
Combinatorial Sleeping Bandits with Fairness
Constraints

Fengjiao Li, Jia Liu, and Bo Ji

Abstract—The multi-armed bandit (MAB) model has been
widely adopted for studying many practical optimization prob-
lems (network resource allocation, ad placement, crowdsourcing,
etc.) with unknown parameters. The goal of the player (i.e.,
the decision maker) here is to maximize the cumulative reward
in the face of uncertainty. However, the basic MAB model
neglects several important factors of the system in many real-
world applications, where multiple arms (i.e., actions) can be
simultaneously played and an arm could sometimes be “sleep-
ing” (i.e., unavailable). Besides reward maximization, ensuring
fairness is also a key design concern in practice. To that end,
we propose a new Combinatorial Sleeping MAB model with
Fairness constraints, called CSMAB-F, aiming to address the
aforementioned crucial modeling issues. The objective is now to
maximize the reward while satisfying the fairness requirement of
a minimum selection fraction for each individual arm. To tackle
this new problem, we extend an online learning algorithm, called
Upper Confidence Bound (UCB), to deal with a critical tradeoff
between exploitation and exploration and employ the virtual
queue technique to properly handle the fairness constraints. By
carefully integrating these two techniques, we develop a new
algorithm, called Learning with Fairness Guarantee (LFG), for the
CSMAB-F problem. Further, we rigorously prove that not only
LFG is feasibility-optimal, but it also has a time-average regret
upper bounded by N

2η
+ β1

√
mNT log T+β2N

T
, where N is the total

number of arms, m is the maximum number of arms that can
be simultaneously played, T is the time horizon, β1 and β2 are
constants, and η is a design parameter that we can tune. Finally,
we perform extensive simulations to corroborate the effectiveness
of the proposed algorithm. Interestingly, the simulation results
reveal an important tradeoff between the regret and the speed
of convergence to a point satisfying the fairness constraints.

I. INTRODUCTION

The multi-armed bandit (MAB) model has been widely
adopted for studying many practical optimization problems
(network resource allocation, ad placement, crowdsourcing,
etc.) with unknown parameters (see, e.g., [1]). In the basic
stochastic MAB setting, there are N arms (i.e., actions), each
of which, if played, returns a random reward to the player
(i.e., the decision maker). The random reward of each arm
takes values in [0, 1] and is assumed to be independent and
identically distributed (i.i.d.) over time. However, the reward
distributions and the mean rewards are unknown a priori. The
player decides which single arm to play in each round for a

This work was supported in part by the NSF under Grants CNS-1651947,
CCF-1657162, ECCS-1818791, CCF-1758736, CNS-1758757, and CNS-
1446582, the ONR under Grant N00014-17-1-2417, and the AFRL under
Grant FA8750-18-1-0107.

Fengjiao Li (fengjiao.li@temple.edu) and Bo Ji (boji@temple.edu) are with
the Department of Computer and Information Sciences, Temple University,
Philadelphia, PA, USA. Jia Liu (jialiu@iastate.edu) is with the Department of
Computer Science, Iowa State University, Ames, IA, USA.

given time horizon of T rounds, with a goal of maximizing
the cumulative reward in the face of unknown mean rewards.

However, this basic MAB model neglects several impor-
tant factors of the system in many real-world applications,
where multiple actions can be simultaneously taken and an
action could sometimes be “sleeping” (i.e., unavailable). Take
wireless scheduling for example: multiple clients compete for
a shared wireless channel to transmit packets to a common
access point (AP). The AP decides which client(s) can transmit
at what times. A successfully delivered packet will generate
a random reward, which could represent the value of the
information contained in the packet. In each scheduling cycle,
multiple clients could be scheduled for simultaneous trans-
missions as the channel can typically be divided into multiple
“sub-channels” using multiplexing technologies [2]. On the
other hand, some clients may be unable to transmit packets
when experiencing a poor channel condition (due to fading or
mobility). Furthermore, in addition to maximizing the reward,
ensuring fairness among the clients or providing Quality of
Service (QoS) guarantees to the clients is also a key design
concern in wireless scheduling [3], [4], as well as in network
resource allocation in general [5]. These important factors (i.e.,
combinatorial actions, availability of actions, and fairness)
are commonly shared by many other applications too (see
more detailed discussions in Section VI). However, it remains
largely unexplored in the literature to carefully integrate all
these factors into a unified MAB model.

To that end, in this paper we propose a new Combinato-
rial Sleeping MAB model with Fairness constraints, called
CSMAB-F, aiming to address the aforementioned modeling
issues, which are practically important for a wide variety
of applications. Compared to the basic MAB setting, in the
proposed framework the set of available arms follows a certain
distribution that is assumed to be i.i.d. over time and is
unknown a priori. However, the information of available arms
will be revealed at the beginning of each round. The player
can then play multiple, but no more than m, available arms
and receives a compound reward being the weighted sum
of the rewards of the played arms. We also impose fairness
constraints that the player must ensure a (possibly different)
minimum selection fraction for each individual arm. The goal
is now to maximize the reward while satisfying the fairness
requirement. We summarize our main contributions as follows.

First, to the best of our knowledge, this is the first work
that integrates all three critical factors of combinatorial arms,
availability of arms, and fairness into a unified MAB model.
The proposed CSMAB-F framework successfully addresses

ar
X

iv
:1

90
1.

04
89

1v
2

 [c
s.L

G
]

18
 Ja

n
20

19

these crucial modeling issues. This new problem, however,
becomes much more challenging. In particular, integrating
fairness constraints adds a new layer of difficulty to the
combinatorial sleeping MAB problem that is already quite
challenging. This is because not only the player encounters a
fundamental tradeoff between exploitation (i.e., staying with
the currently-known best option) and exploration (i.e., seeking
better options) when attempting to maximize the reward, but
she is also faced with a new dilemma: how to manage the
balance between maximizing the reward and satisfying the
fairness requirement? Several well-known MAB algorithms
can successfully handle the exploitation-exploration tradeoff,
but none of them was born with fairness constraints in mind.

To address this new challenge, we extend an online learning
algorithm, called Upper Confidence Bound (UCB), to deal with
the exploitation-exploration tradeoff and employ the virtual
queue technique to properly handle the fairness constraints.
By carefully integrating these two techniques, we develop
a new algorithm, called Learning with Fairness Guarantee
(LFG), for the CSMAB-F problem. Further, we rigorously
prove that not only LFG is feasibility-optimal, but it also has
a time-average regret (i.e., the reward difference between an
optimal algorithm that has a priori knowledge of the mean
rewards and the considered algorithm) upper bounded by
N
2η + β1

√
mNT log T+β2N

T , where β1 and β2 are constants and
η is a design parameter that we can tune. Note that our regret
analysis is more challenging as the traditional regret analysis
becomes non-applicable here due to the integration of virtual
queues for handling the fairness constraints.

Finally, we conduct extensive simulations to elucidate the
effectiveness of the proposed algorithm. From the simulation
results, we observe that LFG can effectively meet the fairness
requirement while achieving a good regret performance. In-
terestingly, the simulation results also reveal a critical tradeoff
between the regret and the speed of convergence to a point
satisfying the fairness constraints. We can control and optimize
this tradeoff by tuning the value of parameter η.

The rest of the paper is organized as follows. We first
discuss related work and describe the proposed CSMAB-
F framework in Sections II and III, respectively. Then, we
develop the LFG algorithm for the CSMAB-F problem in
Section IV, followed by the performance analysis in Section V.
Detailed discussions about several real-world applications are
provided in Section VI. Finally, we present simulation results
in Section VII and make concluding remarks in Section VIII.

II. RELATED WORK

Starting with the seminal work of [6], the MAB problems
have been extensively studied in a large body of work (see,
e.g., [1], [7]). In the basic MAB setting, the authors of [6]
establish a fundamental logarithmic lower bound on the regret
of a class of “uniformly good policies” and propose UCB
policies that asymptotically achieve the lower bound. Further,
the work of [8] shows that logarithmic regret can be achieved
uniformly over time rather than asymptotically by simpler
sample-mean-based UCB policies and an εt-greedy policy.

