1905.04411v1 [cs.RO] 11 May 2019

arxiv

Learning Robotic Manipulation through Visual
Planning and Acting

Angelina Wang*, Thanard Kurutach*, Kara Liu*, Pieter Abbeel*, Aviv Tamar’
*UC Berkeley, EECS Department
Technion, Department of Electrical Engineering

Abstract—Planning for robotic manipulation requires reason-
ing about the changes a robot can affect on objects. When such
interactions can be modelled analytically, as in domains with
rigid objects, efficient planning algorithms exist. However, in
both domestic and industrial domains, the objects of interest
can be soft, or deformable, and hard to model analytically. For
such cases, we posit that a data-driven modelling approach is
more suitable. In recent years, progress in deep generative models
has produced methods that learn to ‘imagine’ plausible images
from data. Building on the recent Causal InfoGAN generative
model, in this work we learn to imagine goal-directed object
manipulation directly from raw image data of self-supervised
interaction of the robot with the object. After learning, given
a goal observation of the system, our model can generate an
imagined plan — a sequence of images that transition the object
into the desired goal. To execute the plan, we use it as a reference
trajectory to track with a visual servoing controller, which we
also learn from the data as an inverse dynamics model. In
a simulated manipulation task, we show that separating the
problem into visual planning and visual tracking control is more
sample efficient and more interpretable than alternative data-
driven approaches. We further demonstrate our approach on
learning to imagine and execute in 3 environments, the final of
which is deformable rope manipulation on a PR2 robot.

I. INTRODUCTION

Many objects that we manipulate every day are deformable
or non-rigid. Thus, for future robots to enter environments such
as homes and hospitals, non-rigid object manipulation will be
essential. Current industrial applications such as wire thread-
ing, bin packing, and cloth folding also require such an ability.
However, robotics capabilities for the general manipulation of
deformable objects are still in their infancy.

The main difficulty in planning the manipulation of de-
formable objects is that, in contrast with rigid objects, there
is no obvious mapping from an observation of the object to a
compact representation in which planning can be performed.
Thus, traditional task and motion planning approaches, which
require manual design of the states and transitions in the
problem, are difficult to apply [29, 44]. For example, rope
manipulation involves many design aspects: should we rep-
resent the shape of rope as a finite set of small segments or
as one continuous function? Should length, softness, friction,
thickness, etc. be included in the model? How do we infer
the system state from the robot’s perception system? Differ-
ent choices can be suitable for different domains, requiring
substantial engineering effort.

In recent years, several studies have proposed a data-
driven, self-supervised paradigm for robotic manipulation [38,

Fig. 1. Visual planning and acting for rope manipulation. The PR2 robot first
collects data through self-supervised random rope manipulation, and learns
from this a generative model for possible visual transformations of the rope.
Then, given a goal observation for the rope, we plan a visual trajectory of a
possible manipulation sequence that reaches the goal (shown on top). Finally,
visual servoing is used to execute the imagined plan.

2, 35, 12, 10]. In this approach, the robot ‘plays’ with the
object using some random manipulation policy (e.g., randomly
grasping or poking an object), and collects perceptual data
about the interactions with the object. Later, machine learning
is used to train a policy that performs the task directly from the
perceptual inputs. By relying directly on perceptual data, these
approaches overcome the modelling challenges of classical
planning approaches, and scale to handle high-dimensional
perceptual inputs such as raw images.

In particular, Nair et al. [35] learned an inverse dynamics
model for rope manipulation directly from raw image data
collected by randomly poking the rope. This controller was
used to manipulate the rope into a given shape, whereby
a human would first provide a sequence of images — a
visual plan — that prescribes the desired trajectory of the
rope, and then the learned inverse model would compute
actions that track the plan (a.k.a. visual servoing). The human
demonstration in Nair et al. [35] was essential — performing
high-level planning cannot be captured by a reactive inverse
model. Indeed, humans’ capability of planning long horizon
and complex manipulations of general objects has not yet been
matched by current Al technology.

In this work we take a step towards closing the gap in
complex object manipulation and ask — can we learn from self-
supervised data to automatically generate the visual plan and
follow it? We term this approach visual planning and acting
(VPA), as depicted in Figure 1. Concretely, given the current
image of the system and some desired goal observation, we
would like to generate a sequence of images that manipulate
the object to the desired configuration, without any human
guidance, and then track this imagined plan in practice using
a learned inverse model. Such a method would not require the
manual guidance of previous approaches, and would also be
safe, as the imagined plan is visually interpretable, and can be
inspected before being executed by the robot.

However, learning visual planning from raw image data has
so far been limited to very simple tasks, such as reaching or
pushing rigid objects [12, 10]. The fundamental difficulty is
that learning an accurate representation of the data requires
mapping the image to an extensive feature space, while
efficient planning generally requires either low dimensional
state spaces or well-structured representations. Current ap-
proaches [12, 10] solve this tradeoff by employing very simple
planning methods such as random shooting, which do not scale
to more complex planning problems.

In this work, we propose to learn features that are com-
patible with a strong planning algorithm. At the basis of our
approach is the recent Causal InfoGAN (CIGAN) model of
Kurutach et al. [24]. In CIGAN, a deep generative model is
trained to predict the possible next states of the object, with a
constraint that linear trajectories in the latent state of the model
produce feasible observation sequences. Kurutach et al. [24]
used a CIGAN model for planning goal-directed trajectories
simply by linearly interpolating in the latent space, and then
mapping the latent trajectory to observations for generating
the visual plan. Building on CIGAN, we propose a method
for VPA, where sensory data obtained from self-supervised
interaction is used to learn both a CIGAN model for visual
planning and an inverse model for tracking a visual plan, as
shown in Figure 1. After learning, given a goal observation
for the system, we first use CIGAN to imagine a sequence of
images that transition the system from its current configuration
towards the goal. Then, we use the imagined trajectory as a
reference for tracking using the inverse model.

In this work we investigate several aspects of the VPA
approach for real-world tasks. Our contributions include:

¢ An extension of the CIGAN model to include con-
textual input, and imagine plans based on this context
(a context can specify, e.g., obstacles in the domain),
thereby addressing generalization of VPA to changes in
the environment.

o Improvement of the planning algorithm in latent state
from interpolation, as suggested in [24], to A* for plan-
ning in domains that include obstacles.

e A simulation study showing that separating the control
task into visual planning and visual tracking is more
sample efficient than model free reinforcement learning
methods that learn actions directly from images.

o Application of VPA to real robot rope manipulation
tasks, illustrating non-trivial planning and control with
deformable objects and demonstrating the interpretability
of our approach.

