
Probability Functional Descent: A Unifying Perspective
on GANs, Variational Inference, and Reinforcement Learning

Casey Chu 1 Jose Blanchet 2 Peter Glynn 2

Abstract
The goal of this paper is to provide a unifying

view of a wide range of problems of interest in

machine learning by framing them as the mini-

mization of functionals defined on the space of

probability measures. In particular, we show that

generative adversarial networks, variational infer-

ence, and actor-critic methods in reinforcement

learning can all be seen through the lens of our

framework. We then discuss a generic optimiza-

tion algorithm for our formulation, called prob-
ability functional descent (PFD), and show how

this algorithm recovers existing methods devel-

oped independently in the settings mentioned ear-

lier.

1. Introduction
Deep learning now plays an important role in many domains,

for example, in generative modeling, deep reinforcement

learning, and variational inference. In the process, dozens

of new algorithms have been proposed for solving these

problems with deep neural networks, specific of course to

domain at hand.

In this paper, we introduce a conceptual framework which

can be used to understand in a unified way a broad class of

machine learning problems. Central to this framework is

an abstract optimization problem in the space of probability

measures, a formulation that stems from the observation

that in many fields, the object of interest is a probability

distribution; moreover, the learning process is guided by

a probability functional to be minimized, a loss function

that conceptually maps a probability distribution to a real

number. Table 1 lists these correspondences in the case of

generative adversarial networks, variational inference, and
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reinforcement learning.

Because the optimization now takes place in the infinite-

dimensional space of probability measures, standard finite-

dimensional algorithms like gradient descent are initially

unavailable; even the proper notion for the derivative of

these functionals is unclear. We call upon on a body of

literature known as von Mises calculus (von Mises, 1947;

Fernholz, 2012), originally developed in the field of asymp-

totic statistics, to make these functional derivatives precise.

Remarkably, we find that once the connection is made, the

resulting generalized descent algorithm, which we call prob-
ability functional descent, is intimately compatible with

standard deep learning techniques such as stochastic gra-

dient descent (Bottou, 2010), the reparameterization trick

(Kingma & Welling, 2013), and adversarial training (Good-

fellow et al., 2014).

When we apply probability functional descent to the afore-

mentioned domains, we find that we recover a wide range

of existing algorithms, and the essential distinction between

them is simply the way that the functional derivative, the von
Mises influence function in this context, is approximated.

Table 2 lists these algorithms and their corresponding ap-

proximation methods. Probability functional descent there-

fore acts as a unifying framework for the analysis of existing

algorithms as well as the systematic development of new

ones.

1.1. Related work

The problem of optimizing functionals of probability mea-

sures is not new. For example, Gaivoronski (1986) and

Molchanov & Zuyev (2001) study these types of problems

and even propose Frank-Wolfe and steepest descent algo-

rithms to solve these problems. However, their algorithms

are not immediately practical for the high-dimensional ma-

chine learning settings described here, and it is not clear

how to integrate their methods with modern deep learning

techniques.

Several others in the machine learning community also

adopt the perspective of descent in the space of probabil-

ity distributions. In order to introduce functional gradients,

these approaches endow the space of probability distribu-
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Domain Distribution of interest Functional Functional derivative

Generative adversarial networks Generator μ D(μ||ν) Discriminator D∗(x)
Variational inference Approximate posterior q(z) DKL(q(z)||p(z|x)) Negative ELBO log q(z)

p(x,z)

Reinforcement learning Policy π(a|s) Expected reward Advantage Qπ(s, a)− V π(s)

Table 1. Framing a problem as the optimization of a probability functional unifies several domains.

Algorithm Type of derivative estimator

Generative adversarial networks
Minimax GAN (Goodfellow et al., 2014) Convex duality

Non-saturating GAN (Goodfellow et al., 2014) Binary classification

Wasserstein GAN (Arjovsky et al., 2017) Convex duality

Variational inference
Black-box variational inference (Ranganath et al., 2014) Exact

Adversarial variational Bayes (Mescheder et al., 2017) Binary classification

Adversarial posterior distillation (Wang et al., 2018) Convex duality

Reinforcement learning
Policy iteration (Howard, 1960) Exact

Policy gradient (Williams, 1992) Monte Carlo

Actor-critic (Konda & Tsitsiklis, 2000; Sutton et al., 2000) Least squares

Dual actor-critic (Chen & Wang, 2016; Dai et al., 2017b) Convex duality

Table 2. Different existing algorithms correspond to different ways of estimating the functional derivative.

tions with either Hilbert structure (Dai et al., 2014; 2016;

Liu & Wang, 2016; Dai, 2018) or Wasserstein structure

(Richemond & Maginnis, 2017; Frogner & Poggio, 2018;

Zhang et al., 2018; Lin et al., 2018) and rely on gradient

descent or Wasserstein gradient flow respectively to de-

crease the objective value. Such approaches typically re-

quire kernel-based or particle-based methods to implement

in practice. By contrast, our approach foregoes gradients

and instead directly considers descent on linear approxi-

mations by leveraging the Gâteaux derivative. As we shall

illustrate, this approach is more compatible with standard

deep learning techniques and indeed leads exactly to many

existing deep learning-based algorithms. Carmona & De-

larue (2018) provide a technical comparison between these

differing approaches for defining derivatives in chapter 5.

Finally, one part of our work recasts convex optimization

problems as saddle-point problems by means of convex

duality as a technique for estimating functional derivatives.

This correspondence between convex optimization problems

and saddle point problems is an old and general concept

(Rockafellar, 1968), and it underlies classical dual optimiza-

tion techniques (Lucchetti, 2006; Luenberger & Ye, 2015).