Following this line of research, different MAB variants
have been proposed to model several important factors of the
system in real-world applications. The ones that are relevant
to ours include combinatorial MAB (CMAB) where multiple
arms form a super arm and can be simultaneously played
[9]–[14] and sleeping MAB (SMAB) where an arm could
sometimes be “sleeping” (i.e., unavailable) [15]–[18]. Being
the first to study the CMAB problem, the work of [9] con-
siders combinations of a fixed number of simultaneous plays.
This simple combinatorial structure has been generalized to
permutations [10] and matroids [11]. The work of [12], [13]
generalizes linear reward functions considered in [9]–[11] to
include a large class of linear and nonlinear rewards. In [14],
the authors prove a tight problem-specific lower bound for
stochastic CMAB (where the reward of each played arm rather
than the combinatorial reward is revealed) and propose an
efficient sampling algorithm with an improved multiplicative
factor. The work of [15] is among the first to study the SMAB
problem. This work provides a computationally efficient al-
gorithm for the setting of stochastic rewards while allowing
both stochastic and adversarial availability. Follow-up work
of [16], [17] studies the setting of adversarial rewards while
the availability of arms is either stochastic or adversarial.
Very recently, the authors of [18] analyze the performance
of Thompson Sampling for the SMAB problem and show that
it empirically performs better than other algorithms.

MAB settings with constraints have also been considered in
prior studies. Most of them focus on bandits with budgets (see,
e.g., [19]) or bandits with knapsacks (see, e.g., [20]), where no
more plays can be made if the budget/knapsack constraints are
violated. Hence, these types of constraints are very different
from the long-term fairness constraints we consider in this
paper. Some very recent work considers multi-type rewards
[21] and multi-level rewards [22], [23]. They introduce a
minimum guarantee requirement that the total reward of some
type/level must be no smaller than a given threshold. However,
these studies differ significantly from ours in the following key
aspects. First, and most importantly, their constraints do not
model fairness among arms. The required minimum guarantee
is for the total rewards (of some type/level) rather than for each
individual arm. Second, no learning algorithm is proposed
in [21]; the proposed learning algorithms in [22], [23] may
violate the constraints, although they show provable violation
bounds. Third, they assume that all the arms are available at
all times. Last but not least, the proof techniques for regret
analysis in [22], [23] are very different from ours.

Fairness in online learning has been studied in [24], [25].
A key idea of their proposed fair algorithm is that two arms
should be played with equal probability until they can be dis-
tinguished with a high confidence. Another work [26] studies
how to learn proportionally fair allocations by considering the
maximization of a logarithmic utility function. These studies
are less relevant to our work, although they share some high-
level similarities with ours in modeling fairness.

At a technical level, the work of [27] that integrates learning
and queueing is most related to ours. We follow a similar

line of regret analysis in [27] for deriving the upper bound.
However, they do not explicitly model fairness constraints, nor
do they consider the availability of arms.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the detailed setting of our
proposed CSMAB-F framework. Let N = {1, 2, . . . , N}
denote the set of N arms. Each arm i ∈ N is associated with a
reward Xi(t) in round t, where t = 0, 1, 2, The reward is
a random variable on [0, 1] and follows a certain distribution
with mean µi. We assume that the reward for each arm is
i.i.d. over time. The mean reward vector µ = (µ1, . . . , µN)
is unknown a priori. In our setting, an arm could sometimes
be “sleeping” (i.e., unavailable). Let A(t) ∈ P(N) denote the
set of available arms in round t, where P(N) is the power set
of N . We use PA(Z) , P (A(t) = Z), where Z ∈ P(N), to
denote the distribution of available arms, which is assumed to
be i.i.d over time. This distribution is unknown a priori, but
the set of available arms A(t) will be revealed to the player
at the beginning of each round t.

In each round, the player is allowed to play multiple, but
no more than m, available arms (i.e., arms belonging to A(t)).
Each subset of available arms is also called a super arm [12].
We restrict the size of a chosen super arm to be no larger than
m so as to account for resource constraints (see discussions
on applications in Section VI). Let S(Z) represent the set
of all feasible super arms when the set of available arms Z
is observed, i.e., S(Z) , {S ⊆ Z : |S| ≤ m}, where |S|
denotes the cardinality of set S. In round t, a player selects a
super arm S(t) ∈ S(A(t)) and receives a compound reward
R(t), which is a weighted sum of the rewards of the played
arms, i.e., R(t) ,

∑
i∈S(t) wiXi(t), where wi is the weight

of arm i. We assume that the weights wi are fixed positive
numbers known a priori and are upper bounded by a finite
constant wmax > 0. The goal of the player is to maximize the
expected time-average reward for a given time horizon of T
rounds, i.e., E[1

T

∑T−1
t=0 R(t)].

To describe the action for each individual arm, we use a
binary vector d(t) = (d1(t), . . . , dN (t)) to indicate whether
each arm is played or not in round t, where di(t) = 1 if arm i
is played, i.e., i ∈ S(t); otherwise, di(t) = 0. Then, the action
vector d(t) must satisfy

∑N
i=1 di(t) ≤ m for all t ≥ 0.

As we discussed in the introduction, in addition to maximize
the reward, ensuring fairness among the arms is also a key
design concern for many real-world applications. To model the
fairness requirement, we introduce the following constraints on
a minimum selection fraction for each individual arm:

lim inf
T→∞

1

T

T−1∑
t=0

E[di(t)] ≥ ri ∀i ∈ N , (1)

where ri ∈ (0, 1) is the required minimum fraction of rounds
in which arm i is played. The minimum selection fraction
vector r = (r1, . . . , rN) is said to be feasible if there exists a
policy that makes a sequence of decisions S(t) for t ≥ 0 such
that (1) is satisfied. Then, the maximal feasibility region C is
defined as the set of all such feasible vectors r ∈ (0, 1)N .

A policy is said to be feasibility-optimal if it can support
any vector r (i.e., (1) is satisfied) strictly inside the maximal
feasibility region C.

We now consider the special class of stationary and ran-
domized policies called A-only policies. An A-only policy
observes the set of available arms A(t) for each round t
and independently chooses a super arm S(t) ∈ S(A(t)) as a
(possibly randomized) function of the observed A(t) only. An
A-only policy α is characterized by a group of probability dis-
tributions, denoted by q = [qS(Z), ∀S ∈ S(Z), ∀Z ∈ P(N)],
where qS(Z) is the probability that policy α chooses super
arm S ∈ S(Z) when observing the set of available arms
Z ∈ P(N), and

∑
S∈S(Z) qS(Z) = 1 for all Z ∈ P(N).

Then, under policy α, the action dαi (t) is i.i.d. over time with
the following mean:

E[dαi (t)] =
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z):i∈S

qS(Z), (2)

for every arm i ∈ N and for all t ≥ 0, and thus, constraint (1)
is equivalent to E[dαi (t)] ≥ ri for every arm i ∈ N . Further,
we have the following lemma.

Lemma 1. If a vector r is strictly inside the maximal fea-
sibility region C, then there exists an A-only policy that can
support vector r.

Proof. The proof is omitted as it is quite standard and follows
a similar line of analysis in the proof of Theorem 4.5 in [28]
(see [28, pp. 92-95]).

Lemma 1 implies that there exists an optimal A-only policy.
Hence, assuming that the mean reward vector µ is known in
advance, one can formulate the reward maximization problem
with minimum selection fraction constraint as the following
linear program (LP):

maximize
q

∑
Z∈P(N)

PA(Z)
∑

S∈S(Z)

qS(Z)
∑
i∈S

wiµi (3a)

subject to
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z):i∈S

qS(Z) ≥ ri, ∀i ∈ N ,

(3b)∑
S∈S(Z)

qS(Z) = 1, ∀Z ∈ P(N), (3c)

qS(Z) ∈ [0, 1], ∀S ∈ S(Z), ∀Z ∈ P(N). (3d)

Suppose that an optimal solution to the above LP is q∗ =
[q∗S(Z), ∀S ∈ S(Z), ∀Z ∈ P(N)]. Then an optimal A-only
policy α∗ characterized by q∗ obtains the maximum reward:

R∗ ,
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z)

q∗S(Z)
∑
i∈S

wiµi. (4)

However, the mean reward vector µ is unknown to the player
in advance. Hence, the player not only needs to maximize the
reward based on the estimated mean rewards (i.e., exploita-
tion), but she also has to simultaneously learn to obtain a
more accurate estimate of the mean rewards (i.e., exploration).
Such a learning process typically incurs a loss in the obtained

reward, which is called the regret. Formally, the time-average
regret of a policy π for a time horizon of T rounds, denoted
by Rπ(T), is defined as the difference between the maximum
reward R∗ and the expected time-average reward obtained
under policy π that chooses super arm S(t) in round t, i.e.,

Rπ(T) , R∗ − E

 1

T

T−1∑
t=0

∑
i∈S(t)

wiXi(t)

 . (5)

Note that minimizing the regret is equivalent to maximizing
the reward. Hence, the regret is a commonly used metric in
the MAB literature for measuring the performance of learning
algorithms. In this paper, we will adopt the time-average regret
defined in (5) as the main performance metric.