II. RELATED WORK

Deformable soft object manipulations have been attempted
via classical methods such as motion planning and manipula-
tion planning [29, 13, 19, 17, 41]. These approaches require
manual engineering for object models. Previous work has
modeled deformable soft objects by hand-engineering repre-
sentations [22, 49, 34, 27], parametrizing the object shape [30],
and using finite element models [16], [7].

Alternatively, there has been recent interest in applying
learning-based approaches to robotic manipulation directly
from raw image perception. Recent work in model-free re-
inforcement learning (RL) [32, 21, 26] learns, through trial
and error, a policy mapping observations to actions that maxi-
mizes reward using deep neural networks. However, specifying
reward functions for high dimensional observations such as
images can be difficult [4], and the sample efficiency of model
free RL can be prohibitive in practice. Because the policy
is trained to optimize a predefined reward function, it does
not directly generalize to new initial and goal configurations,
and requires further interactions with the system. In addition,
model-free RL produces black-box policies which are hard
to interpret, in contrast with more traditional planning ap-
proaches, and our visual planning method in particular, which
can predict the trajectory of the robot in advance.

Learning from demonstrations (LfD) guides robots to per-
form complicated tasks without having to plan from scratch.
Schulman et. al. [43] and Mayer et. al. [28] learn a policy
that imitates non-rigid object manipulation such as surgical
suturing from expert state and action trajectories. One caveat
of LfD is that it suffers when generalizing to desired trajecto-
ries that deviate from expert demonstrations. Nair et. al. [35]
and Kuniyoshi [22] only collect random interactions with the
system at training time, and use the data to learn an inverse
model. This inverse model is general enough to follow new
expert trajectories for new tasks. In our work, we do not
require expert demonstrations for new tasks, and show that
visual plans can be generated directly from self-supervised
data.

Other approaches that learn plannable features for control
include Embed to Control (E2C) [50] and related methods
based on variational autoencoders [9, 6, 5]. Paxton et. al. [37]
learn transitions and an action value function in the latent
space, and use that to produce visual plans on simulated
domains. To our knowledge, we present the first application
of plannable features for real robot experiments.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section we present our problem formulation, and
summarize preliminary material.

A. Problem Formulation

We consider a robot that interacts with the world in a
self-supervised manner, and collects sensory data about its
interaction. In this work, we do not consider how to collect
the data, and assume that the data collection policy visits the
‘interesting’ configurations of the system. Denote by D our
data, in the form of N trajectories of action-observation pairs,
{of,ui, sy, _y, 0, bien, where uf is the action that the
robot took after observing o7, and led to observation oj .
We assume a deterministic and fully observable system.

After we have collected the data, our goal is to solve a
goal-directed planning problem: given the current observation
of the system o044+ and an observation of a desired goal
configuration 04,4, We want to compute an action selection
policy that transitions the system from start to goal.

To solve the problem above, in this work we focus on an
approach we term Visual Planning and Acting (VPA). The
idea is to decompose the solution into two steps: (1) Visual
planning — learning from the data how to imagine a goal-
directed trajectory of observations that transition the system
from start to goal, and (2) Acting — using an inverse model
learned from the data on how to take actions that make the
system follow the imagined plan.

B. Visual Planning with Causal InfoGAN

Kurutach et al. [24] describe a method for visual planning
based on the CIGAN generative model. Before describing
CIGAN, we first summarize two ideas that it builds on — GAN
and InfoGAN.

1) GAN and InfoGAN: GANs [14] are deep generative
models that learn to generate samples similar to the data
distribution P, by feeding in a random vector z ~ N (0,)
into a deep neural network generator G. A discriminator neural
network D tries to tell apart generated samples from real
samples, and the GAN training objective is given by the
minimax game: ming maxp V(G, D) =
ming maxp Eonp,,,. [log D(0)] +E.[log(1 — D(G(z)))]. The
vector z can be interpreted as a latent representation for the
generated observation o = G(z). InfoGAN [8] is a method
for adding structure to the latent representation. In InfoGAN,
the representation is separated into a ‘noise’ component z and
a structured component s. The loss function is modified to
maximize the mutual information between s and the generated
observation o = G(z, s), which intuitively induces s to capture
salient properties of the observation. Let z, y be some random
variables. Denoting H(x) = E,[—log(P(z))] as the entropy
of x, the mutual information between z and y is defined as
I(z;y) = H(z) — H(z|ly) = H(y) — H(y|x). The InfoGAN
loss function is:

mgnmeV(G,D) — M(s;G(z,9)). ()

To optimize this loss in practice, a variational lower bound was
proposed in [8]. Let Q(s|o) denote an auxiliary distribution
that approximates the posterior P(s|o). Then the lower bound
I(s:G(2,8)) > Esup(s),onG(z.5)[l0g Q(s|0)] + H(s) can be

plugged in (1) and optimized using the reparametrization
trick [8]. Intuitively, the @ function can be understood as a
classifier that encodes an observation into its latent represen-
tation.

2) Causal InfoGAN and Plan Generation: CIGAN [24]
is an extension of InfoGAN for observations from a dy-
namical system. Consider data that contains trajectories of
observations, similar to D described above in Section III-A.
The CIGAN model learns to generate a pair of sequential
observations (0, 0') that are similar to sequential observations
in the data, thereby learning a notion of causality in the data.
The CIGAN generator input is a pair of latent representations
s, ', and a noise vector z: 0,0’ = G(s, ¢, z), where similarly
to InfoGAN, the intuition is to learn a transition in the latent
space s — s’ that captures salient properties of the observation
transition o — o’.

In [24], the latent state distributions were P(s) =
N(0,1), P(s'|s) = N(s,o(s)). That is, the next state s’ was
modelled as a local perturbation of the first state s, where
the magnitude of the perturbation o(s) was a learned neural
network. The motivation for such dynamics was to structure
the latent space to be compatible with a planning algorithm, as
described below. The CIGAN loss is similar to InfoGAN, with
the additional learning of dynamics in latent space P(s’|s),
and the mutual information between the pairs of latent states
and observations:

min max V (G, D) — M (s, s';0,0'),
P(s'|s),G D (2)
s.t. 0,0 ~ G(z,8,8'),s ~ P(s),s ~ P(s|s)

To optimize (2), an InfoGAN lower bound was used, intro-
ducing an auxiliary distribution Q(s, s’|0,0’) to approximate
P(s,s'|o,0"). Kurutach et al. proposed to use a disentangled
approximation Q(s, s’|o,0") = Q(s|0)Q(s'|0).