Nevertheless, the use of these min-max representations re-

mains an active topic of research in machine learning. Most

notably, the literature concerning generative adversarial net-

works has recognized that certain min-max problems are

equivalent to certain convex problems (Goodfellow et al.,

2014; Nowozin et al., 2016; Farnia & Tse, 2018). Outside of

GANs, Dai et al. (2017a; 2018) have begun using these min-

max representations to inspire learning algorithms. These

min-max representations are an important tool for us that

allows for practical implementation of our theory.

2. Descent on a Probability Functional
We let P(X) be the space of Borel probability measures on

a topological space X . Our abstract formulation takes the

form of a minimization problem over probability distribu-

tions:

min
μ∈P(X)

J(μ),

where J : P(X) → R is called a probability functional. In

order to avoid technical digressions, we assume that X is a

metric space that is compact, complete, and separable (i.e. a

compact Polish space). We endow P(X) with the topology

of weak convergence, also known as the weak* topology.

We now draw upon elements of von Mises calculus (von

Mises, 1947) to make precise the notion of derivatives of

functionals such as J . See Fernholz (2012) for an in-depth

discussion, or Santambrogio (2015) for another perspective.

Definition 1 (Gâteaux differential). Let J : P(X) → R

be a function. The Gâteaux differential dJμ at μ ∈ P(X)
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in the direction χ is defined by

dJμ(χ) = lim
ε→0+

J(μ+ εχ)− J(μ)

ε
, (1)

where χ = ν − μ for some ν ∈ P(X).

Intuitively, the Gâteaux differential is a generalization of the

directional derivative, so that dJμ(χ) describes the change

in the value of J(μ) when the probability measure μ is in-

finitesimally perturbed in the direction of χ, towards another

measure ν. Though powerful, the Gâteaux differential is a

function of differences of probability measures, which can

make it unwieldy to work with. In many cases, however, the

Gâteaux differential dJμ(χ) can be concisely represented

as an integral of an influence function Ψμ : X → R, where

the integral is taken with respect to the measure χ.

Definition 2 (Influence function). We say that Ψμ : X →
R is an influence function for J at μ ∈ P(X) if the Gâteaux
differential dJμ(χ) has the integral representation

dJμ(χ) =

∫
X

Ψμ(x)χ(dx) (2)

for all χ = ν − μ, where ν ∈ P(X).

The influence function provides a convenient representa-

tion for the Gâteaux differential. Because χ = ν − μ is a

difference of probability distributions, we can also write

dJμ(χ) = Ex∼ν [Ψμ(x)]− Ex∼μ[Ψμ(x)]

by linearity. We note that if Ψμ is an influence function,

then so is Ψμ + c for a constant c.

The Gâteaux derivative and the influence function provide

the proper notion of a functional derivative, which allows

us to generalize first-order descent algorithms to apply to

probability functionals such as J . In particular, they permit

a linear approximation to J(μ) around μ0, which we denote

J̃(μ):

J̃(μ) = J(μ0) + dJμ0
(μ− μ0)

= J(μ0) + Ex∼μ[Ψμ0
(x)]− Ex∼μ0

[Ψμ0
(x)]

= constant + Ex∼μ[Ψμ0
(x)].

This expression, also known as a von Mises representation,

yields additional intuition about the influence function. Con-

cretely, note that a small pertubation to μ decreases J(μ) if it

decreases Ex∼μ[Ψμ0
(x)]. Therefore, Ψμ0

acts as a potential

function defined on X that dictates where samples x ∼ μ
should descend if the goal is to decrease J(μ). Of course,

Ψμ0
only carries this interpretation around the current value

of μ0.

Based on this intuition, we now present probability
functional descent, a straightforward analogue of finite-

dimensional first-order descent algorithms to probability

functionals. First, a linear approximation to the functional

J is computed at μ0 in the form of the influence function

Ψμ0 , and then a local step is taken from μ0 so as to decrease

the value of the linear approximation. Concretely:

Algorithm 1 Probability functional descent on J(μ)

Initialize μ to a distribution in P(X)
while μ has not converged do

Set Ψ̂ ≈ Ψμ (differentiation step)

Update μ to decrease Ex∼μ[Ψ̂(x)] (descent step)

end while

We shall see that probability functional descent serves as

a blueprint for many existing algorithms: in generative ad-

versarial networks, the differentiation and descent steps

correspond to the discriminator and generator updates re-

spectively; in reinforcement learning, they correspond to

policy evaluation and policy improvement.

In its abstract form, probability functional descent requires

two design choices in order to convert it into a practical algo-

rithm. In section 3, we discuss different ways to choose the

update in the descent step; Theorem 1 provides one generic

way. In section 4, we discuss different ways to approximate

the influence function in the differentiation step; Theorem 2

provides one generic way and an unexpected connection to

adversarial training.

3. Applying the Descent Step
One straightforward way to apply the descent step of PFD is

to adopt a parametrization θ �→ μθ and descend the stochas-

tic gradient of θ �→ Ex∼μθ
[Ψ̂(x)].1 This gradient step is

justified by the following analogue of the chain rule:

Theorem 1 (Chain rule). Let J : P(X) → R be continu-
ously differentiable, in the sense that the influence function
Ψμ exists and (μ, ν) �→ Ex∼ν [Ψμ(x)] is continuous. Let
the parameterization θ �→ μθ be differentiable, in the sense
that 1

||h|| (μθ+h − μθ) converges to a weak limit as h → 0.
Then

∇θJ(μθ) = ∇θEx∼μθ
[Ψ̂(x)],

where Ψ̂ = Ψμθ
is treated as a function X → R that is not

dependent on θ.

Theorem 1 converts the computation of ∇θJ(μθ), where J
may be a complicated nonlinear functional, into the com-

putation of a gradient of an expectation, which is easily

handled using standard methods (see e.g. Schulman et al.