The key notations used in this paper are listed in Table I.

IV. THE LFG ALGORITHM

In this section, by carefully integrating the key ideas of UCB
[6], [8] and the virtual queue technique [28], we develop a new
algorithm, called Learning with Fairness Guarantee (LFG), to
tackle the CSMAB-F problem. While UCB is extended to deal
with the exploitation-exploration tradeoff, the virtual queue
technique is employed to handle the fairness constraints.

There are two main challenges in designing an efficient
algorithm for the CSMAB-F problem: (i) how to maximize the
reward in the face of unknown mean rewards and (ii) how to
satisfy the fairness constraints. Note that these two challenges
cannot be addressed separately as they are tightly coupled
together. Therefore, we need a holistic approach to manage
the balance between maximizing the reward and satisfying the
fairness constraints. In what follows, we will first discuss the
key ideas for addressing each individual challenge and then
propose the LFG algorithm by carefully integrating them.

The key of maximizing the reward with uncertainty is to
strike a balance between exploitation (i.e., choosing the option
that gave highest rewards in the past) and exploration (i.e.,
seeking new options that might give higher rewards in the
future). We extend a simple UCB policy based on the concept
of optimism in the face of uncertainty to address this challenge
and describe the details as follows.

Let hi(t) be the number of times arm i has been played by
the end of round t, i.e., hi(t) ,

∑t
k=0 di(k). We set hi(−1) =

0 as the system begins at t = 0. Also, let µ̂i(t) be the sample
mean of the observed rewards of arm i by the end of round
t, i.e., µ̂i(t) ,

∑t
k=0Xi(k)di(k)

hi(t)
. We set µ̂i(t) = 1 if arm i has

not been played yet by the end of round t (i.e., if hi(t) = 0).
We use µ̄i(t) to denote the UCB estimate of arm i in round
t, which is given as follows:

µ̄i(t) , min

{
µ̂i(t− 1) +

√
3 log t

2hi(t− 1)
, 1

}
, (6)

where µ̂i(t−1) and
√

3 log t
2hi(t−1) correspond to exploitation and

exploration, respectively. We use the above truncated version
of the UCB estimate (i.e., capped at 1) as the actual reward
must be in [0, 1]. Similarly, we set µ̄i(t) = 1 if hi(t− 1) = 0.

TABLE I
SUMMARY OF KEY NOTATIONS

Notations Meaning
N ; N Set of arms; number of arms
P(N) Power set of N
T Time horizon
m Maximum number of simultaneously played arms
µi Mean reward of arm i
wi Weight of arm i
ri Required minimum selection fraction for arm i
Xi(t) Reward of arm i in round t
µ̂i(t) Sample mean of the observed reward of arm i up to round t
µ̄i(t) UCB estimate of arm i in round t
hi(t) Number of times arm i has been played up to round t
di(t) Indicator of whether arm i is played or not in round t
Qi(t) Virtual queue length for arm i in round t
A(t) Set of available arms in round t
S(t) Super arm played in round t
PA(Z) Probability that the set of available arms is Z
S(Z) Set of feasible super arms when observing available arms Z
qS(Z) Probability that an A-only policy α chooses super arm S

when observing available arms Z
C Maximal feasibility region
R∗ Maximum reward with a priori knowledge of µ
Rπ(T) Time-average regret of policy π

In the basic MAB setting, the classic UCB policy simply
selects the arm that has the largest UCB estimate in each
round [6], [8]. However, in the CSMAB-F setting we are faced
with several new challenges introduced by combinatorial arms,
availability of arms, and fairness constraints. In particular,
integrating fairness constraints adds a new layer of difficulty
to the combinatorial sleeping MAB problem that is already
quite challenging. This is because not only the player is faced
with the exploitation-exploration dilemma when attempting to
maximize the reward, but she also encounters a new tradeoff
between maximizing the reward and satisfying the fairness
requirement. Therefore, directly applying the UCB policy will
not work as it was designed without fairness constraints in
mind. Next, we will explain how to use the virtual queue
technique to properly handle the fairness constraints, as well
as how to cohesively integrate it with UCB to address the
overall challenge of the CSMAB-F problem.

Following the framework developed in [28], we create
a virtual queue Qi for each arm i to handle the fairness
constraints in (1). By slightly abusing the notation, we also
use Qi(t) to denote the queue length of Qi at the beginning
of round t, which is a counter that keeps track of the “debt”
to arm i up to round t. Specifically, the virtual queue length
Qi(t) evolves according to the following dynamics:

Qi(t) = [Qi(t− 1) + ri − di(t− 1)]+, (7)

where [x]+ , max{x, 0}. We set Qi(0) = 0 as the system
begins at t = 0. As can be seen in the above queue-length
evolution, the “debt” to arm i increases by ri in each round
as ri is the minimum selection fraction, and it decreases by
one if arm i is selected in round t− 1 (i.e., di(t− 1) = 1).

Having introduced the UCB estimate and the virtual queues,
we are now ready to describe the proposed LFG algorithm,
which is presented in Algorithm 1. At the very beginning,

we initialize hi(−1) = 0 and Qi(0) = 0 for all arms
i ∈ N (lines 1-3). In each round t, we first update the UCB
estimates µ̄i(t) and the virtual queue lengths Qi(t) according
to (6) and (7) for all arms i ∈ N , respectively, based on the
decision and the feedback from the previous rounds (lines 4-
11); we set µ̄i(t) = 1 if hi(t− 1) = 0. Then, we observe the
set of available arms A(t) (line 12) and select a super arm
S(t) ∈ S(A(t)) that maximizes the compound value of the
updated µ̄i(t) and Qi(t) as follows (line 13):

S(t) ∈ argmax
S∈S(A(t))

∑
i∈S

(Qi(t) + ηwiµ̄i(t)) , (8)

where η is a positive parameter we can tune to manage the
balance between the reward and the virtual queue lengths.
Note that the size of S(A(t)) is exponential in m. Hence,
the complexity of selecting a super arm S(t) according to
(8) could be prohibitively high in general. However, thanks
to the special structure of linear compound reward, we can
efficiently solve (8) and find a best super arm S(t) by itera-
tively selecting best individual arms. Specifically, we select a
super arm S(t) consisting of the top-m∗ arms in A(t), where
m∗ , min{m, |A(t)|}. That is, starting with an empty S(t),
we iteratively select arm i∗ such that

i∗ ∈ argmax
i∈A(t)\S(t)

Qi(t) + ηwiµ̄i, (9)

and after each iteration, we update super arm S(t) by adding
arm i∗ to it, i.e., S(t) = S(t) ∪ {i∗}. Repeating the above
procedure for m∗ iterations solves (8) and finds a best super
arm S(t). After we play arms in S(t) and set vector d(t)
accordingly (line 14), we observe the reward Xi(t) for all
played arms i ∈ S(t) (lines 15-17) and update hi(t) and µ̂i(t)
accordingly for all arms i ∈ N (lines 18-20).

Remark: As we mentioned earlier, we introduce a design
parameter η to manage the balance between the reward and
virtual queue lengths. When η is large, the LFG algorithm
gives a higher priority to maximizing the reward compared to
meeting the fairness constraints. This is because an arm with
a large estimated reward (i.e., UCB estimate) will be favored,
compared to another arm that has a small estimated reward but
a large “debt” (i.e., virtual queue length). In contrast, when η
is small, the LFG algorithm gives a higher priority to meeting
the fairness constraints because an arm with a large virtual
queue length will be favored even if it has a small estimated
reward. Indeed, our simulation results presented in Section VII
reveal an interesting tradeoff between the regret and the speed
of convergence to a point satisfying the fairness constraints.

V. MAIN RESULTS

In this section, we analyze the performance of our proposed
LFG algorithm and present our main results. Specifically, we
show that the LFG algorithm is feasibility-optimal (i.e., it can
satisfy any feasible requirement of minimum selection fraction
for each individual arm) in Section V-A and derive an upper
bound on the time-average regret in Section V-B.

