Probability Functional Descent: A Unifying Perspective
on GANSs, Variational Inference, and Reinforcement Learning

Casey Chu' Jose Blanchet? Peter Glynn 2

Abstract

The goal of this paper is to provide a unifying
view of a wide range of problems of interest in
machine learning by framing them as the mini-
mization of functionals defined on the space of
probability measures. In particular, we show that
generative adversarial networks, variational infer-
ence, and actor-critic methods in reinforcement
learning can all be seen through the lens of our
framework. We then discuss a generic optimiza-
tion algorithm for our formulation, called prob-
ability functional descent (PFD), and show how
this algorithm recovers existing methods devel-
oped independently in the settings mentioned ear-
lier.

1. Introduction

Deep learning now plays an important role in many domains,
for example, in generative modeling, deep reinforcement
learning, and variational inference. In the process, dozens
of new algorithms have been proposed for solving these
problems with deep neural networks, specific of course to
domain at hand.

In this paper, we introduce a conceptual framework which
can be used to understand in a unified way a broad class of
machine learning problems. Central to this framework is
an abstract optimization problem in the space of probability
measures, a formulation that stems from the observation
that in many fields, the object of interest is a probability
distribution; moreover, the learning process is guided by
a probability functional to be minimized, a loss function
that conceptually maps a probability distribution to a real
number. Table 1 lists these correspondences in the case of
generative adversarial networks, variational inference, and
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reinforcement learning.

Because the optimization now takes place in the infinite-
dimensional space of probability measures, standard finite-
dimensional algorithms like gradient descent are initially
unavailable; even the proper notion for the derivative of
these functionals is unclear. We call upon on a body of
literature known as von Mises calculus (von Mises, 1947,
Fernholz, 2012), originally developed in the field of asymp-
totic statistics, to make these functional derivatives precise.
Remarkably, we find that once the connection is made, the
resulting generalized descent algorithm, which we call prob-
ability functional descent, is intimately compatible with
standard deep learning techniques such as stochastic gra-
dient descent (Bottou, 2010), the reparameterization trick
(Kingma & Welling, 2013), and adversarial training (Good-
fellow et al., 2014).

When we apply probability functional descent to the afore-
mentioned domains, we find that we recover a wide range
of existing algorithms, and the essential distinction between
them is simply the way that the functional derivative, the von
Mises influence function in this context, is approximated.
Table 2 lists these algorithms and their corresponding ap-
proximation methods. Probability functional descent there-
fore acts as a unifying framework for the analysis of existing
algorithms as well as the systematic development of new
ones.

1.1. Related work

The problem of optimizing functionals of probability mea-
sures is not new. For example, Gaivoronski (1986) and
Molchanov & Zuyev (2001) study these types of problems
and even propose Frank-Wolfe and steepest descent algo-
rithms to solve these problems. However, their algorithms
are not immediately practical for the high-dimensional ma-
chine learning settings described here, and it is not clear
how to integrate their methods with modern deep learning
techniques.

Several others in the machine learning community also
adopt the perspective of descent in the space of probabil-
ity distributions. In order to introduce functional gradients,
these approaches endow the space of probability distribu-
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Domain

Distribution of interest

Functional Functional derivative

Generative adversarial networks Generator /1
Variational inference

Reinforcement learning Policy 7(al|s)

Approximate posterior ¢(z)

D(pllv)
Dx(q(2)[[p(z|2))
Expected reward

Discriminator D*(z)
Negative ELBO log p?(ji)

Advantage Q™ (s,a) — V™ (s)

Table 1. Framing a problem as the optimization of a probability functional unifies several domains.

Algorithm

Type of derivative estimator

Generative adversarial networks
Minimax GAN (Goodfellow et al., 2014)

Non-saturating GAN (Goodfellow et al., 2014)

Wasserstein GAN (Arjovsky et al., 2017)

Convex duality
Binary classification
Convex duality

Variational inference

Black-box variational inference (Ranganath et al., 2014)
Adversarial variational Bayes (Mescheder et al., 2017)
Adversarial posterior distillation (Wang et al., 2018)

Exact
Binary classification
Convex duality

Reinforcement learning
Policy iteration (Howard, 1960)
Policy gradient (Williams, 1992)

Actor-critic (Konda & Tsitsiklis, 2000; Sutton et al., 2000)
Dual actor-critic (Chen & Wang, 2016; Dai et al., 2017b)

Exact
Monte Carlo
Least squares

Convex duality

Table 2. Different existing algorithms correspond to different ways of estimating the functional derivative.

tions with either Hilbert structure (Dai et al., 2014; 2016;
Liu & Wang, 2016; Dai, 2018) or Wasserstein structure
(Richemond & Maginnis, 2017; Frogner & Poggio, 2018;
Zhang et al., 2018; Lin et al., 2018) and rely on gradient
descent or Wasserstein gradient flow respectively to de-
crease the objective value. Such approaches typically re-
quire kernel-based or particle-based methods to implement
in practice. By contrast, our approach foregoes gradients
and instead directly considers descent on linear approxi-
mations by leveraging the Gateaux derivative. As we shall
illustrate, this approach is more compatible with standard
deep learning techniques and indeed leads exactly to many
existing deep learning-based algorithms. Carmona & De-
larue (2018) provide a technical comparison between these
differing approaches for defining derivatives in chapter 5.

Finally, one part of our work recasts convex optimization
problems as saddle-point problems by means of convex
duality as a technique for estimating functional derivatives.
This correspondence between convex optimization problems
and saddle point problems is an old and general concept
(Rockafellar, 1968), and it underlies classical dual optimiza-
tion techniques (Lucchetti, 2006; Luenberger & Ye, 2015).
Nevertheless, the use of these min-max representations re-
mains an active topic of research in machine learning. Most
notably, the literature concerning generative adversarial net-
works has recognized that certain min-max problems are
equivalent to certain convex problems (Goodfellow et al.,

2014; Nowozin et al., 2016; Farnia & Tse, 2018). Outside of
GANS, Dai et al. (2017a; 2018) have begun using these min-
max representations to inspire learning algorithms. These
min-max representations are an important tool for us that
allows for practical implementation of our theory.