(2015)). For example, the reparameterization trick, also

1Note that this gradient step is simply one possible choice of
update rule for the descent step of PFD; see subsection 7.1 (policy
iteration) for an instance of PFD where this gradient-based update
rule is not adopted.
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known as the pathwise derivative estimator (Kingma &

Welling, 2013; Rezende et al., 2014), uses the identity

∇θEx∼μθ
[Ψ̂(x)] = ∇θEz∼N (0,I)[Ψ̂(hθ(z))],

where μθ samples x = hθ(z) using z ∼ N (0, I). Alterna-

tively, the log derivative trick, also known as the score func-

tion gradient estimator, likelihood ratio gradient estimator,

or REINFORCE (Glynn, 1990; Williams, 1992; Kleijnen &

Rubinstein, 1996), uses the identity

∇θEx∼μθ
[Ψ̂(x)] = Ex∼μθ

[Ψ̂(x)∇θ logμθ(x)],

where μθ(x) is the probability density function of μθ. This

gradient-based update rule for the descent step is therefore

a natural, practical choice in the context of deep learning.

4. Approximating the Influence Function
The approximation of the influence function in the differ-

entiation step can in principle be accomplished in many

different ways. Indeed, we shall see that the distinguishing

factor between many existing algorithms is exactly which

influence function estimator used, as shown in Table 2. In

some cases, it is possible that the influence function can

be evaluated exactly, bypassing the need for approximation.

Otherwise, the influence function, being a function X → R,

may be modeled as a neural network; the precise way in

which this neural network needs to be trained will depend

on the exact analytical form of the influence function.

Remarkably, a generic approximation technique is available

if the functional J is convex. In this case, the influence

function Ψμ possesses a variational characterization in terms

of the convex conjugate J� of J . To apply this formalism,

we now view P(X) as a convex subset of the vector space

of finite signed Borel measures M(X), equipped with the

topology of weak convergence. Crucial to the analysis will

be its dual space, C(X), the space of continuous functions

X → R. Finally, R denotes the extended real line R ∪
{−∞,∞}. The convex conjugate is then defined as follows:

Definition 3. Let J : M(X) → R be a function. Its convex
conjugate is a function J� : C(X) → R defined by

J�(ϕ) = sup
μ∈M(X)

[ ∫
X

ϕ(x)μ(dx)− J(μ)
]
.

Note that J must now be defined on all of M(X); it is

always possible to simply define J(μ) = ∞ if μ 
∈ P(X),
although sometimes a different extension may be more con-

venient. The convex conjugate forms the core of the follow-

ing representation for the influence function Ψμ:

Theorem 2 (Fenchel–Moreau representation). Let J :
M(X) → R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ϕ �→ Ex∼μ[ϕ(x)]− J�(ϕ), if it

exists, is an influence function for J at μ. With some abuse
of notation, we have that

Ψμ = argmax
ϕ∈C(X)

[
Ex∼μ[ϕ(x)]− J�(ϕ)

]
.

Theorem 2 motivates the following influence function ap-

proximation strategy: model ϕ : X → R with a neural

network and train it using stochastic gradient ascent on the

objective φ �→ Ex∼μ[ϕφ(x)]− J�(ϕφ). The trained neural

network is then an approximation to Ψμ suitable for use in

the descent step of PFD. Under this approximation scheme,

PFD can be concisely expressed as the saddle-point problem

inf
μ

sup
ϕ

[
Ex∼μ[ϕ(x)]− J�(ϕ)

]
,

where the inner supremum solves for the influence func-

tion (the differentiation step of PFD), and the outer infi-

mum descends the linear approximation Ex∼μ[ϕ(x)] (the

descent step of PFD), noting that J�(ϕ) is a constant w.r.t. μ.

This procedure is highly reminiscent of adversarial train-

ing (Goodfellow et al., 2014); for this reason, we call PFD

with this approximation scheme based on convex duality

adversarial PFD. PFD therefore explains the prevalence of

adversarial training as a deep learning technique and extends

its applicability to any convex probability functional.

In the following sections, we demonstrate that PFD provides

a broad conceptual framework for understanding a wide

range of existing machine learning algorithms.

5. Generative Adversarial Networks
Generative adversarial networks (GANs) are a technique

to train a parameterized probability measure μ to mimic a

data distribution ν. There are many variants of the GAN

algorithm. They typically take the form of a saddle-point

problem, and it is known that many of them correspond

to the minimization of different divergences D(μ||ν). We

complete the picture by showing that many GAN variants

could have been derived as instances of PFD applied to

different divergences.

5.1. Minimax GAN

Goodfellow et al. (2014) originally proposed the following

saddle-point problem

inf
μ

sup
D

1
2Ex∼ν [logD(x)] + 1

2Ex∼μ[log(1−D(x))].

The interpretation of this minimax GAN problem is that the

discriminator D learns to classify between fake samples

from μ and real samples from ν via a binary classification

loss, while the generator μ is trained to produce counterfeit

samples that fool the classifier. It was shown that the value
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of the inner optimization problem equals DJS(μ||ν)− log 2,

where

DJS(μ||ν) = 1
2DKL(μ|| 12μ+ 1

2ν) +
1
2DKL(ν|| 12μ+ 1

2ν)

is the Jensen–Shannon divergence, and therefore the prob-

lem corresponds to training μ to minimize the divergence

between μ and ν. As a practical algorithm, simultaneous

stochastic gradient descent steps are performed on the dis-

criminator’s parameters φ and the generator’s parameters θ
using the two loss functions{
φ �→ − 1

2Ex∼ν [logDφ(x)]− 1
2Ex∼μθ

[log(1−Dφ(x))],

θ �→ 1
2Ex∼μθ

[log(1−Dφ(x))],

(3)

where Dφ and μθ are parameterized with neural networks.

Our unifying result is the following:

Proposition 1. Adversarial PFD on the Jensen–Shannon
divergence objective

JJS(μ) = DJS(μ||ν).
yields the minimax GAN algorithm (3).