A CIGAN model trained on the data D can be used for
visual planning according to the following scheme [24] and
visually represented in Figure 2:

1) Encoding: given a pair, 0,tqr¢, Ogoal, find the correspond-

ing Sstarts Sgoal-

2) Planning: in the latent space, find a feasible trajectory:

Sstarts S1, -
3) Decoding: from the latent trajectory generate a feasible
observation trajectory Osiqrt, 01, -++s Om, Ogoal-

-y Sm Sgoal

For encoding, Kurutach et al. [24] used an optimization
based approach, searching for a latent vector that minimizes
the absolute pixel difference with the desired observation. For
the planning, the key idea in [24] is that due to the local
transition structure of P(s’|s), linear interpolation between
Sstart and Sg4q; Tesults in a feasible plan. In this sense, CIGAN
learns a representation that is compatible with the planning
algorithm. For decoding, the CIGAN generator can be used to
sequentially produce pairs of observations from the trajectory.

C. Learning Inverse Dynamics Models

An inverse model My, maps a pair of sequential observa-
tions 0,0’ to an action that generated them u = My (o,0").

Fig. 2. Illustration of how the CIGAN model generates a plan. First, start
and goal images are encoded to their latent representations (denoted here as
points in the plane). Second, search is used to find a sequence of points in the
latent space that connect the start to the goal, while obeying the latent space
dynamics. Here we illustrate the result of A* search. Third, the plan in latent
space is decoded into a sequence of images using the generator, resulting in
a visual plan.

This can be cast as a supervised learning problem, by regress-
ing from o, 0441 in the data to u;. Here, we follow the ap-
proach of Nair et al. [35], which learned inverse models from
image observations using deep convolutional neural networks.
Given a reference trajectory in image space o}/, ... o/, an
inverse model can act as a tracking controller (a.k.a. visual
servoing [11]) by taking the action My (o, o,ﬁifl) at time t.

IV. VISUAL PLANNING AND ACTING

In this section we present our approach for solving the goal
directed planning problem of Section III-A, which we term
Visual Planning and Acting (VPA).

Our approach is model-based, where we first use the data
D to learn both a CIGAN model Mcigan and an inverse
dynamics model Mrpy. For any two start and goal observa-
tions 0gtqrt, Ogoal> the CIGAN model Mcigan can generate
a visual plan that transitions the system from start to goal,
Ostart, 01, - - - » Ok, Ogoal. Since the CIGAN model is trained to
generate feasible pairs of observations (cf. Section III-B2),
the plan generated by a well-trained CIGAN model will be
feasible, in the sense that the robot can actually execute it.

Our VPA method for solving the goal directed planning
problem is a combination of planning and replanning using
the CIGAN model Mcigan, and trajectory tracking using the
inverse model My,. The VPA algorithm is given as follows:

1) Plan: given a pair, Ogtart; Ogoal, Use the CIGAN model
Mcigan to generate a planned sequence of observations
Ostart; 015 -++y Om, Ogoal -

2) Act: If the length of the plan m is zero, take an action u
to reach the goal u = Mm(0start, Ogoal), then stop. Else:

3) Take an action u to reach the first observation in the plan
u = M (0start, 01) and take a new observation of the
current system state Oyeqp.

4) Replan: update 04, to be the current observation 0,,¢y,
and go back to step 1.

VPA effectively uses the inverse model as a feedback
controller to follow the imagined CIGAN plan. In practice,
we found that the advantage of replanning in our tasks was
not significant, and chose to omit this step for faster execution
times. That is, instead of replanning from the current observa-
tion we simply advanced on the original plan by removing the
first observation o;. However, other tasks may benefit from
full replanning.

We emphasize that while VPA uses planning, it builds
on CIGAN, which is completely data-driven, and does not
require manually engineering a planning model. The only
data required for this is images taken from self-supervised
manipulation of an object. Nevertheless, our method enjoys
the interpretability of model based methods — at every step
of our algorithm we have a visual plan of the proposed
manipulation. We found that this allows us to reliably eval-
uate the performance of VPA before performing any robot
experiment, significantly reducing time and effort as well as
unpredictability in the robot’s actions. We also remark that
separating decision making into a high-level trajectory com-
putation step and a low-level action execution is standard in
motion planning [25], and has been explored in several recent
studies on robotic manipulation [45, 47]. Here, in comparison,
the trajectories are in image space, and hence can capture
complex object features such as deformations and change in
appearance. Another benefit of separating observations and
actions is the possibility of collecting different data for training
Mcigan and Mypy. For example, in rope manipulation, the
properties of the rope are largely independent of the robot
manipulating it. Thus, we can collect a robot-independent data
for training Mcigan With several different robots, or even a
human, as we did in our experiments, and then collect a robot-
specific data set for training My for a particular robot.!

These properties makes our approach suitable for de-
formable object manipulation, as we demonstrate in our ex-
periments. However, in order to get VPA to work well in
practice, we needed to make several fundamental changes to
the CIGAN method, as we describe next. We also describe
several technical modifications in Appendix A.

A. Context Conditional CIGAN Model

The CIGAN model in [24] generates observations that are,
by definition, similar to the training data. That precludes any
generalization to problem parameters that are different than
those seen during training. However, in practical settings, we
would like to generalize our knowledge to change in the
environment. For example, in an environment with obstacles,
one would like to learn a model that can generalize to different
obstacle configurations.

Here we approach this problem by adding to the CIGAN
model a context input. We assume that the domain can
be decomposed into a manipulatable, movable object (e.g.,
rope), and components which are fixed during manipulation

In principle, the action can be subsumed in the observation for training
a CIGAN model that can plan actions. Due to the benefits mentioned above,
we opted for computing actions independently using an inverse model.

(e.g., obstacles). We propose a modification of the CIGAN
architecture that takes as input an observation of the fixed
components as a context vector. We term this model a Context
Conditional CIGAN (C3IGAN). By training on a variety of
context vectors, we should hope that the model generalizes to
novel contexts.