2. Descent on a Probability Functional

We let P(X) be the space of Borel probability measures on
a topological space X . Our abstract formulation takes the
form of a minimization problem over probability distribu-
tions:

i J(u).
uénpl(%() (k)

where .J : P(X) — R is called a probability functional. In
order to avoid technical digressions, we assume that X is a
metric space that is compact, complete, and separable (i.e. a
compact Polish space). We endow P(X) with the topology
of weak convergence, also known as the weak* topology.

We now draw upon elements of von Mises calculus (von
Mises, 1947) to make precise the notion of derivatives of
functionals such as J. See Fernholz (2012) for an in-depth
discussion, or Santambrogio (2015) for another perspective.

Definition 1 (Gateaux differential). Ler J : P(X) — R
be a function. The Gateaux differential d.J,, at 1 € P(X)
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in the direction Y is defined by

e—0t €

where x = v — p for some v € P(X).

Intuitively, the Gateaux differential is a generalization of the
directional derivative, so that d.J,,(x) describes the change
in the value of J () when the probability measure p is in-
finitesimally perturbed in the direction of , towards another
measure v. Though powerful, the Gateaux differential is a
function of differences of probability measures, which can
make it unwieldy to work with. In many cases, however, the
Gateaux differential dJ, () can be concisely represented
as an integral of an influence function V,, : X — R, where
the integral is taken with respect to the measure x.

Definition 2 (Influence function). We say that ¥, : X —
R is an influence function for J at i € P(X) if the Gateaux
differential d.J,,(x) has the integral representation

4,00 = [ yla) x(da) @
forall x = v — u, where v € P(X).

The influence function provides a convenient representa-
tion for the Gateaux differential. Because y = v — pis a
difference of probability distributions, we can also write

dJu(X) = Eww/[qju(x)] —Egmp [‘I’u(x)]

by linearity. We note that if ¥, is an influence function,
then sois ¥, + ¢ for a constant c.

The Gateaux derivative and the influence function provide
the proper notion of a functional derivative, which allows
us to generalize first-order descent algorithms to apply to
probability functionals such as .J. In particular, they permit
a linear approximation to .J(u) around j10, which we denote

J(p):

J(1) = J (o) + g (1 — po)
= J(1t0) + Earpu [V s (2)] = Baropig [ g ()]
= constant + E,, [V, (x)].

This expression, also known as a von Mises representation,
yields additional intuition about the influence function. Con-
cretely, note that a small pertubation to ;1 decreases J () if it
decreases E;~, [V, (x)]. Therefore, ¥, acts as a potential
function defined on X that dictates where samples = ~
should descend if the goal is to decrease J(u). Of course,
U,,, only carries this interpretation around the current value

of Ho-
Based on this intuition, we now present probability

functional descent, a straightforward analogue of finite-
dimensional first-order descent algorithms to probability

functionals. First, a linear approximation to the functional
J is computed at f4 in the form of the influence function
V¥, and then a local step is taken from pq so as to decrease
the value of the linear approximation. Concretely:

Algorithm 1 Probability functional descent on .J (1)

Initialize  to a distribution in P(X)
while £ has not converged do
Set U ~ ¥, (differentiation step)

Update p to decrease E,,,[¥(x)] (descent step)
end while

We shall see that probability functional descent serves as
a blueprint for many existing algorithms: in generative ad-
versarial networks, the differentiation and descent steps
correspond to the discriminator and generator updates re-
spectively; in reinforcement learning, they correspond to
policy evaluation and policy improvement.

In its abstract form, probability functional descent requires
two design choices in order to convert it into a practical algo-
rithm. In section 3, we discuss different ways to choose the
update in the descent step; Theorem 1 provides one generic
way. In section 4, we discuss different ways to approximate
the influence function in the differentiation step; Theorem 2
provides one generic way and an unexpected connection to
adversarial training.

3. Applying the Descent Step

One straightforward way to apply the descent step of PFD is
to adopt a parametrization 6 — pp and descend the stochas-
tic gradient of @ +— E,,,[¥(z)]." This gradient step is
justified by the following analogue of the chain rule:

Theorem 1 (Chain rule). Ler J : P(X) — R be continu-
ously differentiable, in the sense that the influence function
U, exists and (p,v) — By, [¥,, ()] is continuous. Let
the parameterization 6 «— g be differentiable, in the sense
that ﬁ(ﬂg+h — pg) converges to a weak limit as h — 0.
Then

Vod (o) = VoEeru, [¥(2)],

where U = U e 18 treated as a function X — R that is not
dependent on 0.

Theorem 1 converts the computation of Vg.J(pg), where J
may be a complicated nonlinear functional, into the com-
putation of a gradient of an expectation, which is easily
handled using standard methods (see e.g. Schulman et al.
(2015)). For example, the reparameterization trick, also

"Note that this gradient step is simply one possible choice of
update rule for the descent step of PFD; see subsection 7.1 (policy
iteration) for an instance of PFD where this gradient-based update
rule is not adopted.



Probability Functional Descent

known as the pathwise derivative estimator (Kingma &
Welling, 2013; Rezende et al., 2014), uses the identity

VoE e [¥(2)] = VoE. 0.0 [P (ho(2))],

where 1y samples z = hy(z) using z ~ N (0, ). Alterna-
tively, the log derivative trick, also known as the score func-
tion gradient estimator, likelihood ratio gradient estimator,
or REINFORCE (Glynn, 1990; Williams, 1992; Kleijnen &
Rubinstein, 1996), uses the identity

VoE o [P (2)] = Egrpy [¥(2) Vg log ()],

where 1i9() is the probability density function of 1ip. This
gradient-based update rule for the descent step is therefore
a natural, practical choice in the context of deep learning.