That is, the minimax GAN could have been derived mechan-

ically and from first principles as an instance of adversarial

PFD. To build intuition, we note that the discriminator plays

the role of the approximate influence function:

Proposition 2. Suppose μ has density p(x) and ν has den-
sity q(x). Then the influence function for JJS is

ΨJS(x) =
1

2
log

p(x)

p(x) + q(x)
.

Recall that in the minimax GAN, the optimal discriminator

D∗ satisfies D∗(x) = q(x)
p(x)+q(x) , so the influence function

ΨJS(x) = 1
2 log(1 − D∗(x)) is approximated using the

learned discriminator.

Now, we rederive the minimax GAN problem (3) as a form

of adversarial PFD. We compute:

Proposition 3. The convex conjugate of JJS is

J�
JS(ϕ) = − 1

2Ex∼ν [log(1− e2ϕ(x)+log 2)]− 1
2 log 2.

Theorem 2 yields the representation

ΨJS = argmax
ϕ∈C(X)

[
Ex∼μ[ϕ(x)]+

1
2Ex∼ν [log(1−e2ϕ(x)+log 2)]

]
,

an ascent step on which is the φ-step in (3) with the sub-

stitution ϕ = 1
2 log(1 − D) − 1

2 log 2. The descent step

corresponds to updating μ to decrease the linear approxi-

mation Ex∼μ[ϕ(x)], which corresponds to the θ-step in (3).

In fact, a similar argument can be applied to the f -GANs

of Nowozin et al. (2016), which generalize the minimax

GAN. The observation that f -GANs (and hence the mini-

max GAN) can be derived through convex duality was also

noted by Farnia & Tse (2018).

5.2. Non-saturating GAN

Goodfellow et al. (2014) also proposed an alternative to (3)

called the non-saturating GAN, which prescribes descent

steps on{
φ �→ − 1

2Ex∼ν [logDφ(x)]− 1
2Ex∼μθ

[log(1−Dφ(x))],

θ �→ − 1
2Ex∼μθ

[logDφ(x)].

In the step on the generator’s parameters θ, the log(1−Dφ)
in the minimax GAN has been replaced with − logDφ. This

heuristic change prevents gradients to θ from converging to

0 when the discriminator is too confident, and it is for this

reason that the loss for θ is called the non-saturating loss.

We consider a slightly modified problem, in which the origi-

nal minimax loss and the non-saturating loss are summed

(and scaled by a factor of 2):{
φ �→ − 1

2Ex∼ν [logDφ(x)]− 1
2Ex∼μθ

[log(1−Dφ(x))],

θ �→ −Ex∼μθ
[logDφ(x)] + Ex∼μθ

[log(1−Dφ(x))].

(4)

This also prevents gradients to θ from saturating, achieving

the same goal as the non-saturating GAN. Huszar (2016)

and Arjovsky & Bottou (2017) recognize that this process

minimizes DKL(μ||ν).2

We claim the following:

Proposition 4. PFD on the reverse Kullback–Liebler diver-
gence objective

JNS(μ) = DKL(μ||ν),

using the binary classification likelihood ratio estimator
to approximate the influence function, yields the modified
non-saturating GAN optimization problem (4).

Proposition 5. Suppose μ has density p(x) and ν has den-
sity q(x). The influence function for JNS is

ΨNS(x) = log
p(x)

q(x)
.

Now, because the binary classification loss

D �→ − 1
2Ex∼ν [logD(x)]− 1

2Ex∼μθ
[log(1−D(x))], (5)

is minimized by D(x) = q(x)
p(x)+q(x) , one estimator for ΨNS

is simply

ΨNS(x) ≈ log
1−Dφ(x)

Dφ(x)
,

2The derivation of Huszar (2016) omits showing that the de-

pendence of
q(x)
pθ(x)

on θ can be ignored, but the result is proved by

Theorem 2.5 of Arjovsky & Bottou (2017). We remark that this
result can be seen as a corollary of Theorem 1 and Proposition 5.
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where φ is updated as in the φ-step in (4). With this ap-

proximation scheme, the differentiation step and the descent

step in PFD correspond exactly to the φ-step and θ-step

respectively in (4). Once again, the discriminator serves to

approximate the influence function.

5.3. Wasserstein GAN

Arjovsky et al. (2017) propose solving the following saddle-

point problem

inf
μ

sup
||D||L≤1

[
Ex∼μ[D(x)]− Ex∼ν [D(x)]

]
,

where ||D||L denotes the Lipschitz constant of D. The

corresponding practical algorithm amounts to simultaneous

descent steps on{
φ �→ Ex∼μθ

[Dφ(x)]− Ex∼ν [Dφ(x)],

θ �→ −Ex∼μθ
[Dφ(x)],

(6)

where Dφ is reprojected back to the space of 1-Lipschitz

functions after each φ-step. Here, μθ is again the generator,

and Dφ is the discriminator, sometimes called the critic.

This algorithm is called the Wasserstein GAN algorithm, so

named because this algorithm approximately minimizes the

1-Wasserstein distance W1(μ, ν); the motivation for the φ-

step in (6) is so that the discriminator learns the Kantorovich
potential that describes the optimal transport from μ to ν.

See e.g. Villani (2008) for the full optimal transport details.

We claim that the Wasserstein GAN too is an instance of

PFD, and once again, the discriminator plays the role of

approximate influence function:

Proposition 6. Adversarial PFD on the Wasserstein dis-
tance objective

JW(μ) = W1(μ, ν)

yields the Wasserstein GAN algorithm (6).

Proposition 7. The influence function for JW is the Kan-
torovich potential corresponding to the optimal transport
from μ to ν.

We remark that the gradient computation in Theorem 3

of Arjovsky et al. (2017) is a corollary of Theorem 1 and

Proposition 7. Now, we show that the Wasserstein GAN

algorithm can be derived mechanically via convex duality.

The connection between the Wasserstein GAN and convex

duality was also observed by Farnia & Tse (2018).