In C3IGAN, as shown in Figure 3, the generator takes in as
input z, s, s’, ¢, where the context c represents an image of the
fixed components in the domain, so in our case, the obstacles
(obst). The generated observations are added (pixel-wise) to ¢
before they are passed onto the discriminator. In this way the
generator is trained to generate only the movable part in the
scene. Thus, the generator is now only in charge of generating
the images of the rope, and not the obstacles. By relieving the
generator of the responsibility of generating a fixed backdrop
that is fixed throughout a trajectory, it can focus on the nuances
of the object whose movement we actually want to control.
The generator in this model is also able to generalize to new
obstacle configurations not seen during training. This model
has the potential to extend to other applications where there is
a fixed background to interact with, such as a maze or other
physical barriers.

obst
z \ \
P(S) mmmep —* o] —’ —_— —p
real/fake
Pl

.ﬁs/

s|o<—o

—e

Fig. 3. C?IGAN Model Architecture

B. A* Planning in Latent Space

As discussed in Section III-B2, Kurutach et al. [24] used
a simple linear interpolation in latent space as the planning
computation, based on the insight that the latent state transi-
tions in CIGAN are Gaussian perturbations, guaranteeing that
a small step in any direction in the latent space should result in
a feasible transition. In our experiments on rope manipulation,
we found that this method did not produce realistic enough of
plans, especially in the presence of obstacles, which it tended
to go through rather than around. We attribute this to the fact
that the actual covariance matrix of the Gaussian probability
may be asymmetric such that some directions have extremely
low likelihood.

To account for this, we learned a more expressive transition
model, P(s'|s) ~ N(s+ d(s),o(s)), where both ¢ and o are
neural networks. Shifting the mean allows the transition to
prefer some direction than the others. We added a loss on the
magnitude of § and ¢ in order to induce a local transition
structure, which complies with the A* heuristic and allows us
to perform such planning at test time.

With this new transition model, we propose a different
approach for planning in the latent space, which combines
sampling and A* directed search. Given any state s, we can
sample N possible next states s’ from the probability P(s'|s).
Thus, we can recursively build a sampled connectivity graph
of the possible transitions in latent space. Potentially, we can
search this graph for a trajectory that reaches from sgyq.¢
to a state close to 5404 However, in practice, the latent
space dimensions are too large to perform a naive search in
reasonable time. To solve this problem, similar to Kurutach
et al. [24], we leverage the structure of the latent space, and
in particular, the local connectivity structure enforced by the
Gaussian transition model. We propose to use the directed
search algorithm A* with the Euclidean distance as a heuristic
function, utilizing the fact that with local transitions, the
Euclidean heuristic is admissible [40]. More detail is provided
in Appendix Section C.

To improve the precision of our plans, which in practice are
imperfect, we supplemented the sampling method by pruning
unfeasible transitions, using a separately trained classifier,
trained on positive examples of perturbed real rope images
to bring the distribution closer to that of the generated data,
and negative examples of generated rope images. The reason
for using the separate classifier for this task rather than the
CIGAN’s discriminator, is that the discriminator overfit to
classifying all generated images as fake, and was unable to
distinguish between fake and good transitions, and fake and
bad transitions. For each sampled pair of states s,s’, we
generate a corresponding observation transition o, o’ from the
CIGAN generator, and if the classification score for this pair
is lower than a threshold, we prune the transition s — s’ from
the connectivity graph.

V. EXPERIMENTS

We designed our experiments to address the following
questions:

1) Can our method generate non-trivial visual plans, and
is the fidelity of these visual plans high enough to be
combined with an inverse model for plan execution?

2) How does VPA compare to alternative methods like batch
RL or running the inverse model without a plan?

3) Can VPA leave the simulation and work on a real robot?

We demonstrate our method on three domains. The first is a

two-block world in Mujoco [48]. In this domain, we perform a
comparison with batch off-policy RL — an alternative method
for learning a control policy from data. The second domain
contains a movable block with a static obstacle. In this domain,
we show the need for planning when the inverse model fails
to navigate around the obstacle, while VPA learns to do so.
Finally, we deploy the algorithm on a PR2 robot to manipulate
a deformable rope around obstacles. Within real world rope
manipulation, we explore two similar variations of the domain:
one with static obstacles in which we compare our method to
that of Nair et al. [35], and the other with dynamic obstacles
in which we demonstrate the potential of generalizing to
variations in the environment using C3IGAN.

A. Two-Block Domain

In this domain, the task is to move two rigid blocks on
a table to some goal location. Possible actions are moving a
block by some small offset in any direction. The table is 1.5
units on each side, and we consider the task a success if the
L2 distance between the final and goal states is below 0.5. We
collect data by randomly applying actions in the domain, and
structure our data to contain 30k observation transitions, where
only 2K transitions also have action labels. This corresponds
to a setting where collecting possible observation transitions
is easier than collecting real robot actions, as described above,
and also demonstrated in our real robot experiment.

For VPA, we train a CIGAN model on the full dataset,
and an inverse model on the action-labeled data. We use
linear interpolation for planning, as in [24], as this domain
is simple enough to not require the more complex A*. In
Figure 4, we show a sample plan generated by CIGAN, and
the corresponding trajectory executed by VPA. It can be seen
that the initial plan is visually interpretable, and resembles
the actual trajectory that was executed. Quantitatively, we
evaluated VPA on 50 random initial and goal configurations
that were not in the data, as shown in Table I.

We compare VPA with an alternative data-driven approach
based on model-free batch RL?, namely, fitted Q-iteration [39]
(equivalent to a single epoch of DQN [33] with the data as
the replay buffer). RL requires action labels, so we trained
with only the action-labeled part of the data. Since actions are
continuous, we used random sampling to find the maximal Q
value in the Bellman backup, similar to [18]. For the state
space, we embedded the images into a latent space using
a variational autoencoder, trained on all the data, and the
reward was based on distance in latent space, as recently
suggested in [36]. Since RL is not expected to generalize, we
retrained the Q network on all the data for each goal in the
evaluation. This is a strong baseline, that makes use of both the
action-labeled and unlabeled data, incorporates several recent
techniques for image-based RL, and our evaluation forgives
the limitations of RL in generalizing to different goals.

