


In this work we take a step towards closing the gap in

complex object manipulation and ask – can we learn from self-

supervised data to automatically generate the visual plan and

follow it? We term this approach visual planning and acting

(VPA), as depicted in Figure 1. Concretely, given the current

image of the system and some desired goal observation, we

would like to generate a sequence of images that manipulate

the object to the desired configuration, without any human

guidance, and then track this imagined plan in practice using

a learned inverse model. Such a method would not require the

manual guidance of previous approaches, and would also be

safe, as the imagined plan is visually interpretable, and can be

inspected before being executed by the robot.

However, learning visual planning from raw image data has

so far been limited to very simple tasks, such as reaching or

pushing rigid objects [12, 10]. The fundamental difficulty is

that learning an accurate representation of the data requires

mapping the image to an extensive feature space, while

efficient planning generally requires either low dimensional

state spaces or well-structured representations. Current ap-

proaches [12, 10] solve this tradeoff by employing very simple

planning methods such as random shooting, which do not scale

to more complex planning problems.

In this work, we propose to learn features that are com-

patible with a strong planning algorithm. At the basis of our

approach is the recent Causal InfoGAN (CIGAN) model of

Kurutach et al. [24]. In CIGAN, a deep generative model is

trained to predict the possible next states of the object, with a

constraint that linear trajectories in the latent state of the model

produce feasible observation sequences. Kurutach et al. [24]

used a CIGAN model for planning goal-directed trajectories

simply by linearly interpolating in the latent space, and then

mapping the latent trajectory to observations for generating

the visual plan. Building on CIGAN, we propose a method

for VPA, where sensory data obtained from self-supervised

interaction is used to learn both a CIGAN model for visual

planning and an inverse model for tracking a visual plan, as

shown in Figure 1. After learning, given a goal observation

for the system, we first use CIGAN to imagine a sequence of

images that transition the system from its current configuration

towards the goal. Then, we use the imagined trajectory as a

reference for tracking using the inverse model.

In this work we investigate several aspects of the VPA

approach for real-world tasks. Our contributions include:

• An extension of the CIGAN model to include con-

textual input, and imagine plans based on this context

(a context can specify, e.g., obstacles in the domain),

thereby addressing generalization of VPA to changes in

the environment.

• Improvement of the planning algorithm in latent state

from interpolation, as suggested in [24], to A∗ for plan-

ning in domains that include obstacles.

• A simulation study showing that separating the control

task into visual planning and visual tracking is more

sample efficient than model free reinforcement learning

methods that learn actions directly from images.

• Application of VPA to real robot rope manipulation

tasks, illustrating non-trivial planning and control with

deformable objects and demonstrating the interpretability

of our approach.

II. RELATED WORK

Deformable soft object manipulations have been attempted

via classical methods such as motion planning and manipula-

tion planning [29, 13, 19, 17, 41]. These approaches require

manual engineering for object models. Previous work has

modeled deformable soft objects by hand-engineering repre-

sentations [22, 49, 34, 27], parametrizing the object shape [30],

and using finite element models [16], [7].

Alternatively, there has been recent interest in applying

learning-based approaches to robotic manipulation directly

from raw image perception. Recent work in model-free re-

inforcement learning (RL) [32, 21, 26] learns, through trial

and error, a policy mapping observations to actions that maxi-

mizes reward using deep neural networks. However, specifying

reward functions for high dimensional observations such as

images can be difficult [4], and the sample efficiency of model

free RL can be prohibitive in practice. Because the policy

is trained to optimize a predefined reward function, it does

not directly generalize to new initial and goal configurations,

and requires further interactions with the system. In addition,

model-free RL produces black-box policies which are hard

to interpret, in contrast with more traditional planning ap-

proaches, and our visual planning method in particular, which

can predict the trajectory of the robot in advance.

Learning from demonstrations (LfD) guides robots to per-

form complicated tasks without having to plan from scratch.