Proposition 8. The convex conjugate of JW is

J�
W(ϕ) = Ex∼ν [ϕ(x)] + {||ϕ||L ≤ 1}.

We use the notation {A} to denote the convex indicator

function, which is 0 if A is true and ∞ if A is false.

Theorem 2 yields the representation

ΨW = argmax
ϕ∈C(X)

[
Ex∼μθ

[ϕ(x)]−Ex∼ν [ϕ(x)]−{||ϕ||L ≤ 1}
]
.

The adversarial PFD differentiation step therefore corre-

sponds exactly to the φ-step in (6), and the PFD descent

step is exactly the θ-step in (6).

6. Variational Inference
In Bayesian inference, the central object is the posterior

distribution

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x|z)p(z) dz ,

where x is an observed datapoint, p(x|z) is the likelihood,

p(z) is the prior. Unfortunately, the posterior is difficult

to compute due to the presence of the integral. Variational

inference therefore reframes this computation as an opti-

mization problem in which a variational posterior q(z) ap-

proximates the true posterior by solving

inf
q
DKL(q(z)||p(z|x)).

6.1. Black-box variational inference

This objective is not directly optimizable, due to the pres-

ence of the intractable p(z|x) term. The tool of choice for

variational inference is the evidence lower bound (ELBO),

which rewrites

DKL(q(z)||p(z|x)) = log p(x)−Ez∼q(z)

[
log

p(x|z)p(z)
q(z)

]
︸ ︷︷ ︸

ELBO

.

Because log p(x) is fixed, we may maximize the ELBO to

minimize the KL divergence. The advantage of doing so is

that all the terms inside the expectation are now tractable

to evaluate, and thus the expectation may be approximated

through Monte Carlo sampling. This leads to the following

practical algorithm, namely stochastic gradient descent on

the objective

θ �→ −Ez∼qθ(z)

[
log

p(x|z)p(z)
qθ(z)

]
. (7)

This is called black-box variational inference (Ranganath

et al., 2014). Roeder et al. (2017) later recognized that

ignoring the θ-dependence of the term in the expectation

yields the same gradients in expectation; it is this variant

that we consider. Our unification result is the following:

Proposition 9. PFD on the variational inference objective

JVI(q) = DKL(q(z)||p(z|x)),

using exact influence functions, yields the black-box varia-
tional inference algorithm (7).
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In fact, the influence function turns out to be precisely the

inside of the negative ELBO bound:

Proposition 10. The influence function for JVI is

ΨVI(z) = log
q(z)

p(x|z)p(z) .

In this context, the influence function can be evaluated ex-

actly, so the differentiation step of PFD may be performed

without approximation. The descent step of PFD becomes

exactly the descent step on θ of (7), where the θ-dependence

of the term in the expectation is ignored. We remark that

the argument of Roeder et al. (2017) that this θ-dependence

can be ignored can be seen as a corollary of Theorem 1 and

Proposition 10.

6.2. Adversarial variational Bayes

When the density function of the prior p(z) or the varia-

tional posterior q(z|x) is not available, adversarial varia-

tional Bayes (Mescheder et al., 2017) may be employed.

Here, the quantity log q(z)
p(z) is approximated by a neural net-

work fφ(z) through a binary classification problem, much

like (5). The resulting algorithm applies simultaneous de-

scent steps on{
φ �→ −Eqθ(z)[log σ(fφ(z))]− Ep(z)[log(1− σ(fφ(z)))]

θ �→ −Eqθ(z)[−fφ(z) + log p(x|z)].
(8)

This algorithm is another instance of PFD:

Proposition 11. PFD on the variational inference objective
JVI, using the binary classification likelihood ratio estima-
tor to approximate the influence function, yields adversarial
variational Bayes (8).

It is easily seen that

ΨVI(z) = log
q(z)

p(x|z)p(z) ≈ fφ(z)− log p(x|z).

Therefore, the φ-step of (8) is the differentiation step of

PFD, and the θ-step of (8) is the descent step. We remark

that the gradient computation in Proposition 2 of Mescheder

et al. (2017) is a corollary of Theorem 1 and Proposition 10.

7. Reinforcement Learning
In a Markov decision process, the distribution of states

s = (s0, s1, . . .), actions a = (a1, a2, . . .), and rewards

r = (r1, r2, . . .) is governed by the distribution

P(s, a, r) = p0(s0)

∞∏
t=1

p(st, rt|st−1, at)π(at|st−1),

where p0(s) is an initial distribution over states, p(s′, r|s, a)
gives the transition probability of arriving at state s′ with

reward r from a state s taking an action a, and π(a|s) is

a policy that gives the distribution of actions taken when

in state s. In reinforcement learning, we are interested

in learning the policy π(a|s) that maximizes the expected

discounted reward E[
∑∞

t=1 γ
t−1rt], where 0 < γ < 1 is

a discount factor, while assuming we only have access to

samples from p0 and p.

7.1. Policy iteration

Policy iteration (Howard, 1960; Sutton & Barto, 1998) is

one scheme that solves the reinforcement learning problem.

It initializes π(s|a) arbitrarily and then cycles between two

steps, policy evaluation and policy improvement. In the pol-

icy evaluation step, the state-action value function Qπ(s, a)
is computed. In the policy improvement step, the policy is

updated to the greedy policy, the policy that at state s takes

the action argmaxa Q
π(s, a) with probability 1.

Before we present our unification result, we introduce an

arbitrary distribution over states π(s) and consider the joint

distribution π(s, a) = π(s)π(a|s), so that π is one proba-

bility distribution rather than one for every state s. Now:

Proposition 12. PFD on the reinforcement learning objec-
tive

JRL(π) = −E

∞∑
t=1

γt−1rt,

using exact influence functions and global minimization of
the linear approximation, yields the policy iteration algo-
rithm.