However, as stated earlier, RL is known to have difficulties
with large state spaces (image), reward specification, and
sample efficiency. To demonstrate this, we also run RL with
several artificial benefits: (1) simple state space — true positions
of the blocks, (2) true reward — based on real distance to target,
and (3) significantly more data — 30k action-labeled samples.

Our results, reported in Table I show that, surprisingly,
VPA significantly outperforms RL even with the artificial
benefits. Only with all benefits added, does RL compare
well with VPA. We attribute these results to the fact that in
this domain, decomposing control to trajectory planning and
tracking control is natural, and VPA exploits this structure.
Indeed, the common failure case for RL is pushing the blocks
off the table due to an inaccurate Q function. Since VPA never

2For image observations, the state of the art in RL is model free [33, 26,
18], while recent model based approaches are limited to lower dimensional
observations [23]. Therefore, we did not consider model based RL in our
comparison.

imagines plans where blocks go off the table, our method was
resilient to such failures.

Sui - - - ‘ - i - i ﬁ
Sta.:t - - - - .5 i -7 i ﬁ
Fig. 4. Top image: Visual Planning step - imagined plan by Causal InfoGAN.
Start and Goal image are both 0¢jpsest t0 the actual 0start and 0goq1, Which

are shown right below them. Bottom image: Execution step - images showing
the actual successful results of running entire VPA pipeline on Mujoco

TABLE I
THE AVERAGE FINAL L2 DISTANCE TO GOAL AND THE SUCCESS RATE OF
MOVING TWO BLOCKS TO BE WITHIN 0.5 RADIUS TO THE GOAL WHEN
EXECUTED ON 50 NEW TASKS.

Method L2 distance Success Rate
VPA (2k) 0.335 +0.121 90 %
Batch RL (positions, real r, 2k) 0.657 £0.701 76%
Batch RL (positions, real 7, 30k) 0.675 +£0.739 T74%
Batch RL (image, real r, 2k) 1.172 +£0.991 16%
Batch RL (image, real r, 30k) 1.186 £0.940 42%
Batch RL (image, embedded r, 2k) 1.346 £0.891 14%
Batch RL (image, embedded 7, 30k) 1.445 £1.096 18%

B. Block-Wall Domain

To further motivate the need for planning, we investigate the
efficacy of our model on another simulated domain, now with
planning more intuitively necessary to complete the task. In
this domain, the agent has to manipulate a green block around
a red vertical obstacle. We perform the same VPA method as
before, on a new test set of 20 start/goal image pairs.

We compare two variations of our method against the
baseline of using only an inverse model, as used in Nair
et al. [35]. The first method executes the single best hand-
selected plan from many generated by the CIGAN. There is
some variability in the quality of generated plans due to the
random noise, and some are better than others, so we choose
only the best one to execute. The second method autoselects
a generated plan to execute. This plan is selected using a
combination of a classifier trained on the dataset and an object
detector trained on a simple shape dataset. We describe this
more in Appendix B.

Our results in Table II show that planning with VPA
significantly improves upon the inverse model baseline, for
both plan selection methods. In Figure 5, we show an example
where planning is necessary, and the baseline is unable to
execute the task while our method is successful.

C. Real Robot Rope Manipulation Domain

Finally, we bring our method out of simulation and into
the real world by conducting experiments with a PR2 robot
manipulating a flexible rope that is fixed on one end and can
move between two obstacles. This domain is inspired by wire
threading — an important industrial task that requires complex
planning of rigid and non-rigid object interaction.

Visual

Goal

Plan
Start
Execution
Baseline
Fig. 5. Comparison between VPA and an inverse model baseline. The baseline attempts to directly apply the inverse model on the goal, while our method

employs the plan generated by CIGAN, shown at top, to navigate from start to goal. Without a plan, the baseline blindly attempts to move the block downwards
without accounting for the obstacle in the way. Our model, on the other hand, plans to go around the obstacle, resulting in a successful trajectory.

TABLE I
THE AVERAGE FINAL L2 DISTANCE TO GOAL AND THE SUCCESS RATE TO
MOVE ONE BLOCK IN THE BLOCK-WALL DOMAIN TO BE WITHIN 0.5
RADIUS TO THE GOAL.

Method L2 distance Success Rate
Baseline 0.459 +0.433 45%
VPA (hand-selected) 0.083 +£0.192 95%
VPA (autoselected plan) | 0.131 £0.242 90%

1) Static Obstacles: We begin our investigation by compar-
ing our planning based method to a baseline of only using an
inverse model without planning, as in the previous block and
wall domain. We designed a rope manipulation environment
similar to [35], but which also contains fixed obstacles which
the rope cannot move through.

For data collection, we followed the approach in [35]
for generating random pokes of the rope, and collected 2k
samples for observations and actions. To increase the size of
our dataset, we collected 10k additional observation samples
by manually manipulating the rope (which is much faster
to collect). Note, however, that due to the obstacles, our
problem is much more difficult than in [35]. The images are
preprocessed to have one color channel, as demonstrated in
Figure 6.

Fig. 6. Preprocessing procedure. Image 1: original photo as seen by the PR2,
Image 2: background removed from image, Image 3: Preprocessed to have
one color channel

With the additional constraint of obstacles, we conjecture
that the inverse model, which is essentially reactive in its
computation, will not suffice to plan movements that involve
these obstacles. In contrast, a well trained CIGAN model
should generate plans that manipulate the rope around such
obstacles. For the inverse model, My, we used a CNN similar
to [35], outputting a 4-dimensional action made up of the x
and y coordinates of the rope grab and drop location. We

found that feeding in to My the observation difference o’ — o
resulted in a more robust controller that generalized well
to the generated image sequences. As described in Section
IV, to reduce computation time we did not replan in the
VPA algorithm, and simply ran My, multiple times for each
generated observation, to result in a longer, but more stable
execution.

In Figure 7, we demonstrate a setting where nontrivial
planning is required to solve the task — going from start to
goal requires traveling with the rope around the obstacle. It
can be seen that our VPA method plans to go around the
obstacle, which makes it feasible to solve the task by following
the plan with the inverse model M. Just using Mp on the
goal image, however, does not result in traveling around the
obstacle, which leads to a failure in execution. This result
demonstrates the inadequacy of purely reactive methods, such
as inverse models, for acting in complex domains with more
constraints. We further evaluate the planning capability of our
method in Figure 8, where we demonstrate realistic plans of
rope manipulation that obey the physical properties of the rope
and obstacles.