Algorithm 1 Learning with Fairness Guarantee (LFG)
1: for i ∈ N do
2: Initialize hi(−1) = 0 and Qi(0) = 0;
3: end for

In each round t:
4: for i ∈ N do
5: if hi(t− 1) > 0 then
6: Update µ̄i(t) according to (6);
7: else
8: Set µ̄i(t) = 1;
9: end if

10: Update Qi(t) according to (7);
11: end for
12: Observe the set of available arms A(t);
13: Select super arm S(t) according to (8);
14: Play arms in S(t) and set vector d(t) accordingly;
15: for i ∈ S(t) do
16: Observe the reward Xi(t);
17: end for
18: for i ∈ N do
19: Update hi(t) and µ̂i(t) according to di(t) and Xi(t).
20: end for

A. Feasibility Optimality

We first present the feasibility-optimality result. That is, the
LFG algorithm can satisfy the fairness constraints in (1) for
any minimum selection fraction vector r strictly inside the
maximal feasibility region C.

Note that the constraints in (1) are satisfied as long
as the virtual queue system defined in (7) is mean rate
stable [28, pp. 56-57], i.e., limT→∞

E[
∑N
i=1Qi(T)]

T = 0.
In our virtual queue system, mean rate stability is im-
plied by a stronger notion called strong stability, i.e.,
lim supT→∞

1
T

∑T−1
t=0 E[

∑N
i=1Qi(t)] < ∞. Therefore, in

order to prove feasibility-optimality, it is sufficient to show
that the virtual queue system is strongly stable whenever the
minimum selection fraction vector r is strictly inside C. We
state this result in Theorem 1.

Theorem 1. The LFG algorithm is feasibility-optimal. Specif-
ically, for any minimum selection fraction r strictly inside the
maximal feasibility region C, the virtual queue system defined
in (7) is strongly stable under LFG. That is,

lim sup
T→∞

1

T

T−1∑
t=0

E

[
N∑
i=1

Qi(t)

]
≤ B

ε
<∞, (10)

where B , N
2 + ηmwmax and ε is some positive constant

satisfying that r+ ε1 is still strictly inside C, with 1 being the
N -dimensional vector of all ones.

We prove Theorem 1 by using standard Lyapunov-drift
analysis [28]. The detailed proof is provided in Appendix A.

Remark: Note that the work of [22] also studies an MAB
problem with minimum-guarantee constraints. However, their

work differs significantly from ours because their consid-
ered minimum guarantee is for the total rewards (of some
type/level) rather than for each individual arm, i.e., fairness
among arms is not modeled. More importantly, the proposed
learning algorithm in [22] may violate the constraints. Al-
though they show that the violations are upper bounded by
O(T 5/6), this upper bound implies that the constraints may not
be satisfied even after a long enough time. In stark contrast,
Theorem 1 states that our proposed LFG algorithm can satisfy
the (long-term) fairness constraints as long as the requirement
is feasible. Another difference is that they do not consider
sleeping bandits, which can further complicate the problem.

B. Upper Bound on Regret

In this subsection, we prove an upper bound on the time-
average regret (as defined in (5)) under the LFG algorithm.
This upper bound is achieved uniformly over time (i.e., for
any finite time horizon T) rather than asymptotically when T
goes to infinity. We state this result in Theorem 2.

Theorem 2. Under the LFG algorithm, the time-average
regret defined in (5) has the following upper bound:

RLFG(T) ≤ N

2η
+
β1

√
mNT log T + β2N

T
, (11)

where β1 , 2
√

6wmax, and β2 , 4wmax.

We prove Theorem 2 by using a similar line of regret
analysis in [27]. The detailed proof is provided in Appendix B.

Remark: The derived regret upper bound in (11) is quite
appealing as it separately captures the impact of the fairness
constraints and the impact of the uncertainty in the mean
rewards for any finite time horizon T . Note that the regret
upper bound in (11) has two terms. The first term N

2η is
inversely proportional to η and is attributed to the impact
of the fairness constraints. Specifically, when η is small, the
LFG algorithm gives a higher priority to meeting the fairness
requirement by favoring an arm with a larger “debt” (i.e.,
virtual queue length) as in (9), even if this arm has a small
estimated reward. This results in a larger regret captured in
the first term. Similarly, a larger η leads to a smaller regret
captured in the first term, but it will take longer for the
LFG algorithm to converge to a point satisfying the fairness
constraints. This interesting tradeoff can also be observed
from our simulation results in Section VII. The second term
β1

√
mNT log T+β2N

T is of the order O(
√

log T/T). This part of
the regret corresponds to the notion of regret in typical MAB
problems and is attributed to the cost that needs to be paid in
the learning/exploration process. Note that the second term is
an instance-independent upper bound that does not depend on
the problem-specific parameter µ. Our derived bound on the
time-average regret is consistent with the instance-independent
result for basic MAB problems [1, Ch. 2.4.3]1.

1Time-average regret O(
√

log T/T) vs. cumulative regret O(
√
T log T).

VI. APPLICATIONS

In this section, we provide more detailed discussions about
real-world applications of our proposed CSMAB-F framework.
Specifically, we will discuss the following three applications
as examples: scheduling of real-time traffic in wireless net-
works [4], ad placement in online advertising systems [29],
and task assignment in crowdsourcing platforms [30].

A. Scheduling of Real-time Traffic in Wireless Networks

Consider the problem of scheduling real-time traffic with
QoS constraints in a single-hop wireless network. Assume that
there are N clients competing for a shared wireless channel
to transmit packets to a common AP (see, e.g., [4]). Time
is slotted. The AP decides which client(s) can transmit at
what times. Consider a scheduling cycle, called a frame, that
consists of m consecutive time slots. Every client generates
one data packet at the beginning of each frame. To avoid
interference, we assume that at most one client can transmit
in each time slot. Note that some clients may sometimes be
unable to transmit when experiencing poor channel conditions
(due to fading or mobility). Assume that the channel conditions
remain unchanged during a frame but may vary over frames
and that the AP obtains the exact knowledge about the channel
conditions via probing. At the beginning of each frame, the AP
makes scheduling decisions by selecting an available client to
transmit in each of the m time slots; at the beginning of each
time slot, the AP broadcasts a control packet that announces
the scheduling decision, and then, the selected client transmits
a packet to the AP in that time slot. We model real-time traffic
by assuming that packets have a lifetime of m time slots
and expire at the end of the frame. The above framework
is illustrated in Fig. 1. While a successfully delivered packet
will generate a utility, which could represent the value of the
information contained in the packet, an expired packet will be
dropped at the end of the frame. We assume that the utility
corresponding to each client is a random variable, and its mean
is unknown a priori. There is a weight associated with each
client, indicating the importance of the information provided
by the client.

The goal of the AP is to maximize the cumulative utilities
by scheduling packet transmissions in the face of unknown
mean utilities. In addition, each client has a QoS requirement
that a minimum delivery ratio must be guaranteed. Clearly, the
scheduling problem with minimum delivery ratio guarantee
can naturally be formulated as a CSMAB-F problem.

B. Ad Placement in Online Advertising Systems

Online advertising has emerged as a very popular Internet
application [29]. Take a page of Weather.com website shown in
Fig. 2 for example. When an Internet user visits the webpage,
the publisher dynamically chooses multiple ads from the ads
pool to display in the ad-mix areas (highlighted by red circles
in Fig. 2). We assume that the ads pool consists of N ads,
and the ad-mix area has a limited capacity, which allows
displaying no more than m ads simultaneously. Note that some
ads are irrelevant to certain users, depending on the context

Fig. 1. Scheduling of real-time traffic Fig. 2. Ad placement Fig. 3. Task assignment in crowdsourcing

including users’ characteristics (gender, interest, location, etc.)
and content of the webpage. Hence, such irrelevant ads can
be viewed as unavailable to those users, and the availability
of ads depends on the distribution of the context. After seeing
a displayed ad, the user may or may not click it. The click-
through rate (i.e., the rate at which the ad is clicked) of each
ad is unknown a priori. Each click of an ad will potentially
generate a revenue for the advertiser, which can be viewed as
the weight of the ad.

The goal of the ad publisher is to maximize the cumulative
revenues by determining a best subset of ads to display in the
face of unknown click-through rates. In addition, the publisher
must guarantee a minimum display frequency for advertisers
who pay a fixed cost over a specified period, regardless of
users’ responses to the displayed ads. Obviously, the ad place-
ment problem with minimum display frequency guarantee fits
perfectly into our proposed CSMAB-F framework.