4. Approximating the Influence Function

The approximation of the influence function in the differ-
entiation step can in principle be accomplished in many
different ways. Indeed, we shall see that the distinguishing
factor between many existing algorithms is exactly which
influence function estimator used, as shown in Table 2. In
some cases, it is possible that the influence function can
be evaluated exactly, bypassing the need for approximation.
Otherwise, the influence function, being a function X — R,
may be modeled as a neural network; the precise way in
which this neural network needs to be trained will depend
on the exact analytical form of the influence function.

Remarkably, a generic approximation technique is available
if the functional .J is convex. In this case, the influence
function ¥, possesses a variational characterization in terms
of the convex conjugate J* of J. To apply this formalism,
we now view P(X) as a convex subset of the vector space
of finite signed Borel measures M (X), equipped with the
topology of weak convergence. Crucial to the analysis will
be its dual space, C(X), the space of continuous functions

X — R. Finally, R denotes the extended real line R U
{—00, c0}. The convex conjugate is then defined as follows:

Definition 3. Let .J : M(X) — R be a function. Its convex
conjugate is a function J* : C(X) — R defined by

J*(p) = sup
HEM(X)

[ [ e ntdo) ~ 30)].

X
Note that J must now be defined on all of M(X); it is
always possible to simply define J(u) = oo if u & P(X),
although sometimes a different extension may be more con-
venient. The convex conjugate forms the core of the follow-
ing representation for the influence function W ,:

Theorem 2 (Fenchel-Moreau representation). Ler J :
M(X) — R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ¢ — Eq.[p(x)] — J* (@), if it

exists, is an influence function for J at pi. With some abuse
of notation, we have that

¥, = argmax |E,.[p(2)] — J*(p)].
peC(X)

Theorem 2 motivates the following influence function ap-
proximation strategy: model ¢ : X — R with a neural
network and train it using stochastic gradient ascent on the
objective ¢ — E, [ (x)] — J*(¢4). The trained neural
network is then an approximation to W, suitable for use in
the descent step of PFD. Under this approximation scheme,
PFD can be concisely expressed as the saddle-point problem

infsup [Ecwplp(@)] — J*(9)]

where the inner supremum solves for the influence func-
tion (the differentiation step of PFD), and the outer infi-
mum descends the linear approximation E,.,,[p(x)] (the
descent step of PFD), noting that J*(¢) is a constant w.r.t. .
This procedure is highly reminiscent of adversarial train-
ing (Goodfellow et al., 2014); for this reason, we call PFD
with this approximation scheme based on convex duality
adversarial PFD. PFD therefore explains the prevalence of
adversarial training as a deep learning technique and extends
its applicability to any convex probability functional.

In the following sections, we demonstrate that PFD provides
a broad conceptual framework for understanding a wide
range of existing machine learning algorithms.

5. Generative Adversarial Networks

Generative adversarial networks (GANSs) are a technique
to train a parameterized probability measure p to mimic a
data distribution v. There are many variants of the GAN
algorithm. They typically take the form of a saddle-point
problem, and it is known that many of them correspond
to the minimization of different divergences D(u||v). We
complete the picture by showing that many GAN variants
could have been derived as instances of PFD applied to
different divergences.

5.1. Minimax GAN

Goodfellow et al. (2014) originally proposed the following
saddle-point problem

irﬁf sup 3E,,[log D(z)] + 1E,,[log(1 — D(z))].
D

The interpretation of this minimax GAN problem is that the
discriminator D learns to classify between fake samples
from p and real samples from v via a binary classification
loss, while the generator pu is trained to produce counterfeit
samples that fool the classifier. It was shown that the value
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of the inner optimization problem equals Djgs(u||v) —log 2,
where

Dis(ullv) = § Dicc(ull g+ 5v) + 3 D (v 3+ 5v)

is the Jensen—Shannon divergence, and therefore the prob-
lem corresponds to training p to minimize the divergence
between p and v. As a practical algorithm, simultaneous
stochastic gradient descent steps are performed on the dis-
criminator’s parameters ¢ and the generator’s parameters 6
using the two loss functions

{¢ = _%Ezwu[bg D¢(£L')] - %]EINHs [IOg(l - D¢(:L‘))},
0 LEpmp,[log(l — Dy(x))],
3)

where D and f1y are parameterized with neural networks.

Our unifying result is the following:

Proposition 1. Adversarial PFD on the Jensen—Shannon
divergence objective

Jis(p) = Dys(pl|v).
vields the minimax GAN algorithm (3).

That is, the minimax GAN could have been derived mechan-
ically and from first principles as an instance of adversarial
PFD. To build intuition, we note that the discriminator plays
the role of the approximate influence function:

Proposition 2. Suppose p has density p(x) and v has den-
sity q(zx). Then the influence function for Jjs is

_1 p(x)
Uys(z) = §1Og 2@ + @)

Recall that in the minimax GAN, the optimal discriminator
D~ satisfies D*(x) = #%, so the influence function
Uys(z) = $log(l — D*(x)) is approximated using the
learned discriminator.

Now, we rederive the minimax GAN problem (3) as a form
of adversarial PFD. We compute:

Proposition 3. The convex conjugate of Jjs is

Jis(@) = — LB, [log(1 — e2#(®)tlog2)]

1
5 5 log 2.

Theorem 2 yields the representation

Wjs = argmax |E,pu[p(2)]+1E,, [log(1—e2?(®)Tlos2)]
peC(X)

an ascent step on which is the ¢-step in (3) with the sub-
stitution ¢ = 1 1log(1 — D) — 1log2. The descent step
corresponds to updating p to decrease the linear approxi-
mation E,.,,[¢(2)], which corresponds to the 6-step in (3).
In fact, a similar argument can be applied to the f-GANs
of Nowozin et al. (2016), which generalize the minimax
GAN. The observation that f-GANs (and hence the mini-
max GAN) can be derived through convex duality was also
noted by Farnia & Tse (2018).