Proposition 13. The influence function for JRL is

ΨRL(s, a) = −
∑∞

t=0 γ
tpπt (s)

π(s)
(Qπ(s, a)− V π(s)),

where Qπ is the state-action value function, V π is the state
value function, and pπt is the marginal distribution of states
after t steps, all under the policy π.

The descent step of PFD corresponds to taking a step on

πθ(s, a) = π(s)πθ(a|s) to decrease the linear approxima-

tion

θ �→ −Eπθ(s,a)

[∑∞
t=0 γ

tpπt (s)

π(s)
(Qπ(s, a)− V π(s))

]
.

Setting dπ(s) = (1 − γ)
∑∞

t=0 γ
tpπt (s), this simplifies to

either

θ �→ − 1

1− γ
Edπ(s)Eπθ(a|s)[Q

π(s, a)− V π(s)], (9)

θ �→ − 1

1− γ
Edπ(s)Eπθ(a|s)[Q

π(s, a)] + constant. (10)
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The most naive way to decrease (10) is to globally minimize

it. This corresponds to setting πθ(a|s) to be the greedy

policy. Hence, the evaluation of Qπ(s, a) in policy iteration

corresponds exactly to computing the influence function in

the differentiation step of PFD, and the greedy policy update

corresponds to applying the descent step.

7.2. Policy gradient and actor-critic

Policy iteration exactly computes the linear approximation

and nonparametrically minimizes it. Now we consider al-

gorithms in which the policy is parameterized and the de-

scent step is taken using a gradient step on (9) or (10). If

this approach is taken, there is a lot of flexibility in how

the influence function can be approximated, but generally

speaking, the result is an actor-critic method (Konda & Tsit-

siklis, 2000; Sutton et al., 2000), which describes a class of

algorithms that approximates the value function of the cur-

rent policy and then takes a gradient step on the parameters

of the policy using the estimated value function. We claim:

Proposition 14. Approximate PFD on the reinforcement
learning objective JRL, where the influence function is es-
timated using, for example, Monte Carlo, least squares, or
temporal differences, yields an actor-critic algorithm.

There is a huge number of possible approximations to the

influence function; we list several and their corresponding

algorithms. The simplest algorithm is the policy gradient

algorithm, also known as REINFORCE (Williams, 1992),

which directly uses a Monte Carlo estimate of Qπ(s, a) as

the influence function estimator. Stochastic value gradients

(Heess et al., 2015) and the closely related deterministic

policy gradient (Silver et al., 2014) fit a neural network

to Qπ(s, a) using a temporal difference update and use

that as the influence function approximation; their use of

a neural network makes them compatible with the repa-

rameterization trick. Advantage actor-critic (Mnih et al.,

2016) estimates Qπ(s, a)− V π(s) by estimating Qπ(s, a)
using Monte Carlo and fitting a neural network to V π(s)
using least squares. All of these algorithms are traditionally

justified by the celebrated policy gradient theorem (Sutton

et al., 2000); we remark that this theorem is a corollary of

Theorem 1 and Proposition 13.

7.3. Dual actor-critic

Because JRL is not convex, adversarial PFD does not di-

rectly apply. However, the form of Proposition 13 strongly

suggests fixing the arbitrary distribution π(s) to be the dis-

counted marginal distribution of states dπ(s). Closely re-

lated to the linear programming formulation of reinforce-

ment learning (Puterman, 1994), this choice turns out to

convexify JRL, thus enabling the use of convex duality to

approximate its influence function. We expect to obtain

an adversarial formulation of reinforcement learning; one

such formulation is the dual actor-critic algorithm (Dai et al.,

2017b; Chen & Wang, 2016):

sup
π

inf
V

(1− γ)Ep0(s)[V (s)] + Eπ(s,a)[AV (s, a)], (11)

where AV (s, a) = Ep(s′,r|s,a)[r+γV (s′)]−V (s). Indeed:

Proposition 15. Adversarial PFD on the reinforcement
learning objective JRL yields the dual actor-critic algo-
rithm (11).
Proposition 16. The convex conjugate of JRL is

J�
RL(ϕ) = (1− γ)Ep0(s)Vϕ(s) + {Vϕ exists},

where Vϕ is the unique solution to ϕ = −AVϕ, if it exists.

Using Theorem 2, adversarial PFD therefore recovers (11):

inf
π

sup
ϕ

Eπ(s,a)[ϕ(s, a)]− J�
RL(ϕ)

= inf
π

sup
ϕ

Eπ(s,a)[−AVϕ(s, a)]− (1− γ)Ep0(s)Vϕ(s).

8. Conclusion
This paper suggests several new research directions. First

is the transfer of insight and specialized techniques from

one domain to another. As just one example, in the context

of GANs, Arjovsky et al. (2017) claim that constraining

the discriminator to be 1-Lipschitz improves the stability

of the training algorithm – could similarly constraining the

analogous object in reinforcement learning, namely an ap-

proximation to the advantage function, lead to improved

stability in deep reinforcement learning?

Moreover, the abstract viewpoint taken in this paper allows

for the simultaneous development of new algorithms for

GANs, variational inference, and reinforcement learning.

General influence function approximation techniques in the

spirit of convex duality could improve all three fields at once.

More sophisticated descent techniques beyond gradient de-

scent on parameterized probability distributions, such as

Frank-Wolfe or trust-region methods, could improve learn-

ing or yield valuable convergence guarantees.

Finally, this paper unlocks the possibility of applying prob-

ability functional descent to new problems. In principle,

the algorithm can be applied mechanically to any situation

where one wants to optimize over probability distributions,

possibly leading to new, straightforward ways to solve prob-

lems in, for example, mathematical finance, mean field

games, or POMDPs. One could argue that the current ex-

citement over deep learning began once researchers realized

that to solve a problem, they could simply write a loss func-

tion and then rely on automatic differentiation and gradient

descent to minimize it. We hope that probability functional

descent provides a similarly turnkey solution for optimizing

loss functions defined on probability distributions and leads

to a similar burst of research activity.
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A. Proofs and Computations
Lemma 1. Let J : P(X) → R. Then Ψ : X → R is an
influence function of J at μ if and only if

d

dε
J(μ+ εχ)

∣∣∣
ε=0+

=

∫
X

Ψ(x)χ(dx).