Schulman et. al. [43] and Mayer et. al. [28] learn a policy

that imitates non-rigid object manipulation such as surgical

suturing from expert state and action trajectories. One caveat

of LfD is that it suffers when generalizing to desired trajecto-

ries that deviate from expert demonstrations. Nair et. al. [35]

and Kuniyoshi [22] only collect random interactions with the

system at training time, and use the data to learn an inverse

model. This inverse model is general enough to follow new

expert trajectories for new tasks. In our work, we do not

require expert demonstrations for new tasks, and show that

visual plans can be generated directly from self-supervised

data.

Other approaches that learn plannable features for control

include Embed to Control (E2C) [50] and related methods

based on variational autoencoders [9, 6, 5]. Paxton et. al. [37]

learn transitions and an action value function in the latent

space, and use that to produce visual plans on simulated

domains. To our knowledge, we present the first application

of plannable features for real robot experiments.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section we present our problem formulation, and

summarize preliminary material.



A. Problem Formulation

We consider a robot that interacts with the world in a

self-supervised manner, and collects sensory data about its

interaction. In this work, we do not consider how to collect

the data, and assume that the data collection policy visits the

‘interesting’ configurations of the system. Denote by D our

data, in the form of N trajectories of action-observation pairs,

{oi1, u
i
1, ..., u

i
Ti−1, o

i
Ti
}i∈N , where ui

j is the action that the

robot took after observing oij , and led to observation oij+1.

We assume a deterministic and fully observable system.

After we have collected the data, our goal is to solve a

goal-directed planning problem: given the current observation

of the system ostart and an observation of a desired goal

configuration ogoal, we want to compute an action selection

policy that transitions the system from start to goal.

To solve the problem above, in this work we focus on an

approach we term Visual Planning and Acting (VPA). The

idea is to decompose the solution into two steps: (1) Visual

planning – learning from the data how to imagine a goal-

directed trajectory of observations that transition the system

from start to goal, and (2) Acting – using an inverse model

learned from the data on how to take actions that make the

system follow the imagined plan.

B. Visual Planning with Causal InfoGAN

Kurutach et al. [24] describe a method for visual planning

based on the CIGAN generative model. Before describing

CIGAN, we first summarize two ideas that it builds on – GAN

and InfoGAN.

1) GAN and InfoGAN: GANs [14] are deep generative

models that learn to generate samples similar to the data

distribution Pdata by feeding in a random vector z ∼ N (0, I)
into a deep neural network generator G. A discriminator neural

network D tries to tell apart generated samples from real

samples, and the GAN training objective is given by the

minimax game: minG maxD V (G,D) =
minG maxD Eo∼Pdata

[logD(o)]+Ez[log(1−D(G(z)))]. The

vector z can be interpreted as a latent representation for the

generated observation o = G(z). InfoGAN [8] is a method

for adding structure to the latent representation. In InfoGAN,

the representation is separated into a ‘noise’ component z and

a structured component s. The loss function is modified to

maximize the mutual information between s and the generated

observation o = G(z, s), which intuitively induces s to capture

salient properties of the observation. Let x, y be some random

variables. Denoting H(x) = Ex[− log(P (x))] as the entropy

of x, the mutual information between x and y is defined as

I(x; y) = H(x) −H(x|y) = H(y) −H(y|x). The InfoGAN

loss function is:

min
G

max
D

V (G,D)− λI(s;G(z, s)). (1)

To optimize this loss in practice, a variational lower bound was

proposed in [8]. Let Q(s|o) denote an auxiliary distribution

that approximates the posterior P (s|o). Then the lower bound

I(s;G(z, s)) ≥ Es∼P (s),o∼G(z,s)[logQ(s|o)] + H(s) can be

plugged in (1) and optimized using the reparametrization

trick [8]. Intuitively, the Q function can be understood as a

classifier that encodes an observation into its latent represen-

tation.

2) Causal InfoGAN and Plan Generation: CIGAN [24]

is an extension of InfoGAN for observations from a dy-

namical system. Consider data that contains trajectories of

observations, similar to D described above in Section III-A.

The CIGAN model learns to generate a pair of sequential

observations (o, o′) that are similar to sequential observations

in the data, thereby learning a notion of causality in the data.