5.2. Non-saturating GAN

Goodfellow et al. (2014) also proposed an alternative to (3)
called the non-saturating GAN, which prescribes descent
steps on

X _%anu[l()g D¢(x)] - %Ezwte [log(1 — D¢($))L
0+ —3Eqpp, [log Dy (z)].
In the step on the generator’s parameters 6, the log(1 — D)
in the minimax GAN has been replaced with — log Dy. This
heuristic change prevents gradients to 6 from converging to
0 when the discriminator is too confident, and it is for this
reason that the loss for 6 is called the non-saturating loss.

We consider a slightly modified problem, in which the origi-
nal minimax loss and the non-saturating loss are summed
(and scaled by a factor of 2):

6 —Eqnyy[l0g Dy (@)] + Egn, log(1 — Dy(a))].
“4)

This also prevents gradients to 6 from saturating, achieving
the same goal as the non-saturating GAN. Huszar (2016)
and Arjovsky & Bottou (2017) recognize that this process
minimizes Dy (u||v).

{¢ = — 3B, [log Dy ()] — LEun, log(1 — Dy(x))),

We claim the following:

Proposition 4. PFD on the reverse Kullback—Liebler diver-
gence objective

Ins(p) = Dxr(pllv),

using the binary classification likelihood ratio estimator
to approximate the influence function, yields the modified
non-saturating GAN optimization problem (4).

Proposition 5. Suppose p has density p(x) and v has den-
sity q(x). The influence function for Jxs is

Uns(z) = log ——.

Now, because the binary classification loss

D —%Ezwy[log D(z)]— %EzNM [log(1—D(x))], (5)
is minimized by D(x) = %, one estimator for Wysg
is simply
1— Dy(x)

Ung(z) =~ log —————=
NS ( ) 2 D¢> (fL’) )

The derivation of Huszar (2016) omits showing that the de-
pendence of pqs((’;)) on 6 can be ignored, but the result is proved by
Theorem 2.5 of Arjovsky & Bottou (2017). We remark that this
result can be seen as a corollary of Theorem 1 and Proposition 5.
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where ¢ is updated as in the ¢-step in (4). With this ap-
proximation scheme, the differentiation step and the descent
step in PFD correspond exactly to the ¢-step and 6-step
respectively in (4). Once again, the discriminator serves to
approximate the influence function.

5.3. Wasserstein GAN

Arjovsky et al. (2017) propose solving the following saddle-
point problem

inf  sup

[E»LNM[D(JJ)}
BIDlL<1

- EwM,[D(a:)]],

where ||D||;, denotes the Lipschitz constant of D. The
corresponding practical algorithm amounts to simultaneous
descent steps on

{(b = Egropug [Do ()] — B [Dy(2)],

(6)
0= —Eonp [Do ()],

where D, is reprojected back to the space of 1-Lipschitz
functions after each ¢-step. Here, pi¢ is again the generator,
and Dy is the discriminator, sometimes called the critic.
This algorithm is called the Wasserstein GAN algorithm, so
named because this algorithm approximately minimizes the
1-Wasserstein distance W7 (11, v); the motivation for the ¢-
step in (6) is so that the discriminator learns the Kantorovich
potential that describes the optimal transport from p to v.
See e.g. Villani (2008) for the full optimal transport details.

We claim that the Wasserstein GAN too is an instance of
PFD, and once again, the discriminator plays the role of
approximate influence function:

Proposition 6. Adversarial PFD on the Wasserstein dis-
tance objective

Jw(p) = Wi(p,v)

vields the Wasserstein GAN algorithm (6).

Proposition 7. The influence function for Jw is the Kan-
torovich potential corresponding to the optimal transport
Jfrom p to v.

We remark that the gradient computation in Theorem 3
of Arjovsky et al. (2017) is a corollary of Theorem 1 and
Proposition 7. Now, we show that the Wasserstein GAN
algorithm can be derived mechanically via convex duality.
The connection between the Wasserstein GAN and convex
duality was also observed by Farnia & Tse (2018).

Proposition 8. The convex conjugate of Jyy is

Ry (9) = Eonw[p(2)] + {llll < 1}

We use the notation {A} to denote the convex indicator
function, which is 0 if A is true and oo if A is false.

Theorem 2 yields the representation

Wy = argmax [Eqns, (@) ~Epms [p(@)]~{l[¢llz < 1}].
peC(X)

The adversarial PFD differentiation step therefore corre-

sponds exactly to the ¢-step in (6), and the PFD descent

step is exactly the #-step in (6).

6. Variational Inference

In Bayesian inference, the central object is the posterior
distribution

_ plalepz)
T p(alo)p(=) d=’

where x is an observed datapoint, p(z|z) is the likelihood,
p(z) is the prior. Unfortunately, the posterior is difficult
to compute due to the presence of the integral. Variational
inference therefore reframes this computation as an opti-
mization problem in which a variational posterior q(z) ap-
proximates the true posterior by solving

inf Dir.(q(2)[[p(2]2))-

p(z]2)p(2)
p(x)

p(zlz) =

6.1. Black-box variational inference

This objective is not directly optimizable, due to the pres-
ence of the intractable p(z|z) term. The tool of choice for
variational inference is the evidence lower bound (ELBO),
which rewrites

g p(e)Eo o [10g TLP)
Dxi(q(2)||p(z|x)) = log p(z)—E,q() | log q(2) }

ELBO

Because log p(x) is fixed, we may maximize the ELBO to
minimize the KL divergence. The advantage of doing so is
that all the terms inside the expectation are now tractable
to evaluate, and thus the expectation may be approximated
through Monte Carlo sampling. This leads to the following
practical algorithm, namely stochastic gradient descent on
the objective

p(z|z)p(z)
q0(2) .