C. Task Assignment in Crowdsourcing Platforms
The increasing application of crowdsourcing is significantly

changing the way people conduct business and many other
activities [30]. Consider a crowdsourcing platform such as
Amazon Mechanical Turk, Amazon Flex (for package deliv-
ery), and Testlio (for software testing), as shown in Fig. 3.
Tasks arriving to the crowdsourcing platform will be assigned
to a group of workers with different unknown skill levels.
Specifically, when a task arrives, the platform may divide the
task into multiple sub-tasks; then the sub-tasks will be assigned
to no more than m workers from a pool of N workers, due
to the number of sub-tasks or a limited budget. Note that
some workers could be unavailable to take certain tasks due
to various reasons (time conflicts, location constraints, limited
skills, preferences, etc.). Each completed task will generate a
payoff that depends on the quality or efficiency of the workers.
The payoff is a random variable, and its mean is unknown a
priori due to unknown skill levels of workers.

The goal of the crowdsourcing platform is to maximize the
cumulative payoffs by determining an optimal task allocation
in the face of unknown mean payoffs. In addition, the platform
has to take fairness towards workers into account through a
minimum assignment ratio guarantee for each worker. This
fairness guarantee helps maintain a healthy and sustainable
platform with improved worker satisfaction and higher worker
participation. Apparently, our proposed CSMAB-F framework
can be applied to address the task assignment problem with
minimum assignment ratio guarantee.

0.0 0.5 1.0 1.5 2.0

�7��P�H ��5�R�X�Q�G�V� ×10
4

0.00

0.02

0.04

0.06

�7
��P

�H��
�D
�Y
�H�U
�D
�
�H
�U�H
�
�U�H
�W

��)�� η= ��

��)�� η= ����

��)�� η= ������

��)�� η= ��������

���5�6

(a) Time-average Regret

Arm 1 Arm 2 Arm 30.0

0.2

0.4

0.6

0.8

1.0

1.2

��
��

�
��
��

�
	

���

�

��������
����
�����η= �

�����η= ��
�����η= ���
�����η= ����

(b) Selection fraction

Fig. 4. Performance comparisons of different algorithms

VII. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the per-
formance of our proposed LFG algorithm and discuss several
interesting observations based on the simulation results.

We consider two scenarios for the simulations: (i) N = 3
and m = 2; (ii) N = 10 and m = 6. Since the observations are
similar for these two scenarios, we will focus on the discussion
about the first scenario due to space limitations. We assume
that the availability of arm i is a binary random variable that is
i.i.d. over time with mean pi. Then, the distribution of available
arms can be computed as PA(Z) =

∏
i∈Z pi

∏
i/∈Z(1 − pi)

for all Z ∈ P(N). We also assume binary rewards with the
same unit weight (i.e., wi = 1) for all the arms. The detailed
setting of other parameters is as follows: µ = (0.4, 0.5, 0.7),
r = (0.5, 0.6, 0.4), and p = (p1, p2, p3) = (0.9, 0.8, 0.7).

First, in order to demonstrate that LFG can effectively meet
the fairness requirement, we compare LFG with a fairness-
oblivious combinatorial MAB algorithm, called Learning with
Linear Rewards (LLR) [10]. We modify the LLR algorithm
to accommodate sleeping bandits; the modified version is
called LLR for Sleeping bandits (LLRS). In each round t,
observing the set of available arms A(t), LLRS selects a
super arm S(t) that has the largest weighted sum of the UCB
estimates among all the feasible super arms in S(A(t)), i.e.,
S(t) ∈ argmaxS∈S(A(t))

∑
i∈S wiµ̄i(t). Note that LLRS is

oblivious of the fairness constraints in (1).
We simulate LFG with η ∈ {1, 10, 100, 1000} and LLRS for

T = 2 × 104 rounds (at which all the considered algorithms
are observed to converge) and present the results in Fig. 4.
Fig. 4(a) shows the time-average regret over time for the
considered algorithms; Fig. 4(b) shows the selection fraction
of each arm at the end of the simulation (i.e., at T = 2×104).

0.0 0.5 1.0 1.5 2.0
�
��������
�� ×104

0.5

0.6

0.7

0.8

0.9
��

��
	�

�
���

�	
�
�

�
η= �
η= ��
η= ���
η= ����
����
��

(a) Arm 1

0.0 0.5 1.0 1.5 2.0
�
��������
�� ×104

0.60

0.65

0.70

0.75

0.80

��
��
	�

�
���

�	
�
�

�

η= �
η= ��
η= ���
η= ����
����
��

(b) Arm 2

0.0 0.5 1.0 1.5 2.0
�
��������
�� ×104

0.2

0.3

0.4

0.5

0.6

0.7

��
��
	�

�
���

�	
�
�

�

η= �
η= ��
η= ���
η= ����
����
��

(c) Arm 3

Fig. 5. Selection fraction over time under LFG with different values of η

2 3 4 5 6
logT

−6

−5

−4

−3

lo
g�

	

�
�

�

�����η= ���
0.3logT/T
0.15√ logT/T

Fig. 6. Regret vs. T

From Fig. 4(a), we can make the following observations: (i)
LFG with a larger η results in a smaller regret, and LFG
with η ≥ 100 approaches a zero regret; (ii) LLRS achieves
the smallest regret, which is even negative (i.e., it achieves a
reward larger than the optimal R∗). Observation (i) is expected,
as we explained in Section V-B: the upper bound on regret
in (11) approaches zero when both η and T become large.
Observation (ii) is not surprising because LLRS is fairness-
oblivious and may produce an infeasible solution. Indeed,
Fig. 4(b) shows that Arm 1’s selection fraction under LLRS is
smaller than the required value (0.4 vs. 0.5). This is because
Arm 1 has the smallest mean reward and is not favored under
LLRS, which is unaware of the fairness contraints. On the
other hand, Fig. 4(b) also shows that with different values of
η, LFG consistently satisfies the required minimum selection
fraction, which verifies our theoretical result on feasibility-
optimality of LFG (Theorem 1).

At first glance, the above observations seem to suggest that
LFG with a large η is desirable because that leads to a vanish-
ing regret while still providing fairness guarantee. However,
what is missing here is the speed of convergence to a point
satisfying the fairness requirement, which is another critical
design concern in practice. To understand the convergence
speed of LFG with different values of η, in Fig. 5 we plot the
selection fraction over time for each arm. Taking Fig. 5(a) for
example, we can observe that the convergence slows down as
η increases. In addition, before LFG with η = 1000 converges
(e.g., when T ≤ 104), the actual selection fraction of Arm 1
does not meet the required minimum value of 0.5. Since the
constraints may be temporarily violated, the regret could even
be negative before LFG converges (see η = 1000 in Fig. 4(a)).
Therefore, the simulation results reveal an interesting tradeoff
between the regret and the convergence speed. We can control
and optimize this tradeoff by tuning η. For example, for the
considered scenario, LFG with η = 100 seems to achieve a
good balance between the regret and the convergence speed.

Finally, we want to investigate the tightness of the upper
bound derived in (11). Consider the average of 100 indepen-
dent simulation runs for LFG with η = 100. Fig. 6 shows the
time-average regret vs. the time horizon T in a log-log plot.
Recall that the upper bound in (11) has two terms. The impact
of T appears in the second term that is of the order

√
log T/T .

When T becomes large, it becomes difficult to see the impact
of T on the regret as the first term N

2η becomes dominant.

Therefore, we consider the region with T ≤ 1000 (i.e.,
log T ≤ 6.9). Fig. 6 seems to suggest that the time-average
regret follows the order log T/T rather than

√
log T/T . This

implies that the upper bound in (11) is not tight. One reason
could be that the

√
log T/T bound is instance-independent. It

remains open whether one can come up with novel analytical
techniques to derive a better bound of log T/T .

VIII. CONCLUSION

In this paper, we proposed a unified CSMAB-F framework
that integrates several critical factors (i.e., combinatorial ac-
tions, availability of actions, and fairness) of the system in
many real-world applications. In particular, no prior work has
studied MAB problems with fairness constraints on a mini-
mum selection fraction for each individual arm. To address
the new challenges introduced by modeling these factors, we
developed a new LFG algorithm that achieves a provable regret
upper bound while effectively providing fairness guarantee.

We leave the following interesting questions to our future
work: Can one prove a tighter upper bound on regret? How
to develop efficient algorithms for a more general model
that potentially accounts for nonlinear reward functions, more
sophisticated combinatorial structures (e.g., matroids), and
more general fairness criteria other than temporal fairness that
we consider in this paper?

REFERENCES

[1] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends®
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[2] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[3] X. Liu, E. K. Chong, and N. B. Shroff, “A framework for opportunistic
scheduling in wireless networks,” Computer networks, vol. 41, no. 4,
pp. 451–474, 2003.

[4] I. H. Hou, V. Borkar, and P. R. Kumar, “A theory of qos for wireless,”
in Proceedings of IEEE INFOCOM, April 2009, pp. 486–494.