The CIGAN generator input is a pair of latent representations

s, s′, and a noise vector z: o, o′ = G(s, s′, z), where similarly

to InfoGAN, the intuition is to learn a transition in the latent

space s → s′ that captures salient properties of the observation

transition o → o′.

In [24], the latent state distributions were P (s) =
N (0, I), P (s′|s) = N (s, σ(s)). That is, the next state s′ was

modelled as a local perturbation of the first state s, where

the magnitude of the perturbation σ(s) was a learned neural

network. The motivation for such dynamics was to structure

the latent space to be compatible with a planning algorithm, as

described below. The CIGAN loss is similar to InfoGAN, with

the additional learning of dynamics in latent space P (s′|s),
and the mutual information between the pairs of latent states

and observations:

min
P (s′|s),G

max
D

V (G,D)− λI(s, s′; o, o′),

s.t. o, o′ ∼ G(z, s, s′), s ∼ P (s), s′ ∼ P (s′|s)
(2)

To optimize (2), an InfoGAN lower bound was used, intro-

ducing an auxiliary distribution Q(s, s′|o, o′) to approximate

P (s, s′|o, o′). Kurutach et al. proposed to use a disentangled

approximation Q(s, s′|o, o′) = Q(s|o)Q(s′|o′).
A CIGAN model trained on the data D can be used for

visual planning according to the following scheme [24] and

visually represented in Figure 2:

1) Encoding: given a pair, ostart, ogoal, find the correspond-

ing sstart, sgoal.

2) Planning: in the latent space, find a feasible trajectory:

sstart, s1, ..., sm, sgoal
3) Decoding: from the latent trajectory generate a feasible

observation trajectory ostart, o1, ..., om, ogoal.

For encoding, Kurutach et al. [24] used an optimization

based approach, searching for a latent vector that minimizes

the absolute pixel difference with the desired observation. For

the planning, the key idea in [24] is that due to the local

transition structure of P (s′|s), linear interpolation between

sstart and sgoal results in a feasible plan. In this sense, CIGAN

learns a representation that is compatible with the planning

algorithm. For decoding, the CIGAN generator can be used to

sequentially produce pairs of observations from the trajectory.

C. Learning Inverse Dynamics Models

An inverse model MIM maps a pair of sequential observa-

tions o, o′ to an action that generated them u = MIM(o, o′).



Fig. 2. Illustration of how the CIGAN model generates a plan. First, start
and goal images are encoded to their latent representations (denoted here as
points in the plane). Second, search is used to find a sequence of points in the
latent space that connect the start to the goal, while obeying the latent space
dynamics. Here we illustrate the result of A* search. Third, the plan in latent
space is decoded into a sequence of images using the generator, resulting in
a visual plan.

This can be cast as a supervised learning problem, by regress-

ing from ot, ot+1 in the data to ut. Here, we follow the ap-

proach of Nair et al. [35], which learned inverse models from

image observations using deep convolutional neural networks.

Given a reference trajectory in image space o
ref
1 , . . . , o

ref
t , an

inverse model can act as a tracking controller (a.k.a. visual

servoing [11]) by taking the action MIM(ot, o
ref
t+1) at time t.

IV. VISUAL PLANNING AND ACTING

In this section we present our approach for solving the goal

directed planning problem of Section III-A, which we term

Visual Planning and Acting (VPA).

Our approach is model-based, where we first use the data

D to learn both a CIGAN model MCIGAN and an inverse

dynamics model MIM. For any two start and goal observa-

tions ostart, ogoal, the CIGAN model MCIGAN can generate

a visual plan that transitions the system from start to goal,

ostart, o1, . . . , ok, ogoal. Since the CIGAN model is trained to

generate feasible pairs of observations (cf. Section III-B2),

the plan generated by a well-trained CIGAN model will be

feasible, in the sense that the robot can actually execute it.

Our VPA method for solving the goal directed planning

problem is a combination of planning and replanning using

the CIGAN model MCIGAN, and trajectory tracking using the

inverse model MIM. The VPA algorithm is given as follows:

1) Plan: given a pair, ostart, ogoal, use the CIGAN model

MCIGAN to generate a planned sequence of observations

ostart, o1, ..., om, ogoal.