This is called black-box variational inference (Ranganath
et al., 2014). Roeder et al. (2017) later recognized that
ignoring the #-dependence of the term in the expectation
yields the same gradients in expectation; it is this variant
that we consider. Our unification result is the following:

0 —Fugyie) [log 7

Proposition 9. PFD on the variational inference objective

Jvi(q) = Dxwr(q(2)|[p(z|z)),

using exact influence functions, yields the black-box varia-
tional inference algorithm (7).
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In fact, the influence function turns out to be precisely the
inside of the negative ELBO bound:

Proposition 10. The influence function for Jyr is

Pvi(z) = log WQS;(Z) '

In this context, the influence function can be evaluated ex-
actly, so the differentiation step of PFD may be performed
without approximation. The descent step of PFD becomes
exactly the descent step on 6 of (7), where the 6-dependence
of the term in the expectation is ignored. We remark that
the argument of Roeder et al. (2017) that this #-dependence
can be ignored can be seen as a corollary of Theorem 1 and
Proposition 10.

6.2. Adversarial variational Bayes

When the density function of the prior p(z) or the varia-
tional posterior ¢(z|z) is not available, adversarial varia-
tional Bayes (Mescheder et al., 2017) may be employed.
Here, the quantity log % is approximated by a neural net-
work f4 (%) through a binary classification problem, much
like (5). The resulting algorithm applies simultaneous de-

scent steps on

{¢ = =By () [10g 0(f5(2))] = Ep(z) [log(1 — o (f(2)))]
0 = —Egy()[—fo(2) + log p(z]2)].
®)

This algorithm is another instance of PFD:

Proposition 11. PFD on the variational inference objective
Jyv1, using the binary classification likelihood ratio estima-
tor to approximate the influence function, yields adversarial
variational Bayes (8).

It is easily seen that

Uyi(z) = log o 9(2) ~ fo(z) —logp(z|z).

z|2)p(z)
Therefore, the ¢-step of (8) is the differentiation step of
PFD, and the #-step of (8) is the descent step. We remark
that the gradient computation in Proposition 2 of Mescheder
et al. (2017) is a corollary of Theorem 1 and Proposition 10.

7. Reinforcement Learning

In a Markov decision process, the distribution of states
s = (so0,81,-..), actions a = (ay,as,...), and rewards
r = (r1,rs,...) is governed by the distribution

2

P(&aﬂ") :PO(SO) p(start‘stflaat) W(at‘5t71)7

~
Il

1

where pg(s) is an initial distribution over states, p(s’, r|s, a)
gives the transition probability of arriving at state s” with
reward r from a state s taking an action a, and 7(als) is
a policy that gives the distribution of actions taken when
in state s. In reinforcement learning, we are interested
in learning the policy 7(a|s) that maximizes the expected
discounted reward E[>7° 7 ~'r,], where 0 < v < 1is
a discount factor, while assuming we only have access to
samples from pg and p.

7.1. Policy iteration

Policy iteration (Howard, 1960; Sutton & Barto, 1998) is
one scheme that solves the reinforcement learning problem.
It initializes 7(s|a) arbitrarily and then cycles between two
steps, policy evaluation and policy improvement. In the pol-
icy evaluation step, the state-action value function Q7 (s, a)
is computed. In the policy improvement step, the policy is
updated to the greedy policy, the policy that at state s takes
the action arg max, Q™ (s, a) with probability 1.

Before we present our unification result, we introduce an
arbitrary distribution over states 7(s) and consider the joint
distribution 7(s,a) = 7w(s)mw(als), so that 7 is one proba-
bility distribution rather than one for every state s. Now:

Proposition 12. PFD on the reinforcement learning objec-
tive

Jru(m) = —EY 7'y,
t=1

using exact influence functions and global minimization of
the linear approximation, yields the policy iteration algo-
rithm.

Proposition 13. The influence function for Jgy, is

20 Y'PE(s)
7(s)
where Q™ is the state-action value function, V™ is the state

value function, and py] is the marginal distribution of states
after t steps, all under the policy 7.

\IIRL(S7Q) = (QW(S,CL) _Vw(s))a

The descent step of PFD corresponds to taking a step on
mo(s,a) = m(s)mp(als) to decrease the linear approxima-
tion

0— —Er,(s.a) [W(Qﬂ(s, a)—V7(s))].

Setting d™(s) = (1 — ) >, ¥'PF (s), this simplifies to
either

1

-

1

-

0 — —

IE(JZ’r (s)]Emg(a|s) [Qﬂ—(sa a) VT (5)]7 (9)

0— —

Egr ()Erg(a)s) Q7 (5,a)] + constant.  (10)
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The most naive way to decrease (10) is to globally minimize
it. This corresponds to setting my(a|s) to be the greedy
policy. Hence, the evaluation of Q™ (s, a) in policy iteration
corresponds exactly to computing the influence function in
the differentiation step of PFD, and the greedy policy update
corresponds to applying the descent step.

7.2. Policy gradient and actor-critic

Policy iteration exactly computes the linear approximation
and nonparametrically minimizes it. Now we consider al-
gorithms in which the policy is parameterized and the de-
scent step is taken using a gradient step on (9) or (10). If
this approach is taken, there is a lot of flexibility in how
the influence function can be approximated, but generally
speaking, the result is an actor-critic method (Konda & Tsit-
siklis, 2000; Sutton et al., 2000), which describes a class of
algorithms that approximates the value function of the cur-
rent policy and then takes a gradient step on the parameters
of the policy using the estimated value function. We claim:

Proposition 14. Approximate PFD on the reinforcement
learning objective Jr1, where the influence function is es-
timated using, for example, Monte Carlo, least squares, or
temporal differences, yields an actor-critic algorithm.