[5] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory
of fairness in network resource allocation,” in 2010 Proceedings IEEE
INFOCOM, March 2010, pp. 1–9.

[6] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[7] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[9] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
part i: Iid rewards,” IEEE Transactions on Automatic Control, vol. 32,
no. 11, pp. 968–976, 1987.

[10] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Transactions on Net-
working (TON), vol. 20, no. 5, pp. 1466–1478, 2012.

[11] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson, “Matroid
bandits: Fast combinatorial optimization with learning,” in Proceedings
of UAI, 2014.

[12] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in International Conference on
Machine Learning, 2013, pp. 151–159.

[13] W. Chen, W. Hu, F. Li, J. Li, Y. Liu, and P. Lu, “Combinatorial multi-
armed bandit with general reward functions,” in Advances in Neural
Information Processing Systems, 2016, pp. 1659–1667.

[14] R. Combes, M. S. T. M. Shahi, A. Proutiere et al., “Combinatorial ban-
dits revisited,” in Advances in Neural Information Processing Systems,
2015, pp. 2116–2124.

[15] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma, “Regret bounds for
sleeping experts and bandits,” Machine learning, vol. 80, no. 2-3, pp.
245–272, 2010.

[16] V. Kanade, H. B. McMahan, and B. Bryan, “Sleeping experts and bandits
with stochastic action availability and adversarial rewards,” in Artificial
Intelligence and Statistics, 2009, pp. 272–279.

[17] V. Kanade and T. Steinke, “Learning hurdles for sleeping experts,” ACM
Transactions on Computation Theory (TOCT), vol. 6, no. 3, p. 11, 2014.

[18] A. Chatterjee, G. Ghalme, S. Jain, R. Vaish, and Y. Narahari, “Analysis
of thompson sampling for stochastic sleeping bandits.” in UAI, 2017.

[19] R. Combes, C. Jiang, and R. Srikant, “Bandits with budgets: Regret
lower bounds and optimal algorithms,” ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 1, pp. 245–257, 2015.

[20] A. Badanidiyuru, R. Kleinberg, and A. Slivkins, “Bandits with knap-
sacks,” Journal of the ACM (JACM), vol. 65, no. 3, pp. 13:1–13:55,
2018.

[21] E. V. Denardo, E. A. Feinberg, and U. G. Rothblum, “The multi-armed
bandit, with constraints,” Annals of Operations Research, vol. 208, no. 1,
pp. 37–62, 2013.

[22] K. Cai, X. Liu, Y. J. Chen, and J. C. S. Lui, “An online learning approach
to network application optimization with guarantee,” in Proceedings of
IEEE INFOCOM, 2018, in press.

[23] K. Chen, K. Cai, L. Huang, and J. Lui, “Beyond the click-through
rate: Web link selection with multi-level feedback,” arXiv preprint
arXiv:1805.01702, 2018.

[24] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth, “Fairness
in learning: Classic and contextual bandits,” in Advances in Neural
Information Processing Systems, 2016, pp. 325–333.

[25] M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A. Roth,
“Fair algorithms for infinite and contextual bandits,” arXiv preprint
arXiv:1610.09559, 2016.

[26] M. S. Talebi and A. Proutiere, “Learning proportionally fair allocations
with low regret,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 2, no. 2, pp. 36:1–36:31, 2018.

[27] W.-K. Hsu, J. Xu, X. Lin, and M. R. Bell, “Integrate learning and
control in queueing systems with uncertain payoffs,” Purdue University,
available at https://engineering.purdue.edu/%7elinx/papers.html, Tech.
Rep., 2018.

[28] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[29] “Adspeed ad server,” https://www.adspeed.com/, 2018, [Accessed: 2018-
06-30].

[30] F. Basık, B. Gedik, H. Ferhatosmanoglu, and K.-L. Wu, “Fair task
allocation in crowdsourced delivery,” IEEE Transactions on Services
Computing, 2018.

APPENDIX

A. Proof of Theorem 1

Proof. Consider the LFG algorithm. To prove feasibility op-
timality, we want to show that for any vector r strictly
inside the maximal feasibility region C, the minimum selection
fraction requirements (i.e., Eq. (1)) are satisfied. Note that the
requirements of (1) are satisfied as long as the virtual queue
system defined in (7) is mean rate stable [28, pp. 56-57],

i.e., limT→∞
E[
∑N
i=1Qi(T)]

T = 0. In our virtual queue system,
mean rate stability is implied by a stronger notion called strong
stability, i.e., lim supT→∞

1
T

∑T−1
t=0 E[

∑N
i=1Qi(t)] < ∞.

Therefore, it is sufficient to show that the virtual queue system
is strongly stable for any vector r strictly inside C.

We proceed the proof using the Lyapunov-drift analy-
sis [28]. Let Q(t) = (Q1(t), . . . , QN (t)) be the queue-length
vector in round t. Consider the following Lyapunov function:

L(Q(t)) ,
1

2

N∑
i=1

Q2
i (t). (12)

The drift of the Lyapunov function is given by

L(Q(t+ 1))− L(Q(t))

=
1

2

N∑
i=1

Q2
i (t+ 1)− 1

2

N∑
i=1

Q2
i (t)

(a)

≤ 1

2

N∑
i=1

(Qi(t) + ri − di(t))2 − 1

2

N∑
i=1

Q2
i (t)

=
1

2

N∑
i=1

(ri − di(t))2 +
N∑
i=1

(ri − di(t))Qi(t)

(b)

≤ N

2
+

N∑
i=1

riQi(t)−
N∑
i=1

di(t)Qi(t),

(13)

where (a) is from the queue-length evolution (7) and (b) holds
because both ri and di(t) are within [0, 1]. Taking conditional
expectation of both sides of the above gives

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

≤ N

2
+

N∑
i=1

riQi(t)− E

[
N∑
i=1

di(t)Qi(t)|Q(t)

]

=
N

2
+

N∑
i=1

riQi(t)− E

 ∑
i∈S(t)

di(t)Qi(t)|Q(t)


=
N

2
+

N∑
i=1

riQi(t) + E

 ∑
i∈S(t)

ηwiµ̄i(t)|Q(t)


− E

 ∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))|Q(t)


≤ N

2
+

N∑
i=1

riQi(t) + ηmwmax

− E

 ∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))|Q(t)


= B +

N∑
i=1

riQi(t)

− E

 ∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))|Q(t)

 ,

(14)

https://www.adspeed.com/

where the last inequality holds because wi ≤ wmax, µ̄i(t) ≤ 1,
and |S(t)| ≤ m, and B , N

2 + ηmwmax is a constant.
Recall that r is strictly inside C. Then, there must exist some

ε > 0 such that r+ε1 is also strictly inside C, where 1 denotes
the N -dimensional all-ones vector. By Lemma 1, there exists
an A-only policy α that can support vector r + ε1. That is,∑

Z∈P(N)

PA(Z)
∑

S∈S(Z):i∈S

qαS(Z) ≥ ri + ε, ∀i ∈ N , (15)

where qα = [qαS(Z), ∀S ∈ S(Z), ∀Z ∈ P(N)] is the group of
probability distributions associated with policy α. Recall that
in each round t, policy α observes available arms A(t) and
chooses a super arm Sα(t) ∈ S(A(t)) independent of Q(t).
Then, the last term of the right-hand side of (14) satisfies

E

 ∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))|Q(t)


= E

E
 ∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))|Q(t), A(t)


(a)

≥ E

E
 ∑
i∈Sα(t)

(Qi(t) + ηwiµ̄i(t))|Q(t), A(t)


≥ E

E
 ∑
i∈Sα(t)

Qi(t)|Q(t), A(t)


(b)
= E

E
 ∑
i∈Sα(t)

Qi(t)|A(t)


(c)
= E

 ∑
S∈S(A(t))

qαS(A(t))
∑
i∈S

Qi(t)


=

∑
Z∈P(N)

PA(Z)
∑

S∈S(Z)

qαS(Z)
∑
i∈S

Qi(t)

=
N∑
i=1

Qi(t)
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z):i∈S

qαS(Z),

(16)

where (a) is due to the operations of LFG (specifically, (8)),
(b) holds because policy α’s decision is independent of Q(t),
and (c) is due to the operations of policy α.

Substituting (16) into (14) and applying (15) give

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

≤ B +
N∑
i=1

riQi(t)

−
N∑
i=1

Qi(t)
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z):i∈S

qαS(Z)

≤ B +
N∑
i=1

riQi(t)−
N∑
i=1

Qi(t)(ri + ε)

= B − ε
N∑
i=1

Qi(t).