2) Act: If the length of the plan m is zero, take an action u

to reach the goal u = MIM(ostart, ogoal), then stop. Else:

3) Take an action u to reach the first observation in the plan

u = MIM(ostart, o1) and take a new observation of the

current system state onew.

4) Replan: update ostart to be the current observation onew,

and go back to step 1.

VPA effectively uses the inverse model as a feedback

controller to follow the imagined CIGAN plan. In practice,

we found that the advantage of replanning in our tasks was

not significant, and chose to omit this step for faster execution

times. That is, instead of replanning from the current observa-

tion we simply advanced on the original plan by removing the

first observation o1. However, other tasks may benefit from

full replanning.

We emphasize that while VPA uses planning, it builds

on CIGAN, which is completely data-driven, and does not

require manually engineering a planning model. The only

data required for this is images taken from self-supervised

manipulation of an object. Nevertheless, our method enjoys

the interpretability of model based methods – at every step

of our algorithm we have a visual plan of the proposed

manipulation. We found that this allows us to reliably eval-

uate the performance of VPA before performing any robot

experiment, significantly reducing time and effort as well as

unpredictability in the robot’s actions. We also remark that

separating decision making into a high-level trajectory com-

putation step and a low-level action execution is standard in

motion planning [25], and has been explored in several recent

studies on robotic manipulation [45, 47]. Here, in comparison,

the trajectories are in image space, and hence can capture

complex object features such as deformations and change in

appearance. Another benefit of separating observations and

actions is the possibility of collecting different data for training

MCIGAN and MIM. For example, in rope manipulation, the

properties of the rope are largely independent of the robot

manipulating it. Thus, we can collect a robot-independent data

for training MCIGAN with several different robots, or even a

human, as we did in our experiments, and then collect a robot-

specific data set for training MIM for a particular robot.1

These properties makes our approach suitable for de-

formable object manipulation, as we demonstrate in our ex-

periments. However, in order to get VPA to work well in

practice, we needed to make several fundamental changes to

the CIGAN method, as we describe next. We also describe

several technical modifications in Appendix A.

A. Context Conditional CIGAN Model

The CIGAN model in [24] generates observations that are,

by definition, similar to the training data. That precludes any

generalization to problem parameters that are different than

those seen during training. However, in practical settings, we

would like to generalize our knowledge to change in the

environment. For example, in an environment with obstacles,

one would like to learn a model that can generalize to different

obstacle configurations.

Here we approach this problem by adding to the CIGAN

model a context input. We assume that the domain can

be decomposed into a manipulatable, movable object (e.g.,

rope), and components which are fixed during manipulation

1In principle, the action can be subsumed in the observation for training
a CIGAN model that can plan actions. Due to the benefits mentioned above,
we opted for computing actions independently using an inverse model.







Fig. 5. Comparison between VPA and an inverse model baseline. The baseline attempts to directly apply the inverse model on the goal, while our method
employs the plan generated by CIGAN, shown at top, to navigate from start to goal. Without a plan, the baseline blindly attempts to move the block downwards
without accounting for the obstacle in the way. Our model, on the other hand, plans to go around the obstacle, resulting in a successful trajectory.

TABLE II
THE AVERAGE FINAL L2 DISTANCE TO GOAL AND THE SUCCESS RATE TO

MOVE ONE BLOCK IN THE BLOCK-WALL DOMAIN TO BE WITHIN 0.5
RADIUS TO THE GOAL.

Method L2 distance Success Rate

Baseline 0.459 ±0.433 45%

VPA (hand-selected) 0.083 ±0.192 95%

VPA (autoselected plan) 0.131 ±0.242 90%

1) Static Obstacles: We begin our investigation by compar-

ing our planning based method to a baseline of only using an

inverse model without planning, as in the previous block and

wall domain. We designed a rope manipulation environment

similar to [35], but which also contains fixed obstacles which

the rope cannot move through.

For data collection, we followed the approach in [35]

for generating random pokes of the rope, and collected 2k

samples for observations and actions. To increase the size of

our dataset, we collected 10k additional observation samples

by manually manipulating the rope (which is much faster

to collect). Note, however, that due to the obstacles, our

problem is much more difficult than in [35]. The images are

preprocessed to have one color channel, as demonstrated in

Figure 6.