Proof. The left-hand side equals (1), which equals (2).

Theorem 1 (Chain rule). Let J : P(X) → R be continu-
ously differentiable, in the sense that the influence function
Ψμ exists and (μ, ν) �→ Ex∼ν [Ψμ(x)] is continuous. Let
the parameterization θ �→ μθ be differentiable, in the sense
that 1

||h|| (μθ+h − μθ) converges to a weak limit as h → 0.
Then

∇θJ(μθ) = ∇θEx∼μθ
[Ψ̂(x)],

where Ψ̂ = Ψμθ
is treated as a function X → R that is not

dependent on θ.

Proof. Without loss of generality, assume θ ∈ R, as the

gradient is simply a vector of one-dimensional derivatives.

Let χε =
1
ε (μθ+ε − μθ), and let χ = limε→0 χε (weakly).

Then

d

dθ
J(μθ) =

d

dε
J(μθ+ε)

∣∣∣
ε=0

=
d

dε
J(μθ + εχε)

∣∣∣
ε=0

.

Assuming for now that

d

dε
J(μθ + εχε)

∣∣∣
ε=0

=
d

dε
J(μθ + εχ)

∣∣∣
ε=0

,

we have by Lemma 1 that

d

dθ
J(μθ) =

∫
X

Ψ̂ dχ

=

∫
X

Ψ̂ d
(
lim
ε→0

1

ε
(μθ+ε − μθ)

)
= lim

ε→0

∫
X

Ψ̂ d
(1
ε
(μθ+ε − μθ)

)
=

d

dθ

∫
X

Ψ̂ dμθ,

where the interchange of limits is by the definition of weak

convergence (recall we assumed that X is compact, so Ψ̂ is

continuous and bounded by virtue of being continuous).

The equality we assumed is the definition of a stronger

notion of differentiability called Hadamard differentiabil-

ity of J . Our conditions imply Hadamard differentiability

via Proposition 2.33 of Penot (2012), noting that the map

(μ, χ) �→
∫
X
Ψμ dχ is continuous by assumption.

Theorem 2 (Fenchel–Moreau representation). Let J :
M(X) → R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ϕ �→ Ex∼μ[ϕ(x)]− J�(ϕ), if it
exists, is an influence function for J at μ. With some abuse
of notation, we have that

Ψμ = argmax
ϕ∈C(X)

[
Ex∼μ[ϕ(x)]− J�(ϕ)

]
.

Proof. We will exploit the Fenchel–Moreau theorem, which

applies in the setting of locally convex, Hausdorff topolog-

ical vector spaces (see e.g. Zalinescu (2002)). The space

we consider is M(X), the space of signed, finite measures

equipped with the topology of weak convergence, of which

P(X) is a convex subset. M(X) is indeed locally convex

and Hausdorff, and its dual space is C(X) (see e.g. Alipran-

tis & Border (2006), section 5.14).

We now show that a maximizer ϕ∗ is an influence function.

By the Fenchel–Moreau theorem,

J(μ) = J��(μ) = sup
ϕ∈C(X)

[ ∫
X

ϕdμ− J�(ϕ)
]
,

and

J(μ+ εχ) = sup
ϕ∈C(X)

[ ∫
X

ϕdμ+ ε

∫
X

ϕdχ− J�(ϕ)
]
.

Because J is differentiable, ε �→ J(μ+ εχ) is differentiable,

so by the envelope theorem (Milgrom & Segal, 2002),

d

dε
J(μ+ εχ)

∣∣∣
ε=0

=

∫
X

ϕ∗ dχ,

so that ϕ∗ is an influence function by Lemma 1.

The abuse of notation stems from the fact that not all in-

fluence functions are maximizers. This is true, though, if
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J(μ) = ∞ if μ 
∈ P(X):∫
X

Ψμ dμ− J�(Ψμ)

=

∫
X

Ψμ dμ− sup
ν∈P(X)

[ ∫
X

Ψμ dν − J(ν)
]

= inf
ν∈P(X)

[
−
∫
X

Ψμ d(ν − μ) + J(ν)
]

= inf
ν∈P(X)

[
− d

dε
J(μ+ ε(ν − μ))

∣∣∣
ε=0

+ J(ν)
]

≥ J(μ),

since the convex function f(ε) = J(μ+ε(ν−μ)) lies above

its tangent line:

f(1) ≥ f(0) + 1 · f ′(0).

Since J(μ) = J��(μ), we have that∫
X

Ψμ dμ− J�(Ψμ) ≥ sup
ϕ∈C(X)

[ ∫
X

ϕdμ− J�(ϕ)
]
.

The following lemma will come in handy in our computa-

tions.

Lemma 2. Suppose J : M(X) → R has a representation

J(μ) = sup
ϕ∈C(X)

[ ∫
X

ϕdμ−K(ϕ)
]
,

where K : C(X) → R is proper, convex, and lower semi-
continuous. Then J� = K.

Proof. By definition of the convex conjugate, J = K�.

Then J� = K�� = K, by the Fenchel–Moreau theorem.

We note that when applying this lemma, we will often im-

plicitly define the appropriate extension of J to M(X) to be

J(μ) = supϕ∈C(X)[
∫
ϕdμ −K(ϕ)]. The exact choice of

extension can certainly affect the exact form of the convex

conjugate; see Ruderman et al. (2012) for one example of

this phenomenon.

Proposition 2. Suppose μ has density p(x) and ν has den-
sity q(x). Then the influence function for JJS is

ΨJS(x) =
1

2
log

p(x)

p(x) + q(x)
.