2) Dynamic Obstacles: In this section we demonstrate the
potential of C]IGAN in generalizing to unseen environments.
To this end, we modified the rope manipulation domain to
include dynamic3, smaller obstacles, which were intermittently
moved (manually) while collecting the training data. These
changes render this variation harder than the previous one
for our vision-based planning method. Our hope is that our
model can imagine, plan, and execute rope manipulation in
domains with obstacle configurations that were not explicitly
seen during training.

In training our C3IGAN model for this domain, the context
is an image of the obstacles without any rope, as show in
Figure 9. As the figure demonstrates, the obstacle embedding
is successfully used by the C3IGAN model to generate images
that realistically capture the interaction between the rope and
obstacles, such as that the rope has to wind around the
obstacle, rather than moving through it. In Figure 10 we

3By which we mean that the position of the obstacles change between
trajectories, and not during

Start

N ”__‘

Fig. 7.

Comparison between VPA and an inverse model baseline. The CIGAN-generated plan is presented in grayscale, with the results after the PR2 robot

successfully runs iterations of the My by tracking the plan is shown below it. The baseline of only the inverse model, My is shown below. Note that VPA
plans to go around the obstacle, leading to a successful plan execution, while the inverse model is not capable of such planning due to its reactive, short-term

nature, and therefore cannot complete the task.

Start
) (e L |
G| |
l,’\.l
G| | <)
Ca el '
\‘4\ !_\-
| |
| |
| — <
K‘A_! !—\-)
ol — <’
— €| %)

o0 s/
— €| o) —
&S </
¢ [=a)
< f <,/
| |4l
e, «,/
e Y.

o S
| |~z
<\ |~3)

o)
% & =3
€ IR RS I

Goal

Fig. 8. Demonstration of CIGAN plans for the rope domain with fixed
obstacles. The top row shows the start states and the bottom row shows
the goal states of 4 different problems given to the CIGAN. The middle
4 columns show sample generated plans. Note the realistic transitions of the
rope around the obstacles, which obey physical properties of the rope such
as being stretched when pulled from the end.

~J ~J
Q7 ||

Fig. 9. Visualization of C3IG AN results. The model generates an image
conditioned on the obstacles, and then performs a pixelwise addition of the
left and middle image. Left: generated rope, Middle: obstacles conditioned
on, Right: pixelwise addition of images.

demonstrate results for VPA on this domain. We present both
the imagined C3IGAN plans, and the resulting trajectories
when running VPA on the robot.

In terms of success rate, we qualitatively inspected the plans
and found that approximately 15% were visually plausible,
which means they realistically follow what the robot is allowed
to do. The most common failure cases were inaccurate encod-
ing, leading to a misspecified goal image, or the rope breaking
and reconnecting somewhere else during the trajectory. We
believe that more data would significantly improve these
results, as our results for the static obstacles, which was an
easier domain and trained using the same amount of data, were
indeed significantly better. From the visually correct plans, the
inverse model was able to successfully execute 20%. This is
somewhat worse than the results of Nair et. al. [35], which
we attribute to the order of magnitude smaller dataset we
used, and our additional obstacles. We emphasize that even
though our success rates are not high, most failure cases can
be caught by visual inspection, without running the robot,
since our method is readily interpretable. Such interpretability
has additional important implications to safety.. Thus, while
further investigation is required to improve the quality of VPA,
we see these results as a proof of concept for a promising
robotic manipulation paradigm.

VI. DISCUSSION AND CONCLUSION

We proposed a new data-driven paradigm for robot manip-
ulation by learning a model for planning in image space, and
using the imagined plan as a reference for a visual tracking
controller. Our method is interpretable, and we showed that it
can outperform model-free RL approaches in simulation. We
have shown promising results using a PR2 robot in learning
to manipulate a deformable rope among obstacles.

Plans & Executions

Fig. 10.
successful runs, and the right 1 is where a plan is generated to reach the
goal, but the action policy is not strong enough to carry it out. Looking at
one column at a time, the top image is the start state and the bottom is the
goal state. In the middle, the grayscale images are the visualized plan, and
the colored images are the actual results of the rope when we run the inverse
model to have the PR2 take actions.

5 examples of VPA executed on the rope domain. The left 4 are

Recently, data-driven approaches to robotic manipulation
have increased in popularity, and are widely considered to
be essential for bringing robots into human centered environ-
ments. Most of the work so far has focused on model free RL,
which, although capable of learning complex policies, results
in opaque controllers that are only verifiable by physical
evaluation on the robot. This has raised many issues of safety
and interpretability [3], and at present there is no principled
method for explainable RL. We believe that the most important
aspect of our approach is its visually interpretable nature. As
we have shown, the imagined plans are easy to understand,
and when supervised by a human operator, unsafe or undesired
plans can be intercepted before the physical execution of the
task.

In future work we will investigate how to improve the capa-
bilities of VPA. Directions we focus on include: (1) improving
the visual tracking controller using RL or model-predictive

control; (2) investigating active data collection policies that
focus on the most ‘interesting’ parts of the state space; (3)
extending our approach to domains where the objects are
not static between manipulation actions using memory based
models; and (4) investigating realistic applications such as
packing soft and rigid objects into a box or organizing objects
in a cabinet.

REFERENCES

[1] W. Abdulla. Mask r-cnn for object detection and instance
segmentation on keras and tensorflow. https://github.com/
matterport/Mask_RCNN, 2017.

[2] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.
Learning to poke by poking: Experiential learning of
intuitive physics. 2016.

[3] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schul-
man, and D. Mané. Concrete problems in ai safety. arXiv
preprint arXiv:1606.06565, 2016.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and
A. A. Bharath. A brief survey of deep reinforcement
learning. arXiv preprint arXiv:1708.05866, 2017.

[5] M. Asai and A. Fukunaga. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic bound-
ary. In AAAIL 2018.

[6] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and
A. Ghodsi. Robust locally-linear controllable embedding.
arXiv preprint arXiv:1710.05373, 2017.

[7] M. P. Bell. Flexible object manipulation. 2010.

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman,

I. Sutskever, and P. Abbeel. Infogan: Interpretable

representation learning by information maximizing gen-

erative adversarial nets. Advances in Neural Information

Processing Systems, pages 2172-2180, 2016.