Fig. 6. Preprocessing procedure. Image 1: original photo as seen by the PR2,
Image 2: background removed from image, Image 3: Preprocessed to have
one color channel

With the additional constraint of obstacles, we conjecture

that the inverse model, which is essentially reactive in its

computation, will not suffice to plan movements that involve

these obstacles. In contrast, a well trained CIGAN model

should generate plans that manipulate the rope around such

obstacles. For the inverse model, MIM, we used a CNN similar

to [35], outputting a 4-dimensional action made up of the x

and y coordinates of the rope grab and drop location. We

found that feeding in to MIM the observation difference o′−o

resulted in a more robust controller that generalized well

to the generated image sequences. As described in Section

IV, to reduce computation time we did not replan in the

VPA algorithm, and simply ran MIM multiple times for each

generated observation, to result in a longer, but more stable

execution.

In Figure 7, we demonstrate a setting where nontrivial

planning is required to solve the task – going from start to

goal requires traveling with the rope around the obstacle. It

can be seen that our VPA method plans to go around the

obstacle, which makes it feasible to solve the task by following

the plan with the inverse model MIM. Just using MIM on the

goal image, however, does not result in traveling around the

obstacle, which leads to a failure in execution. This result

demonstrates the inadequacy of purely reactive methods, such

as inverse models, for acting in complex domains with more

constraints. We further evaluate the planning capability of our

method in Figure 8, where we demonstrate realistic plans of

rope manipulation that obey the physical properties of the rope

and obstacles.

2) Dynamic Obstacles: In this section we demonstrate the

potential of C3IGAN in generalizing to unseen environments.

To this end, we modified the rope manipulation domain to

include dynamic3, smaller obstacles, which were intermittently

moved (manually) while collecting the training data. These

changes render this variation harder than the previous one

for our vision-based planning method. Our hope is that our

model can imagine, plan, and execute rope manipulation in

domains with obstacle configurations that were not explicitly

seen during training.

In training our C3IGAN model for this domain, the context

is an image of the obstacles without any rope, as show in

Figure 9. As the figure demonstrates, the obstacle embedding

is successfully used by the C3IGAN model to generate images

that realistically capture the interaction between the rope and

obstacles, such as that the rope has to wind around the

obstacle, rather than moving through it. In Figure 10 we

3By which we mean that the position of the obstacles change between
trajectories, and not during
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APPENDIX

A. Training Details

In the CIGAN training, we used the same architecture for

all domains from [24], but doubled the number of filters at

each layer of the generator, discriminator, and posterior model

(Q) when we moved domains from the blocks to the rope,

because models with more parameters were needed to capture

the nuances for the more complex domain. Additionally, we

used GAN training techniques of spectral normalization [31],

instance noise [46], and label smoothing [42]. We also got rid

of the random noise, z, from the final models that were run

on the rope, because we found that the added noise would

end up influencing the transitions too much, and they were

not actually needed to provide diversity to the generations,

as the latent codes were already sufficient for that. Both the

discriminator and generator were trained in unison with the

Adam optimizer [20].

The latent space of our model had a dimension size of

10. In order to improve the latent space learned by the

model, we gradually increase the information weight λ by

.01 starting from .01 every 5 epochs. We already knew that

by increasing the weight on the information term we could

improve the learned representations and encode more meaning

about transitions into them. However, if we increased the

weight on this term any higher than the .1 we used on the

blocks, the generation quality and fidelity became too poor to

be able to follow and execute a control policy on. However,

once the generation quality is at a certain level, there would

be no reason for the generator to start generating images

of worse quality, even if its loss function did change (by a

small amount, so as not to disrupt the fickle stability of a

GAN). Thus, gradually increasing the information weight had

an improvement on both the quality of images generated by

the CIGAN, as well as the causal meaning captured by the

latent space. This was shown by the improvement in plans

generated from this model, as they went through obstacles far

less, and had better image quality.