There is a huge number of possible approximations to the
influence function; we list several and their corresponding
algorithms. The simplest algorithm is the policy gradient
algorithm, also known as REINFORCE (Williams, 1992),
which directly uses a Monte Carlo estimate of Q7 (s, a) as
the influence function estimator. Stochastic value gradients
(Heess et al., 2015) and the closely related deterministic
policy gradient (Silver et al., 2014) fit a neural network
to Q™ (s,a) using a temporal difference update and use
that as the influence function approximation; their use of
a neural network makes them compatible with the repa-
rameterization trick. Advantage actor-critic (Mnih et al.,
2016) estimates Q™ (s, a) — V7 (s) by estimating Q™ (s, a)
using Monte Carlo and fitting a neural network to V7 (s)
using least squares. All of these algorithms are traditionally
justified by the celebrated policy gradient theorem (Sutton
et al., 2000); we remark that this theorem is a corollary of
Theorem 1 and Proposition 13.

7.3. Dual actor-critic

Because Jgy, is not convex, adversarial PFD does not di-
rectly apply. However, the form of Proposition 13 strongly
suggests fixing the arbitrary distribution 7(s) to be the dis-
counted marginal distribution of states d” (s). Closely re-
lated to the linear programming formulation of reinforce-
ment learning (Puterman, 1994), this choice turns out to
convexify Jry, thus enabling the use of convex duality to
approximate its influence function. We expect to obtain
an adversarial formulation of reinforcement learning; one

such formulation is the dual actor-critic algorithm (Dai et al.,
2017b; Chen & Wang, 2016):

sup ir‘}f (1 =Epy(s)[V(8)] + En(s,0)[AV (s,a)], (11)

where AV (s,a) = Ep(sr rjs,a) [P +7V (8')] =V (s). Indeed:
Proposition 15. Adversarial PFD on the reinforcement
learning objective Jry, yields the dual actor-critic algo-
rithm (11).

Proposition 16. The convex conjugate of Jry, is

JrL(@) = (1 = 7)Epys) Vi (8) + {V,, exists},

where V., is the unique solution to ¢ = —AV,, if it exists.
Using Theorem 2, adversarial PFD therefore recovers (11):

Hﬂl_f sup IETr(s,a) [@(sa a)] - JE{L(W)
»

= 12f sup Ew(s,a) [_‘AVA,O(Sa a)] - (1 - V)EPU(S)VW(S)'
©

8. Conclusion

This paper suggests several new research directions. First
is the transfer of insight and specialized techniques from
one domain to another. As just one example, in the context
of GANSs, Arjovsky et al. (2017) claim that constraining
the discriminator to be 1-Lipschitz improves the stability
of the training algorithm — could similarly constraining the
analogous object in reinforcement learning, namely an ap-
proximation to the advantage function, lead to improved
stability in deep reinforcement learning?

Moreover, the abstract viewpoint taken in this paper allows
for the simultaneous development of new algorithms for
GAN:gs, variational inference, and reinforcement learning.
General influence function approximation techniques in the
spirit of convex duality could improve all three fields at once.
More sophisticated descent techniques beyond gradient de-
scent on parameterized probability distributions, such as
Frank-Wolfe or trust-region methods, could improve learn-
ing or yield valuable convergence guarantees.

Finally, this paper unlocks the possibility of applying prob-
ability functional descent to new problems. In principle,
the algorithm can be applied mechanically to any situation
where one wants to optimize over probability distributions,
possibly leading to new, straightforward ways to solve prob-
lems in, for example, mathematical finance, mean field
games, or POMDPs. One could argue that the current ex-
citement over deep learning began once researchers realized
that to solve a problem, they could simply write a loss func-
tion and then rely on automatic differentiation and gradient
descent to minimize it. We hope that probability functional
descent provides a similarly turnkey solution for optimizing
loss functions defined on probability distributions and leads
to a similar burst of research activity.
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Supplementary Material for Probability Functional Descent

A. Proofs and Computations

Lemma 1. Let J : P(X) - R Then ¥ : X — Risan
influence function of J at u if and only if

e, = [ v ).

de

€=

Proof. The left-hand side equals (1), which equals (2). [

Theorem 1 (Chain rule). Ler J : P(X) — R be continu-
ously differentiable, in the sense that the influence function
U, exists and (p,v) — Eu,[¥,, ()] is continuous. Let
the parameterization 6 — 11y be differentiable, in the sense
that ﬁ(/}z9+h — pg) converges to a weak limit as h — 0.
Then

Vg:](,ug) = VQ]EJCNMQ [\IJ(I)],

where U = U o 18 treated as a function X — R that is not
dependent on 6.

Proof. Without loss of generality, assume 6 € R, as the
gradient is simply a vector of one-dimensional derivatives.
Let xc = ¢ (tto+c — ptg), and let x = lime_,o x. (weakly).
Then

d

d
@J(M)) = @J(Mﬂe)

e=!

d
= —J e
e (o + €xe)

€=

Assuming for now that

d
_——
0T a (1o + €x)

d
€

)
e=0

we have by Lemma 1 that

d .
s _ \,
57 (1) /X dx
.1
= /}(Wd(lgog(#9+e —/Le))
, .1
= lg]% Wd(g(#9+e - Me))

X

d )

== | ¥
de/x el

where the interchange of limits is by the definition of weak
convergence (recall we assumed that X is compact, so VU is
continuous and bounded by virtue of being continuous).

The equality we assumed is the definition of a stronger
notion of differentiability called Hadamard differentiabil-
ity of J. Our conditions imply Hadamard differentiability
via Proposition 2.33 of Penot (2012), noting that the map
(11, x) = [ ¥u dx is continuous by assumption. O

Theorem 2 (Fenchel-Moreau representation). Let J :
M(X) — R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ¢ — E, . [p(x)] — J* (), ifit
exists, is an influence function for J at p. With some abuse
of notation, we have that

Wy, = argmax |Eqpfo()] — J* ()|
peC(X)

Proof. We will exploit the Fenchel-Moreau theorem, which
applies in the setting of locally convex, Hausdorff topolog-
ical vector spaces (see e.g. Zalinescu (2002)). The space
we consider is M (X)), the space of signed, finite measures
equipped with the topology of weak convergence, of which
P(X) is a convex subset. M (X)) is indeed locally convex
and Hausdorff, and its dual space is C(X) (see e.g. Alipran-
tis & Border (2006), section 5.14).