D. Corneil, W. Gerstner, and J. Brea. Efficient model-

based deep reinforcement learning with variational state

tabulation. arXiv preprint, arXiv:1802.04325, 2018.

F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-

supervised visual planning with temporal skip connec-

tions. pages 344-356, 2017.

[11] B. Espiau, F. Chaumette, and P. Rives. A new approach to
visual servoing in robotics. ieee Transactions on Robotics
and Automation, 8(3):313-326, 1992.

[12] C. Finn and S. Levine. Deep visual foresight for planning
robot motion. pages 2786-2793, 2017.

[13] B. Frank, C. Stachniss, N. Abdo, and W. Burgard.
Efficient motion planning for manipulation robots in
environments with deformable objects. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on, pages 2180-2185. IEEE, 2011.

[14] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. pages 2672-2680, 2014.

[15] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask
r-cnn. arxiv preprint arxiv:1703.06870, 2018.

[16] J. E. Hopcroft, J. K. Kearney, and D. B. Krafft. A case
study of flexible object manipulation. The International
Journal of Robotics Research, 10(1):41-50, 1991.

[17] P. Jiménez. Survey on model-based manipulation plan-
ning of deformable objects. Robotics and computer-
integrated manufacturing, 28(2):154-163, 2012.

[18] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Her-
zog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement

(9]

[10]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

F. F. Khalil and P. Payeur. Dexterous robotic manipula-
tion of deformable objects with multi-sensory feedback-a
review. In Robot Manipulators Trends and Development.
InTech, 2010.

D. P. Kingma and J. L. Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

V. Konda and J. N. Tsitsiklis. Actor-critic algorithms.
2000.

Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by
watching: Extracting reusable task knowledge from vi-
sual observation of human performance. IEEE transac-
tions on robotics and automation, 10(6):799-822, 1994.
T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and
P. Abbeel. Model-ensemble trust-region policy optimiza-
tion. 2018.

T. Kurutach, A. Tamar, G. Yang, S. Russell, and
P. Abbeel. Learning plannable representations with
causal infogan. arXiv preprint arXiv:1807.09341, 2018.
S. M. LaValle. Planning algorithms. Cambridge univer-
sity press, 2006.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and
P. Abbeel. Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel
folding. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 2308-2315. IEEE,
2010.

H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll,
and J. Schmidhuber. A system for robotic heart surgery
that learns to tie knots using recurrent neural networks.
Advanced Robotics, 22(13-14):1521-1537, 2008.

D. McConachie, M. Ruan, and D. Berenson. Interleaving
planning and control for deformable object manipula-
tion. In International Symposium on Robotics Research
(ISRR), 2017.

S. Miller, M. Fritz, T. Darrell, and P. Abbeel.
Parametrized shape models for clothing. In Robotics and
Automation (ICRA), 2011 IEEE International Conference
on, pages 4861-4868. IEEE, 2011.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida.
Spectral normalization for generative adversarial net-
works. In International Conference on Learning Rep-
resentations (ICLR), 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

529-533, 2015.

T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and
K. Ikeuchi. Knot planning from observation. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE In-
ternational Conference on, volume 3, pages 3887-3892.
IEEE, 2003.

A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel,
J. Malik, and S. Levine. Combining self-supervised
learning and imitation for vision-based rope manipula-
tion. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 2146-2153. IEEE,
2017.

A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and
S. Levine. Visual reinforcement learning with imagined
goals. arXiv preprint arXiv:1807.04742, 2018.

C. Paxton, Y. Barnoy, K. Katyal, R. Arora, and G. D.
Hager. Visual robot task planning. arXiv preprint
arXiv:1804.00062, 2018.

L. Pinto and A. Gupta. Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours.
In Robotics and Automation (ICRA), 2016 IEEE Inter-
national Conference on, pages 3406-3413. 1IEEE, 2016.
M. Riedmiller. Neural fitted q iteration—first experi-
ences with a data efficient neural reinforcement learning
method. In European Conference on Machine Learning,
pages 317-328. Springer, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence -
A Modern Approach (3rd edition). Pearson Education,
2010.

M. Saha and P. Isto. Motion planning for robotic
manipulation of deformable linear objects. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 2478-2484.
IEEE, 2006.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for
training gans. arxiv preprint arxiv:1606.03498, 2016.

J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-
Frederick, and P. Abbeel. A case study of trajectory
transfer through non-rigid registration for a simplified
suturing scenario. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on,
pages 4111-4117. IEEE, 2013.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Rus-
sell, and P. Abbeel. Combined task and motion plan-
ning through an extensible planner-independent interface
layer. In Robotics and Automation (ICRA), 2014 IEEE In-
ternational Conference on, pages 639—646. IEEE, 2014.
J. Sung, S. H. Jin, and A. Saxena. Robobarista: Object
part based transfer of manipulation trajectories from
crowd-sourcing in 3d pointclouds. In Robotics Research,
pages 701-720. Springer, 2018.

C. K. Snderby, J. Caballero, L. Theis, W. Shi, and
F. Huszr. Amortised map inference for image super-
resolution. arxiv preprint arxiv:1610.04490, 2017.

G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and

(48]

[49]

[50]

[51]

P. Abbeel. Learning robotic assembly from cad. arXiv
preprint arXiv:1803.07635, 2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pages 5026-5033. IEEE, 2012.

H. Wakamatsu, E. Arai, and S. Hirai. Knot-
ting/unknotting manipulation of deformable linear ob-
jects. The International Journal of Robotics Research,
25(4):371-395, 2006.

M. Watter, J. Springenberg, J. Boedecker, and M. Ried-
miller. Embed to control: A locally linear latent dynamics
model for control from raw images. Advanced in Neural
Information Processing Systems (NIPS), 2015.

S. Zhao, H. Ren, A. Yuan, J. Song, N. Goodman, and
S. Ermon. Bias and generalization in deep generative
models: An empirical study. In Advances in Neural
Information Processing Systems, pages 10792-10801,
2018.

