)

Besides, by (39) and |As| = m > 2pns, at least one
arm a¥ of Ay isin M (i.e., paw < A,)0) if [S1| < 2pns.
The call of Halvings(As, 1, €a, g) returns an arm a of
Ay having ua < faw + €2 < A,/ + €2 with probability
at least 1-¢ (Kalyanakrlshnan and Stone, 2010) if
|Sl| < ang, le

|S1] <ipn3} Zl—é. (42)

IP{AL&<)\p/2+€2 5

It follows from G € As, the definition of E, , (39), (40),
(41), and (42) that

46

P{pa€ [N —e, A2 +e]}>1- 5 (43)

The third step is to prove that \ is in Ao — € Ay2]
with probability at least 1 — §. Since @ is sampled for

ng times, by (43) and Hoeffding’s Inequality, we have

]13{5\¢ [Ap—mg”
{ﬂ¢ {)\p—elfq,)\% +€2+63}}

=P
<P {na ¢ [\ —erhg + o)+ Pl pal = )

<4E5 +2exp { —2n4e3} < 4—5 + g <. (44)

This completes the proof of correctness.

It remains to prove the sample complexity. Line 4 uses
O(Z%log%) = O(p62 log? 1) samples (Kalyanakrish-
nan and Stone, 2010), and Line 5 uses O(Z; log 1) =
O(E%log2 1) samples. Line 6 takes ny = O(Z% log §)
samples. The desired results follows by summing these
three upper bounds up. O

15 PROOF OF THEOREM 11

Proof. Each call of AL-Q-IK is wrong with probability
at most %. The correctness follows.

By Theorem 5, the t-th repetition uses O(E%(% +
log %)) samples in expectation. For all x € (0,1], we

have w > log 2. It implies

m+2—t log 2

1 , 45
B tl T mrl_t (4)
and thus,

2’“: Lfn+l-t \ k

e \m+1-—t g5
t=1
k

k: k n m+2—t

A P log 2"

2 &5 QIOgZEOngrlft

k: k n m+1

— . 46

2 5 €?log 2 Btk (46)

The sample complexity follows. [

16 ADDITIONAL NUMERICAL
RESULTS

First, we compare the pure exploration algorithms
in the finite cases to demonstrate that by adopting
the QE setting, the number of samples taken can be
greatly reduced compared with the KE setting. Other
comparisons on the finite-armed algorithms are omit-
ted as their performance is similar to their infinite-
armed versions, especially when n is large. Also, when
k =1, their performance are almost the same.
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The algorithms com-
pared include CB-AL-
Q-FK (CBB version of
AL-Q-FK by replac-
ing the subroutines
with CBB ones), KL-
LUCB for the finite
case (Kaufmann and
Kalyanakrishnan,
2013), and MEKB
(Mannor and Tsitsiklis,
2004). Here we modify
MEKB to the CBB
version with the KIL-
Divergence confidence
bounds given by Kaufmann and Kalyanakrishnan
(2013). The results are summarized in Figure 3.
KL-LUCB and MEKB were designed to find one
(e, 1)-optimal arm from a finite set. MEKB has the
prior knowledge of Ay}, and can be regarded as the
m = 1 version of AL-Q-FK. There are totally 1000
arms. For each arm, its rewards follow the Bernoulli
distribution, and its expected reward is generated by
taking an independent instance of the Uniform([0,1])
distribution. All algorithms are tested on the same
dataset. Every point is averaged over 100 independent
trials.

Here we note that the KE algorithms KL-LUCB and
MEKB were designed to find an (e, 1)-optimal arm, so
their performance are independent of m.

k
Pl

S

number of samples
5
%

—#— CB-AL-Q-FU
—+—KL-LUCB
KL-MEKB
20 40 60 80 100
m

Figure 3: Comparison of
the finite-armed pure ex-
ploration algorithms. n =
1000, £ =1, e = 0.05, and
0 = 0.001.

According to Figure 3, the two algorithms CB-AL-Q-
FK and KL-MEKB that have knowledge of A, or Ay
perform better than KL-LUCB, the one without the
knowledge, consistent with the theory. When m = 1,
the performance of CB-AL-Q-IK and KL-MEKB are
close. However, when m > 1, CB-AL-Q-IK takes less
samples, and the gaps increases as m. The reason lies
in that (CB-)AL-Q-IK’s sample complexity depends
on 7 while (KL-)MEKB’s depends on n. Thus, the
numerical results indicate that by adopting the QE
setting, one can find "good” enough arms by much
less samples.

Next, we compare non-CBB algorithms: AL-Q-IK,
PACBanditReduction (Goschin et al., 2013), and Py
(Chaudhuri and Kalyanakrishnan, 2017). Here, again,
we note that P; does not require the knowledge of A,,
but we want to illustrate how our algorithm along with
this knowledge can improve the efficiency. The results
are summarized in Figure 4 (a)-(d). In the simula-
tions, the prior F is always Uniform([0,1]), and every
point of every figure is averaged over 100 independent
trials.

The theoretical sample complexities of these three al-
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(a) Vary k, p = 0.05,e = 0.1, (b) Vary 6, k =1, p = 0.05,
and 6 = 0.01. and € = 0.1.
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(c) Vary p, k =1, ¢ = 0.1, (d) Vary ¢, k = 1, p = 0.05,
and § = 0.01. and § = 0.01.

Figure 4: Comparison of Non-CBB Algorithms.

gorithms are: AL-Q-IK, O(e%(% + log %)); PACBan-
ditReduction, O(p% log £); P, O(p% log® %). The nu-
merical results confirm that AL-Q-IK performs better
than the other two significantly. Figure 4 (b) shows
that AL-Q-IK’s sample complexity increases slowly
with %, consistent with the theory and numerical re-

sults on CB-AL-Q-IK.

According to Figure 1 (c) and Figure 4 (c), the CB-
AL-Q-IK’s number of samples increases super-linearly
with % while that of AL-Q-IK increases linearly, con-
sistent with the theory that the former depends on
% log % while the latter depends on . When 1 is large
enough, asymptotically AL-Q-IK will outperfgrm CB-
AL-Q-IK. However, in practice, under such small p
values, the sample complexity of both algorithms will
be extremely large.





