


Fig. 2: The 40 objects commonly found in machine shops that were used for experiments. Bin categories: Tools, Tubes,

Boxes, Scrap and 3D-Prints.

base in such a way that the manipulability of the arm is

maximized and the grasp can be executed with limited base

motion [10], [11]. This approach is impractical for tasks that

require significant movement such as surface decluttering [4],

bed-making [12] or biotechnological applications [13]. Thus,

robust grasp planning policies are needed.

Different versions of the PCA Grasp Planner that grasps

near the centroid of the object and orthogonal to its principal

axis are common heuristics for such tasks [4], [14] because

a grasp near the object centroid is often robust with respect

to motion imprecision. More sophisticated grasp planners

introduce probability distributions over object and robot pose

to consider noisy sensing and execution. Applying bayesian

filtering to such pose distributions can be used to continu-

ously adapt the planned trajectory with model predictive con-

trol [15]. Action-Related Places (ARPlaces) — a collection

of robot pose locations each with an assigned probability

of success for a given action — are introduced in [16].

By successively updating the ARPlaces and incorporating

them in the grasp planning policy, higher grasp reliability

on a mobile manipulator has been achieved. Reinforcement

learning is another powerful tool to incrementally adapt the

control input to the current state and account for errors due

to noise [17], [18].

B. Low-Precision Sensing

Low-cost mobile manipulators that do not rely on high-

precision sensing for reliable object grasping have potential

to assist people with limited motor abilities [12], [19],

[20]. Gupta et al. [21] built such low-cost robots and put

them into homes to collect real-world data for grasping.

The resulting training dataset consisted of noisy and mis-

labelled sensor readings because of commercial sensors and

uncontrolled lightning conditions during collection. A grasp

planner trained on this data outperformed Dex-Net 2.0 [6] in

home environments.

To account for the higher imprecision, the grasp planning

policy in [21] models sensor noise as a latent variable which

can be marginalized out to plan more robust grasps. Gaussian

Processes are another way to deal with imprecise sensor

readings [22]. Uncertainty about the object contours is

incorporated in the covariance matrix which decreases via

iterative regrasping. Other approaches align the sensor input

with known objects [23], shape primitives [24] or bounding

boxes [25] with precomputed reliable grasps instead of

planning on the noisy object shape given by the sensor

reading. This makes it difficult to plan a grasp on objects

for which the alignment fails.

Overcoming this issue, Morrison et al. [26] use a small

and efficient neural network to predict grasps at each pixel

of the image independent of both the object contour and pose.

Johns et al. [27] smooth their discretized grasp function with

Gaussian noise. The resulting grasps are robust with respect

to the uncertainty of their system due to noisy joint encoders,

camera miscalibration and kinematic deformation of links.

This work builds on previous work in [4], in which

deep models for object recognition and grasp planning are

learned from synthetic images in simulation, adapted to the

real images of the robot environment by learning domain-

invariant feature representations, and subsequently deployed

for low-latency serving with Fog Robotics. Learning deep

domain-invariant models by sim-to-real transfer reduces the

need of collecting massive training data from the robot,

while deploying the models on nearby resources enables

prediction serving at less than 100 milliseconds. This paper

focuses on the development of the grasp planning policy

for mobile manipulators with low precision perception and

control which was used in [4].

III. PROBLEM STATEMENT

We consider the problem of surface decluttering: using a

mobile robot with a parallel-jaw gripper to iteratively grasp a

single object from a planar worksurface and place the object

in a receptacle based on its semantic category (e.g., tool,

scrap). We assume that the mobile manipulator plans grasps

based on images from a noisy RGB-D sensor.







Fig. 5: Planned grasps for different methods. Top row: Due to gripper
imprecision, the grasps planned by Dex-Net 4.0 are prone to fail. Bottom
row: Dex-Net MM plans more conservative grasps in all cases except the
last one in which it preferred a near grasp limiting base movement over a
conservative grasp near the object center.

with the object as demonstrated in Fig. 4. Additionally, the

planner becomes biased towards grasping too high because

the distance the gripper is lowered is shrunk with respect to

the depth offset.