B. Plan Autoselection in Block-Wall Domain

We want to be able to autoselect the plans that seem feasible

and allow the inverse model to follow them. To autoselect

the best generated plans, we use a weighted combination of

a transition classifier and an object detector. The classifier

is trained using image pairs that are within 1-step apart as

positive labels, and random image pairs as negative labels. In

general, generative models like GAN and VAE suffer from

consistently generating the same number of objects in the

scene [51]. Similarly, we find that CIGAN models sometimes

mistakenly produce plans with extraneous blocks. Thus, we

use the Mask-RCNN as an object detector [1, 15] to restrict

this behavior. The Mask-RCNN is trained to detect randomly

generated shapes which are agnostic to this domain. The object

detector gives a binary value which is 1 if the object detector

finds only one object (which is realistic), and 0 otherwise.

We give an image pair by a score s such that s(o, onext) =
(β+c(o, onext))

2+αf(o, onext) where c is the classifier score

and f is the the object detector score. For our purposes, we

found the most promising results when α = 3.0, β = 1.0.

C. A* Search Details

In the rope domain, we performed A* search in the latent

space using the Euclidean distance as the cost function and

the heuristic. The graph search is done by expanding the node

in the computation stac with the minimum cost-so-far plus

λ times cost-to-go, evaluated using the heuristic. Note that

λ is the relaxation term that we set at 1.4. The relaxation

term controls the trade off between the close-to-optimal path

and the computation time. The larger the lambda the greedier

the search becomes. To expand a node, we find neighbors by

doing Monte Carlo sampling of the transition function to find

50 neighbors. Finally, to check whether we have reached the

goal, we threshold any distance below 1.5 in the latent space

as sufficient.

D. Network Architectures

In Tables IV and III, we outline the architectures used for

the CIGAN and inverse control models.

TABLE III
ARCHITECTURE OF CIGAN USED FOR ROPE DOMAIN

Discriminator D Generator G

Input 2 64 x 64 grayscale images Input a latent vector in R
10

4 x 4 conv. 128 lReLU, stride 2, batch-
norm

4 x 4 upconv. 1024 lReLU, stride 2,
batchnorm

4 x 4 conv. 256 lReLU, stride 2, batch-
norm

4 x 4 upconv. 512 lReLU, stride 2,
batchnorm

4 x 4 conv. 512 lReLU, stride 2, batch-
norm

4 x 4 upconv. 256 lReLU, stride 2,
batchnorm

4 x 4 conv. 1024 lReLU, stride 2,
batchnorm

4 x 4 upconv. 128 lReLU, stride 2,
batchnorm

4 x 4 conv. 1 4 x 4 upconv. 2 Tanh

TABLE IV
ARCHITECTURE OF INVERSE MODEL

Input 1 64 x 64 image of pixelwise difference

4 x 4 conv. 64 lReLU, stride 2, dropout (.5)

4 x 4 conv. 128 lReLU, stride 2, dropout (.5)

4 x 4 conv. 256 lReLU, stride 2, dropout (.5)

4 x 4 conv. 512 lReLU, stride 2, dropout (.5)

4 x 4 conv. 40, Sigmoid

40 dimensional linear, Tanh

2 dimensional Linear, ReLu

42 dimensional linear, Tanh

2 dimensional linear, ReLu

E. Datasets

Block wall dataset available here:

https://drive.google.com/drive/folders/16L3Bir66Y31O

0khBKAntsxoxq 94U1T ?usp=sharing.

Rope datasets available here:

https://drive.google.com/drive/folders/1zUQWAzxzN5-

WvMc3u9C9GwWCrFb6UjVK?usp=sharing.

F. Additional Block-Wall Results



Fig. 11. Another example of a start/goal test image where planning via VPA is essential in reaching our desired state. Our baseline, on bottom, is unable
to navigate past the bottom right corner, while the plan generated by CIGAN finds a path around the obstacle rather than trying to go through.

Fig. 12. Example of failure case. While CIGAN succeeded 90% of the time in our autoselected evaluation, there were a few cases that our approach failed
to find a viable plan, and thus we were unable to successfully reach the goal state during execution.
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