APPENDIX
A. Training Details

In the CIGAN training, we used the same architecture for
all domains from [24], but doubled the number of filters at
each layer of the generator, discriminator, and posterior model
(@) when we moved domains from the blocks to the rope,
because models with more parameters were needed to capture
the nuances for the more complex domain. Additionally, we
used GAN training techniques of spectral normalization [31],
instance noise [46], and label smoothing [42]. We also got rid
of the random noise, z, from the final models that were run
on the rope, because we found that the added noise would
end up influencing the transitions too much, and they were
not actually needed to provide diversity to the generations,
as the latent codes were already sufficient for that. Both the
discriminator and generator were trained in unison with the
Adam optimizer [20].

The latent space of our model had a dimension size of
10. In order to improve the latent space learned by the
model, we gradually increase the information weight A by
.01 starting from .01 every 5 epochs. We already knew that
by increasing the weight on the information term we could
improve the learned representations and encode more meaning
about transitions into them. However, if we increased the
weight on this term any higher than the .1 we used on the
blocks, the generation quality and fidelity became too poor to
be able to follow and execute a control policy on. However,
once the generation quality is at a certain level, there would
be no reason for the generator to start generating images
of worse quality, even if its loss function did change (by a
small amount, so as not to disrupt the fickle stability of a
GAN). Thus, gradually increasing the information weight had
an improvement on both the quality of images generated by
the CIGAN, as well as the causal meaning captured by the
latent space. This was shown by the improvement in plans
generated from this model, as they went through obstacles far
less, and had better image quality.

B. Plan Autoselection in Block-Wall Domain

We want to be able to autoselect the plans that seem feasible
and allow the inverse model to follow them. To autoselect
the best generated plans, we use a weighted combination of
a transition classifier and an object detector. The classifier
is trained using image pairs that are within 1-step apart as
positive labels, and random image pairs as negative labels. In
general, generative models like GAN and VAE suffer from
consistently generating the same number of objects in the
scene [51]. Similarly, we find that CIGAN models sometimes
mistakenly produce plans with extraneous blocks. Thus, we
use the Mask-RCNN as an object detector [1, 15] to restrict
this behavior. The Mask-RCNN is trained to detect randomly
generated shapes which are agnostic to this domain. The object
detector gives a binary value which is 1 if the object detector
finds only one object (which is realistic), and O otherwise.

We give an image pair by a score s such that s(o0, 0pezt) =
(B4¢(0, 0newt))? +af (0, 0nert) Where c is the classifier score

and f is the the object detector score. For our purposes, we
found the most promising results when o = 3.0, 8 = 1.0.

C. A* Search Details

In the rope domain, we performed A* search in the latent
space using the Euclidean distance as the cost function and
the heuristic. The graph search is done by expanding the node
in the computation stac with the minimum cost-so-far plus
A times cost-to-go, evaluated using the heuristic. Note that
A is the relaxation term that we set at 1.4. The relaxation
term controls the trade off between the close-to-optimal path
and the computation time. The larger the lambda the greedier
the search becomes. To expand a node, we find neighbors by
doing Monte Carlo sampling of the transition function to find
50 neighbors. Finally, to check whether we have reached the
goal, we threshold any distance below 1.5 in the latent space

as sufficient.

D. Network Architectures

In Tables IV and III, we outline the architectures used for
the CIGAN and inverse control models.

TABLE III

ARCHITECTURE OF CIGAN USED FOR ROPE DOMAIN

Discriminator D

Generator G

Input 2 64 x 64 grayscale images

Input a latent vector in R0

4 x 4 conv. 128 IReLU, stride 2, batch-
norm

4 x 4 upconv. 1024 1ReLU, stride 2,
batchnorm

4 x 4 conv. 256 IReLU, stride 2, batch-
norm

4 x 4 upconv. 512 IReLU, stride 2,
batchnorm

4 x 4 conv. 512 IReLU, stride 2, batch-
norm

4 x 4 upconv. 256 IReLU, stride 2,
batchnorm

4 x 4 conv.
batchnorm

1024 1ReLU, stride 2,

4 x 4 upconv. 128 IReLU, stride 2,
batchnorm

4 x 4 conv. 1

4 x 4 upconv. 2 Tanh

TABLE IV

ARCHITECTURE OF INVERSE MODEL

Input 1 64 x 64 image of pixelwise difference

4 x 4 conv. 64 IReLU, stride 2, dropout (.5)

4 x 4 conv. 128 IReLU, stride 2, dropout (.5)

4 x 4 conv. 256 IReLU, stride 2, dropout (.5)

4 x 4 conv. 512 IReLU, stride 2, dropout (.5)

4 x 4 conv. 40, Sigmoid

40 dimensional linear, Tanh [

2 dimensional Linear, ReLu [

]42 dimensional linear, Tanh

[2 dimensional linear, ReLu

E. Datasets

Block wall dataset available here:
https://drive.google.com/drive/folders/16L3Bir66 Y310
OkhBKAntsxoxq_94U1T_?usp=sharing.

Rope datasets available here:

https://drive.google.com/drive/folders/1zZUQWAzxzN5-
WvMc3u9COGwW CrFb6UjVK ?usp=sharing.

F. Additional Block-Wall Results

Visual
Plan

Start Goal

Execution

Baseline

Fig. 11. Another example of a start/goal test image where planning via VPA is essential in reaching our desired state. Our baseline, on bottom, is unable
to navigate past the bottom right corner, while the plan generated by CIGAN finds a path around the obstacle rather than trying to go through.

Visual
Start Plan

Goal

Execution

Baseline

Fig. 12. Example of failure case. While CIGAN succeeded 90% of the time in our autoselected evaluation, there were a few cases that our approach failed
to find a viable plan, and thus we were unable to successfully reach the goal state during execution.

	I Introduction
	II Related Work
	III Preliminaries and Problem Formulation
	III-A Problem Formulation
	III-B Visual Planning with Causal InfoGAN
	III-B1 GAN and InfoGAN
	III-B2 Causal InfoGAN and Plan Generation

	III-C Learning Inverse Dynamics Models

	IV Visual Planning and Acting
	IV-A Context Conditional CIGAN Model
	IV-B A* Planning in Latent Space

	V Experiments
	V-A Two-Block Domain
	V-B Block-Wall Domain
	V-C Real Robot Rope Manipulation Domain
	V-C1 Static Obstacles
	V-C2 Dynamic Obstacles

	VI Discussion and Conclusion
	Appendix
	A Training Details
	B Plan Autoselection in Block-Wall Domain
	C A* Search Details
	D Network Architectures
	E Datasets
	F Additional Block-Wall Results