We develop a grasp sampler to account for these limita-

tions. Instead of reasoning in the camera reference frame, this

grasp sampler acts in the 3D world frame and adds a height

offset value uniformly sampled from [15, 25]mm to the grasp

parametrization to lower the grasp from the reference pose

as illustrated in Fig. 4. In addition, the gradient threshold

for detecting edge pixels on the objects used for antipodal

pair sampling is decreased from 5mm to 3mm because in a

tilted camera setting, the front edge cannot be clearly seen

as obvious depth jumps are missing. The lower threshold

results in the detection of edge pixels in the depth image

at noisy areas and therefore grasps are also sampled on the

floor. This is not a problem because Dex-Net MM prunes

out these grasps due to their low quality values.

V. EXPERIMENTS AND RESULTS

We conducted physical experiments using the Toyota HSR.

We use Dex-Net 4.0 [3] and the PCA Grasp Planner [4]

as baselines to compare grasping reliability for 125 grasp

attempts on 25 objects with varying surface complexity in

the first experiment. In the second experiment, we test the

surface decluttering performance of the complete pipeline

with 12 trials on putting 40 common machine shop objects

into bins.

A. Grasping

We created a dataset of 25 objects with various surface

complexity (10 of Level 1, 8 of Level 2, 7 of Level 3) [3].

Level 1 objects have basic geometric shapes, such as boxes,

bottles and spheres while Level 2 objects have more complex

contours such as the adversarial objects used in [6]. Objects

that are empirically very hard to grasp are chosen as Level

3 objects.

To measure grasp performance, we placed a single object

in front of the robot similar to Fig. 3. With the RGB-D

sensor directed towards the object, we planned a grasp for

the robot to pick the object and used the developed controller

from Sect. IV-B to execute it. If the robot was able to grasp

the object, lift it 30cm, and hold it for 5 seconds, the trial

was counted as success. Fig. 6 shows the success rates for

each method separated by object complexity level. The PCA

Grasp Planner achieved 87.5% reliability on the Level 1

objects. Its performance drops down to 77.5% and 48.6%

for Level 2 and Level 3 objects respectively. The centroid

of the object may not be a good choice for irregular shapes.

Dex-Net 4.0 was able to plan reliable grasps in the image

space but often grasped too high or collided with the object

which resulted in a 54% success rate on Level 1 objects.

Its performance increased to 85% for Level 2 objects. The

size of Level 2 objects may be the cause for this, as bigger

objects seem to be less sensitive to height errors. On Level

3 objects, the success rate of Dex-Net 4.0 drops to 68.6%.

Dex-Net MM outperforms both baselines in this setting with

no failed grasps for Level 1 and 2 objects and the policy

succeeded on 85.7% of grasps for Level 3 objects.

B. Surface Decluttering

In this experiment we evaluate the performance of the

surface decluttering pipeline. The HSR is situated in a small

rectangular workspace of 120cm×120cm. Objects are placed

in front of the robot and the corresponding bins are behind

the robot. An overview of the setup can be seen on the left

of Fig. 7. Addressing this task in a machine workshop, we

created a dataset of 40 common machine shop objects shown

in Fig. 2. The following 5 classes are represented by 8 objects

each: Tool, Tube, Box, 3D-Print and Scrap. We ran 12 trials.

For each trial we chose 10 objects at random (2 per class)

and placed them in the workspace of the robot. For this

experiment, each object was singulated. Two input images

from example scenes can be seen on the right of Fig. 7.

Given the RGB-D input from the camera, the robot’s task was

to classify the objects in the scene and choose an object. It

then executed a grasp planned by Dex-Net MM on the target

object and put it into the corresponding bin. Using the binary

reward R(xt,ut) from Sect. III, the system achieved a score

of 117/120 objects placed in the correct receptacle after

135 grasp attempts. We evaluated the performance of the

grasping and object classification for each class separately.

For grasping success, we counted the number of successful

grasps and divided this by the number of times the robot

attempted to grasp an object from this particular class over

the 12 trials. For classification, we checked the number of

true positives and false positives in the corresponding bin at

the end of each trial and summed them up, with a maximum

of 24 true positives and 0 false positives per class. Table II

shows the results. With an overall grasping success rate of

88.9% (120 successful grasps out of 135 attempts), the Dex-

Net MM policy was able to successfully declutter all objects





control, and use it with a deep domain invariant object recog-

nition model for surface decluttering. In physical experiments

with 40 objects commonly used in homes and machine shops,

the pipeline was able to successfully declutter singulated

objects with 88.9% overall grasping success rate of 117/120
objects put into the correct bin.
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