We now show that a maximizer ¢* is an influence function.
By the Fenchel-Moreau theorem,

J(p) = T () = @Esg&) [/X pdp — J*(@)},

and

J(u+ex) = sup

[/ <pdu+6/ wdx—J*(so)]
peC(X) X X

Because J is differentiable, ¢ — J (1 + €x) is differentiable,
so by the envelope theorem (Milgrom & Segal, 2002),

= *d

so that ¢* is an influence function by Lemma 1.

d
@J(/Hr&x)

The abuse of notation stems from the fact that not all in-
fluence functions are maximizers. This is true, though, if
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J(p) = ooif p & P(X):
/ U, dp— J*(V,)
X

:/ U, dyp— sup [/ \Ifudl/—‘](l/)}
X veP(X) X

inf {—/X\Ilud(y—u)—i—J(V)}

veP(X)
d
= inf — _
uel7r>1(X) [ de T+ el =) =0 + J(V)}
> J(p),

since the convex function f(e€) = J(u+e(v—p)) lies above
its tangent line:

f(1) = f(0) +1- f(0).

Since J(p) = J**(u), we have that

/\p#du—J*(\I}#)z sup [/ wdufJ*(so)]-
X peC(X) X

O

The following lemma will come in handy in our computa-
tions.

Lemma 2. Suppose J : M(X) — R has a representation

J(w) = s [/Xsodu—K(w)}

where K : C(X) — R is proper, convex, and lower semi-
continuous. Then J* = K.

Proof. By definition of the convex conjugate, J = K*.
Then J* = K** = K, by the Fenchel-Moreau theorem.
O

We note that when applying this lemma, we will often im-
plicitly define the appropriate extension of J to M (X) to be
J(1) = sup,ec(x)lf wdp — K(p)]. The exact choice of
extension can certainly affect the exact form of the convex
conjugate; see Ruderman et al. (2012) for one example of
this phenomenon.

Proposition 2. Suppose p has density p(x) and v has den-
sity q(x). Then the influence function for Jys is

_ 1 p()

Vas(@) = 3 los S @)

Proof. The result follows from Lemma 1:

4

T Jys(pu+ ex))

1 d[ p+ex
=—- | —|(p+ex)log+—+—"———
2/Xd6 (Pt ex) ETp+en) + 1g

+qlog 5 :

—_— dx
5(p+ex)+%q}e:0
1/ {
= log
2 Jx %P

p 1 p q
/ [log P
X p+q

- — x dz
+ 349 p+q p+q}

+ log 2} x dz.

N |

Proposition 3. The convex conjugate of Jjg is

Jis(p) = —%Ezwy[log(l _ e2v(x)+log 2)] _

1
5 log 2.
Proof.

Tisto) = s [ [ du— s
HEM(X) X

= sup/ [gpp - 1plog % — 1qlog %} dx.
p Jx 2 p+3q 2 7P+ 34

2
Setting the integrand’s derivative w.r.t. p to 0, we find that

pointwise, the optimal p satisfies

o= glos L
2 3P+ 354

We eliminate p in the integrand. Notice that the first two
terms in the integrand cancel after plugging in p. Since

q p 2
7:2(1_7):2 1 —2e%%),
ip+1iq p+q ( )

we obtain that
* 1 2 1
Jis(p) = —5 [ qlog(l —2e*)dzx — - log2.
2 /x 2
O]

Proposition 5. Suppose p has density p(x) and v has den-
sity q(z). The influence function for Jxg is

Uns(z) = log zg;
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Proof. The result follows from Lemma 1:

d
d*JNS(,U + GX)

(p+ €x) log d
X

=0

Xlog + X} dx

Il
— %\&

[
[log + 1] dy
|

log 2}
q

O

Proposition 7. The influence function for Jw is the Kan-
torovich potential corresponding to the optimal transport

Jrom p to v.

Proof. See Santambrogio (2015), Proposition 7.17.

Proposition 8. The convex conjugate of Jvy is

Ry (#) = B [o(2)] + {ll el < 1}

O

Proof. Using Kantorovich—Rubinstein duality, we have that

Jw(p) = sup {/ sodu—/ sodV]
[lell<1 X X

©

where we use the notation

0  Ais true,
{A} = { .

oo Ais false.

By Lemma 2,

Jsvw):/xgodu+{||¢|u31}.

Proposition 10. The influence function for Jy is

\IJVI(Z) = IOg o(x

=sup | [ pdu— [ pdr—{llell < 1],

Proof. The result follows from Lemma 1:

d
d*JVI(q + €x)
€

o) e (o o ) X()
= & [ )+ ex(2ior T

/ X(z) log q(z)(—i—;;)c(z) + X(z)} dz
q(2)
p(z|x)

/
/ :log(l(zz)) + logp(x) + 1} x(2) dz
e

e=0

e=0

log

+ 1} x(z)dz

Proofs continue on the following page.
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Proposition 13. The influence function for Jgy, is

> oo V' PE(s)

\I/RL(S,CL) = — W(s)

(Q7(s,0) = V7(s)),

where Q™ is the state-action value function, V'™ is the state value function, and p¥ is the marginal distribution of states after
t steps, all under the policy .

Proof. First, we note that

d
T+ enals)|

_ d m(a,s) +ex(s,a)
de m(s)+ex(s)

_ x(s,0) — x(s)(als)

7(s) ’

e=0

where we abuse notation to denote x(s) = [ x(s,a’) da'.