(17)

Finally, invoking the Lyapunov Drift Theorem [28, Theo-
rem 4.1] gives (10), which completes the proof.

B. Proof of Theorem 2

Proof. Consider an optimal A-only policy α∗ and its associ-
ated probability distributions q∗ = [q∗S(Z), ∀S ∈ S(Z), ∀Z ∈
P(N)]. Let S∗(t) be the super arm selected by policy α∗ in
round t. Vector d∗(t) = (d∗1(t), . . . , d∗N (t)) is the correspond-
ing action vector. Due to (4), we have

R∗ =
∑

Z∈P(N)

PA(Z)
∑

S∈S(Z)

q∗S(Z)
∑
i∈S

wiµi

= E

 ∑
i∈S∗(t)

wiµi

 . (18)

Plugging (18) into (5), we can rewrite the regret of LFG as

RLFG(T) = R∗ − 1

T
E

T−1∑
t=0

∑
i∈S(t)

wiXi(t)


=

1

T

T−1∑
t=0

R∗ − E

 ∑
i∈S(t)

wiµi


=

1

T

T−1∑
t=0

E

 ∑
i∈S∗(t)

wiµi −
∑
i∈S(t)

wiµi︸ ︷︷ ︸
∆R(t)

 .
(19)

We define the following quantity:

∆R(t) ,
∑

i∈S∗(t)

wiµi −
∑
i∈S(t)

wiµi

=

N∑
i=1

wiµid
∗
i (t)−

N∑
i=1

wiµidi(t),

(20)

which captures the gap between the expected rewards achieved
by policy α∗ and LFG in round t. Adding ∆R(t) scaled by
η to the drift of the Lyapunov function (i.e., (13)) gives the
drift-plus-regret:

L(Q(t+ 1))− L(Q(t)) + η∆R(t)

≤ N

2
+

N∑
i=1

riQi(t)−
N∑
i=1

di(t)Qi(t)

+ η
N∑
i=1

wiµid
∗
i (t)− η

N∑
i=1

wiµidi(t)

=
N

2
+

N∑
i=1

(Qi(t) + ηwiµi)(d
∗
i (t)− di(t))

+
N∑
i=1

Qi(t)(ri − d∗i (t)).

(21)

We can bound the expected drift-plus-regret as

E[L(Q(t+ 1))− L(Q(t)) + η∆R(t)]

≤ N

2
+

N∑
i=1

E[(Qi(t) + ηwiµi)(d
∗
i (t)− di(t))]

+
N∑
i=1

E[Qi(t)(ri − d∗i (t))]

≤ N

2
+ E

[
N∑
i=1

(Qi(t) + ηwiµi)(d
∗
i (t)− di(t))︸ ︷︷ ︸

C1(t)

]
,

(22)

where the last step follows from E[Qi(t)d
∗
i (t)] =

E[Qi(t)]E[d∗i (t)] (due to the decision of policy α∗ being
independent of the queue length Qi(t)) and E[d∗i (t)] ≥ ri
(because policy α∗ is stationary and feasible). Define C1(t) ,∑N
i=1 (Qi(t) + ηwiµi)(d

∗
i (t)− di(t)). Summing (22) for all

t ∈ {0, . . . , T − 1}, using the trick of telescoping sum, and
dividing both sides of the inequality by Tη, we obtain

1

Tη
E[L(Q(T))− L(Q(0))] +

1

T

T−1∑
t=0

E[∆R(t)]

≤ N

2η
+

1

Tη

T−1∑
t=0

E[C1(t)].

(23)

Since L(Q(T)) ≥ 0 and L(Q(0)) = 0, we have

1

T

T−1∑
t=0

E[∆R(t)] ≤ N

2η
+

1

Tη

T−1∑
t=0

E [C1(t)] . (24)

In Appendix C, we will show the following bound:

1

Tη

T−1∑
t=0

E[C1(t)] ≤ wmax

T

(
2
√

6mNT log T + 4N
)
. (25)

Finally, plugging (25) into (24) and combining it with (19)
yield (11). This completes the proof of Theorem 2.

C. Bounding C1(t)

In this section, we want to show (25).
Consider a policy π′, which, in each round t, chooses a

super arm S′(t) in the following manner:

S′(t) ∈ argmax
S∈S(A(t))

∑
i∈S

(Qi(t) + ηwiµi(t)). (26)

Recall that in each round t, the LFG algorithm chooses a super
arm S(t) according to (8). Therefore, we have∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t)) ≥
∑

i∈S′(t)

(Qi(t) + ηwiµ̄i(t)). (27)

Next, we derive an upper bound on C1(t):

C1(t) =
N∑
i=1

(Qi(t) + ηwiµi)(d
∗
i (t)− di(t))

=
∑

i∈S∗(t)

(Qi(t) + ηwiµi)−
∑
i∈S(t)

(Qi(t) + ηwiµi)

(a)

≤
∑

i∈S′(t)

(Qi(t) + ηwiµi)−
∑
i∈S(t)

(Qi(t) + ηwiµi)

(b)

≤
∑

i∈S′(t)

(Qi(t) + ηwiµi)−
∑
i∈S(t)

(Qi(t) + ηwiµi)

+
∑
i∈S(t)

(Qi(t) + ηwiµ̄i(t))

−
∑

i∈S′(t)

(Qi(t) + ηwiµ̄i(t))

= η

 ∑
i∈S(t)

wi(µ̄i(t)− µi)︸ ︷︷ ︸
C2(t)

+
∑

i∈S′(t)

wi(µi − µ̄i(t))︸ ︷︷ ︸
C3(t)

 ,

(28)
where (a) is from (26) and (b) is from (27). Define C2(t) ,∑
i∈S(t) wi(µ̄i(t)− µi) and C3(t) ,

∑
i∈S′(t) wi(µi− µ̄i(t)).

In Appendices D and E, we will show the following two
bounds, respectively:

T−1∑
t=0

E[C2(t)] ≤ wmax

(
2
√

6mNT log T +
5

2
N

)
, (29)

T−1∑
t=0

E[C3(t)] ≤ 3

2
wmaxN. (30)

Finally, summing (28) for all t ∈ {0, . . . , T − 1}, dividing
both sides of the resulting inequality by Tη, and plugging (29)
and (30) into it yield (25).

Remark: The bound in (29) consists of two terms: the first
term is of the order O(

√
T log T), which corresponds to the

notion of regret in typical MAB problems and is attributed
to the cost that needs to be paid in the learning/exploration
process; the second term is a constant, which is from applying
the Chernoff-Hoeffding bound (see, e.g., [8]) to a “bad” event
{µ̂i(t−1)−µi >

√
3 log t

2hi(t−1)}. Similarly, the bound in (30) is
from applying the Chernoff-Hoeffding bound to another “bad”
event {µ̂i(t− 1)− µi < −

√
3 log t

2hi(t−1)}.

D. Bounding C2(t)

In this section, we want to show (29).
Consider an arbitrary arm i in N and an arbitrary round

t = 0, 1, . . . , T − 1. Let tia be the round in which arm i is
played for the a-th time. Recall that hi(t) is the number of
times arm i has been played by the end of round t. Clearly,
we have di(tia) = 1, hi(tia) = a, and hi(tia − 1) = a − 1 for
all a ∈ {1, 2, . . . , hi(T − 1)}. In addition, we also have

0 ≤ ti1 < ti2 < · · · < tihi(T−1) < T. (31)

Define the following event:

Ui(t) , {µ̄i(t) < µi} . (32)

Let Ec be the complement of an event E, and let 1{·} denote
the indicator function. We bound the expectation of C2(t) as

E[C2(t)] = E

[
N∑
i=1

wi(µ̄i(t)− µi)di(t)

]

= E

[
N∑
i=1

wi(µ̄i(t)− µi)di(t)1{Ui(t)}

]

+ E

[
N∑
i=1

wi(µ̄i(t)− µi)di(t)1{Uci (t)}

]
(a)

≤ E

[
N∑
i=1

wi(µ̄i(t)− µi)di(t)1{Uci (t)}

]
(b)

≤ wmax

N∑
i=1

E[(µ̄i(t)− µi)di(t)1{Uci (t)}︸ ︷︷ ︸
J1(t)

],

(33)

where (a) is due to µ̄i(t) < µi when event Ui(t) happens and
(b) is due to µ̄i(t) ≥ µi when event U ci (t) happens. Define
J1(t) , (µ̄i(t)−µi)di(t)1{Uci (t)}. Also, define another event:

Fi(t) ,

{
µ̂i(t− 1)− µi ≤

√
3 log t

2hi(t− 1)

}
. (34)

Then, summing J1(t) for all t ∈ {0, . . . , T − 1} gives

T−1∑
t=0

J1(t)

(a)
=

hi(T−1)∑
a=1

(µ̄i(t
i
a)− µi)1{Uci (tia)}

(b)

≤ 1 +

hi(T−1)∑
a=2

(µ̄i(t
i
a)− µi)1{Uci (tia)}

= 1 +

hi(T−1)∑
a=2

(µ̄i(t
i
a)− µi)1{Uci (tia)}(1{Fi(tia)} + 1{F ci (tia)})

(c)

≤ 1 +

hi(T−1)∑
a=2

((µ̄i(t
i
a)− µi)1{Uci (tia)∩Fi(tia)}︸ ︷︷ ︸

J2(tia)

+1{F ci (tia)}),

(35)
where (a) is due to di(tia) = 1 for all a ∈ {1, 2, . . . , hi(T−1)}
and di(t) = 0 for all other t, (b) is due to µ̄i(t

i
1) − µi ≤

1, and (c) is due to (µ̄i(t
i
a) − µi)1{Uci (tia)} ≤ 1. We define

J2(tia) , (µ̄i(t
i
a) − µi)1{Uci (tia)∩Fi(tia)} and want to bound

both
∑hi(T−1)
a=2 E[J2(tia)] and

∑hi(T−1)
a=2 E[1{F ci (tia)}].

First, we want to bound
∑hi(T−1)
a=2 E[J2(tia)]. Consider tia

for all a ∈ {2, . . . , hi(T −1)}. Suppose event Fi(tia) happens.
Then, we have

µ̂i(t
i
a − 1)− µi ≤

√
3 log tia

2hi(tia − 1)
. (36)

From (6), we also have

µ̄i(t
i
a) ≤ µ̂i(tia − 1) +

√
3 log tia

2hi(tia − 1)
. (37)

Combining (36) and (37) gives

µ̄i(t
i
a)− µi ≤ 2

√
3 log tia

2hi(tia − 1)
, (38)

which implies that for all a ∈ {2, . . . , hi(T − 1)}, we have

J2(tia) = (µ̄i(t
i
a)− µi)1{Uci (tia)∩Fi(tia)}

≤ 2

√
3 log tia

2hi(tia − 1)
.

(39)

Then, summing J2(tia) for all a ∈ {2, . . . , hi(T −1)} gives

hi(T−1)∑
a=2

J2(tia)
(a)

≤
hi(T−1)∑
a=2

2

√
3 log tia

2hi(tia − 1)

(b)

≤
√

6 log T

hi(T−1)∑
a=2

1√
a− 1

(c)

≤
√

6 log T

(
1 +

∫ hi(T−1)

1

1√
x
dx

)
≤ 2
√

6hi(T − 1) log T ,

(40)

where (a) is from (39), (b) is due to tia ≤ T (from (31)) and
hi(t

i
a − 1) = a− 1 for all a ∈ {2, . . . , hi(T − 1)}, and (c) is

due to a basic relationship between the considered summation
and integral. Therefore, we have

hi(T−1)∑
a=2

E[J2(tia)] ≤ 2
√

6 log TE[
√
hi(T − 1)]. (41)

Next, we want to bound
∑hi(T−1)
a=2 E[1{F ci (tia)}]. By using

the Chernoff-Hoeffding bound (see, e.g., [8]), we have

E[1{F ci (tia)}] = P
{
F ci (tia)

}
= P

{
µ̂i(t

i
a − 1)− µi >

√
3 log tia

2hi(tia − 1)

}
≤ 1

tia
3 .

(42)
Noting that {ti2, . . . , tihi(T−1)} ⊆ {1, 2, . . . }, we have

hi(T−1)∑
a=2

E[1{F ci (tia)}] ≤
hi(T−1)∑
a=2

1

tia
3

≤
∞∑
t=1

1

t3

≤ 3

2
.

(43)

Taking expectation of both sides of (35) and plugging (41)
and (43) into it yield

T−1∑
t=0

E[J1(t)] ≤ 2
√

6 log TE[
√
hi(T − 1)] +

5

2
. (44)

Finally, summing (33) for all t ∈ {0, . . . , T − 1} and
plugging (44) into it yield (29):

T−1∑
t=0

E[C2(t)] ≤ wmax

N∑
i=1

(
2
√

6 log TE[
√
hi(T − 1)] +

5

2

)
≤ wmax

(
2
√

6mNT log T +
5

2
N

)
,

(45)
where the last step follows from 1

N

∑N
i=1

√
hi(T − 1) ≤√

1
N

∑N
i=1 hi(T − 1) (due to Jensen’s inequality) and∑N

i=1 hi(T − 1) ≤ Tm (due to the fact that at most m arms
can be selected in each round).

E. Bounding C3(t)

In this section, we want to show (30).
Consider an arbitrary arm i in N and an arbitrary round

t = 0, 1, . . . , T − 1. Recall that C3(t) =
∑
i∈S′(t) wi(µi −

µ̄i(t)). Let d′(t) = (d′1(t), . . . , d′N (t)) be the action vector
corresponding to S′(t). Also, recall that Ui(t) = {µ̄i(t) < µi}.
Similar to the derivation for C2(t) in (33), we bound the
expectation of C3(t) as

E[C3(t)] = E

[
N∑
i=1

wi(µi − µ̄i(t))d′i(t)

]

= E

[
N∑
i=1

wi(µi − µ̄i(t))d′i(t)1{Ui(t)}

]

+ E

[
N∑
i=1

wi(µi − µ̄i(t))d′i(t)1{Uci (t)}

]
(a)

≤ E

[
N∑
i=1

wi(µi − µ̄i(t))d′i(t)1{Ui(t)}

]
(b)

≤ wmax

N∑
i=1

E[(µi − µ̄i(t))d′i(t)1{Ui(t)}︸ ︷︷ ︸
K1(t)

],

(46)

where (a) is due to µ̄i(t) ≥ µi when event U ci (t) happens, and
(b) is due to µ̄i(t) < µi when event Ui(t) happens. We define
K1(t) , (µi − µ̄i(t))d′i(t)1{Ui(t)} and consider two cases for
E[K1(t)]: i) t ≤ ti1 and ii) t > ti1.

In Case i), event Ui(t) must not happen, i.e., µ̄i(t) ≥ µi
must hold. This is because µ̄i(t) = 1 (due to hi(t − 1) = 0
for t ≤ ti1) and µi ∈ [0, 1]. Hence, for all t ≤ ti1 we have

E[K1(t)] = 0. (47)

In Case ii), suppose event Ui(t) happens. Then we have
µ̄i(t) < µi ≤ 1. This, along with (6), implies µ̄i(t) = µ̂i(t−
1) +

√
3 log t

2hi(t−1) , which further implies

Ui(t) =

{
µ̂i(t− 1)− µi < −

√
3 log t

2hi(t− 1)

}
. (48)

This leads to the following bound on E[K1(t)] for all t > ti1:

E[K1(t)] = E[(µi − µ̄i(t))d′i(t)1{Ui(t)}]
(a)

≤ E[1{Ui(t)}]

= P

{
µ̂i(t− 1)− µi < −

√
3 log t

2hi(t− 1)

}
(b)

≤ 1

t3
,

(49)

where (a) is due to µi − µ̄i(t) ≤ 1 and d′i(t) ≤ 1, and (b) is
from the Chernoff-Hoeffding bound (see, e.g., [8]).

Summing E[K1(t)] for all t ∈ {0, . . . , T − 1} and applying
(47) and (49) yield

T−1∑
t=0

E[K1(t)] ≤
T−1∑
t=ti1+1

1

t3

≤
∞∑
t=1

1

t3

≤ 3

2
.

(50)

Finally, Summing (46) for all t ∈ {0, . . . , T − 1} and
plugging (50) into it yield (30).

	I Introduction
	II Related Work
	III System model and problem formulation
	IV The LFG Algorithm
	V Main Results
	V-A Feasibility Optimality
	V-B Upper Bound on Regret

	VI Applications
	VI-A Scheduling of Real-time Traffic in Wireless Networks
	VI-B Ad Placement in Online Advertising Systems
	VI-C Task Assignment in Crowdsourcing Platforms

	VII Numerical Results
	VIII Conclusion
	References
	Appendix
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Bounding C1(t)
	D Bounding C2(t)
	E Bounding C3(t)