We have
—JrL = E[Z’YFIH],
t=1

or, plugging in the measure,

oo oo oo
_JRL:/Z’)’t_thpo(SO)Hp(3j77aj|3j717aj H (ag|sk—1)
t=1 j=1 k=1

The integral is over all free variables; we omit them here and in the following derivation for conciseness.

In computing % JRL (T + €X)|e=0, the product rule dictates that a term appear for every k, in which 7 (ag|sk—1) is replaced
with %(w + ex)(ag|sk—1)|e=0. Hence:

d
- *JRL(W +ex)

e=0

(o9}
/ZV 7t Po(s0 H (s5:75085-1,a5)

X(Sk—1,ar) — X(8k—1)m(ak|sk-1) T4

X E (s ) | I m(aelse—1)
k-1 et
ik

o0
—Z/ZV 7t Po(50 Hp $j> 751851, a;5)
j=1

oo X(sr—1,ak) = X(sk—1)m(ak|sk-1) ﬁﬂ(aelw 1)

m(sk-1) =1
Ik




Probability Functional Descent

reordering the summations. Note that for ¢ < k, the summand vanishes:
o0
/ 11 pCsjirilsj—1,a5)
j=k
oo

x (x(sk—1,ar) — X(sk—1)m(ar|se-1)) [ m(aelse—1)

l=k+1

= / (X(sk—1,ar) — x(sp—1)7(ar|sk-1))

= / (X(Sk—l) —X(Sk—l))
-0,

since all the variables ay, 7, Sk, Gk41, Tk+1, Sk+1, - - - integrate away to 1. This yields:

d
- IJRL(W + €x)
€ €=

o0

o0 oo
= Z/ZVt_lrtpO<30)Hp(3j>7"j|3j717aj)
k=1" t=k j=1

X(8k—1,0k) — x(sk—1)7(ak|s -

k—1,0k) — X(Sk-1 k|Sk—1)

X | | m(ag|se—1).
¢

m(8k-1)

=1
(#k
Then, substituting the marginal distribution (note s;_1 is not integrated)
k—1 k-1
Pr1(sk—1) = / [T pCsjrilsj—1sa) [T w(aclse—1),
j=1 =1
we obtain
L I+ )
- — T+ €
dc RL X o
oo
=3 [ 3ttt Tt ol
=k
oo
Sk—1, 0k X(sk—1)m(ak|sk—1
> X( ) ) ( | ) H 7T(0L£|S£71)-
(Sk‘l) =kl

Let us rename the integration variables by decreasing their indices by k& — 1:

d
— —Jro(m + ex)

de
o0
—Z/ZfM%M1%HSMMmW
( _OO

0)m(a1]so)
) H (aelse—1)

" x(s0,a1) —

m(s0

Substituting in

"(s0) = / St [T p(si0 7151, a5) T m(aelser),
t=1 j=1

{=1

oo oo o0
Q(so.an) = [ S0t [ plsgerslsyoveap) [ wlardsi).
t=1 j=1

(=2
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we obtain

d
- d—JRL (m+ ex)

k-1 Q”(Smal)x(so’al) — V"™ (s0)x(s0)
‘Z/ i) w(s0) |

Finally, by Lemma 1, we obtain that

-~ > heo 1V PE(5)

\IIRL(S,Q) = 7T(S)

(Q7(s,a) = V7(s)).

Proposition 16. The convex conjugate of Jry, is
Th(9) = (U= 1By () Vils) + {Vp exisis},
where V,, is the unique solution to o = — AV, if it exists.
Proof. As mentioned in the text, we set the arbitrary distribution 7(s) = (1 — ) > oy 7' (s). In doing so, 7(s,a)
becomes a state-action occupancy measure that describes the frequency of encounters of the state-action pair (s, a) over

trajectories governed by the policy 7(al|s). It is known that there is a bijection between occupancy measures 7 (s, a) and
policies 7(a|s) (Syed et al., 2008; Ho & Ermon, 2016).

We can enforce this setting by redefining
JRL( :—]EZ’}/t 17”15+{V8 7T Z’y },
t=1

where again {-} is the convex indicator function. This equation can be rewritten as

JrL(m) = —Er(s.a)R(s,a) + {Vs/ c(s)) = (1 —v)po(s') + ’yEﬂ(s,a)p(sﬂs,a)},

where R(s,a) = Ep(s r|s,a) [r]. The constraint is known as the Bellman flow equation. This formulation is convex, as it is
the sum of an affine function and an indicator of a convex set (indeed, an affine subspace).

We recall —p = AV,,, where AV (s,a) = Ep (s r(s,q)[7 + 7V (5")] = V(5). Now, V,, is uniquely defined by ¢ if a solution
to the equation exists. To see this, note that V,, is the fixed point of the Bellman operator 7 defined by

(T(LV)(S) = (R + 410)(87 a) + ,Y]Ep(s’|s,a)v<sl)a

which is contractive and therefore has a unique fixed point. A representation of V,, may be obtained via fixed point iteration
using 7 for an arbitrary action a:

V,(s) = lim (T%)*0 = E* Zﬂy“l(R +©)(s¢,a),

k—o0
t=1

where the expectation is taken under the deterministic policy a.

We rewrite Jry, using a Lagrange multiplier V' (s)
Jru(m) = —En(s,a)R(s,a) + Slép/V(S/) [ﬂ(s’) — (1 =)po(s") — 'yEﬁ(sﬂ)p(sﬂs,a)} ds'
= Sl‘ip _]ETr(s,a)R(Sv a) + ETA’(S)V(S) - (1 - W)Epo(s)v(s) - ’YEW(s,a)Ep(s’|s,a)V(3/)

= supEr(5.0)0(5,a) — (1 = 7)Ep, (5 Vi (s) — {V,, exists}.
@
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Note that (1 —7)E,, 5V, (s) + {V,, exists} is convex in ¢; this stems from the fact that

Po
Vapt(i—ayer = aVe + (1 = a)Vyr.

The result follows from Lemma 2.