Proof. The result follows from Lemma 1:

d

dε
JJS(μ+ εχ)

∣∣∣
ε=0

=
1

2

∫
X

d

dε

[
(p+ εχ) log

p+ εχ
1
2 (p+ εχ) + 1

2q

+ q log
q

1
2 (p+ εχ) + 1

2q

]
ε=0

dx

=
1

2

∫
X

[
log

p
1
2p+

1
2q

+ 1− p

p+ q
− q

p+ q

]
χdx

=
1

2

∫
X

[
log

p

p+ q
+ log 2

]
χdx.

Proposition 3. The convex conjugate of JJS is

J�
JS(ϕ) = − 1

2Ex∼ν [log(1− e2ϕ(x)+log 2)]− 1
2 log 2.

Proof.

J�
JS(ϕ) = sup

μ∈M(X)

[ ∫
X

ϕdμ− JJS(μ)
]

= sup
p

∫
X

[
ϕp− 1

2
p log

p
1
2p+

1
2q

− 1

2
q log

q
1
2p+

1
2q

]
dx.

Setting the integrand’s derivative w.r.t. p to 0, we find that

pointwise, the optimal p satisfies

ϕ =
1

2
log

p
1
2p+

1
2q

.

We eliminate p in the integrand. Notice that the first two

terms in the integrand cancel after plugging in p. Since

q
1
2p+

1
2q

= 2
(
1− p

p+ q

)
= 2(1− 2e2ϕ),

we obtain that

J�
JS(ϕ) = −1

2

∫
X

q log(1− 2e2ϕ) dx− 1

2
log 2.

Proposition 5. Suppose μ has density p(x) and ν has den-
sity q(x). The influence function for JNS is

ΨNS(x) = log
p(x)

q(x)
.
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Proof. The result follows from Lemma 1:

d

dε
JNS(μ+ εχ)

∣∣∣
ε=0

=
d

dε

∫
X

(p+ εχ) log
p+ εχ

q
dx

∣∣∣
ε=0

=

∫
X

[
χ log

p

q
+ χ

]
dx

=

∫
X

[
log

p

q
+ 1

]
dχ

=

∫
X

[
log

p

q

]
dχ.

Proposition 7. The influence function for JW is the Kan-
torovich potential corresponding to the optimal transport
from μ to ν.

Proof. See Santambrogio (2015), Proposition 7.17.

Proposition 8. The convex conjugate of JW is

J�
W(ϕ) = Ex∼ν [ϕ(x)] + {||ϕ||L ≤ 1}.

Proof. Using Kantorovich–Rubinstein duality, we have that

JW(μ) = sup
||ϕ||L≤1

[ ∫
X

ϕdμ−
∫
X

ϕdν
]

= sup
ϕ

[ ∫
X

ϕdμ−
∫
X

ϕdν − {||ϕ||L ≤ 1}
]
,

where we use the notation

{A} =

{
0 A is true,

∞ A is false.

By Lemma 2,

J�
W(ϕ) =

∫
X

ϕdν + {||ϕ||L ≤ 1}.

Proposition 10. The influence function for JVI is

ΨVI(z) = log
q(z)

p(x|z)p(z) .

Proof. The result follows from Lemma 1:

d

dε
JVI(q + εχ)

∣∣∣
ε=0

=
d

dε

∫
(q(z) + εχ(z)) log

q(z) + εχ(z)

p(z|x) dz
∣∣∣
ε=0

=

∫ [
χ(z) log

q(z) + εχ(z)

p(z|x) + χ(z)
]
dz

∣∣∣
ε=0

=

∫ [
log

q(z)

p(z|x) + 1
]
χ(z) dz

=

∫ [
log

q(z)

p(x|z)p(z) + log p(x) + 1
]
χ(z) dz

=

∫
log

q(z)

p(x|z)p(z) χ(z) dz.

Proofs continue on the following page.
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Proposition 13. The influence function for JRL is

ΨRL(s, a) = −
∑∞

t=0 γ
tpπt (s)

π(s)
(Qπ(s, a)− V π(s)),

where Qπ is the state-action value function, V π is the state value function, and pπt is the marginal distribution of states after
t steps, all under the policy π.

Proof. First, we note that

d

dε
(π + εχ)(a|s)

∣∣∣
ε=0

=
d

dε

π(a, s) + εχ(s, a)

π(s) + εχ(s)

∣∣∣
ε=0

=
χ(s, a)− χ(s)π(a|s)

π(s)
,

where we abuse notation to denote χ(s) =
∫
χ(s, a′) da′.

We have

−JRL = E

[ ∞∑
t=1

γt−1rt

]
,

or, plugging in the measure,

−JRL =

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

∞∏
k=1

π(ak|sk−1).

The integral is over all free variables; we omit them here and in the following derivation for conciseness.

In computing d
dεJRL(π + εχ)|ε=0, the product rule dictates that a term appear for every k, in which π(ak|sk−1) is replaced

with d
dε (π + εχ)(ak|sk−1)|ε=0. Hence:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

×
∞∑
k=1

χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
	=1
		=k

π(a	|s	−1)

=
∞∑
k=1

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
	=1
		=k

π(a	|s	−1),
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reordering the summations. Note that for t < k, the summand vanishes:∫ ∞∏
j=k

p(sj , rj |sj−1, aj)

×
(
χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

) ∞∏
	=k+1

π(a	|s	−1)

=

∫ (
χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

)
=

∫ (
χ(sk−1)− χ(sk−1)

)
= 0,

since all the variables ak, rk, sk, ak+1, rk+1, sk+1, . . . integrate away to 1. This yields:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=k

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
	=1
		=k

π(a	|s	−1).

Then, substituting the marginal distribution (note sk−1 is not integrated)

pπk−1(sk−1) =

∫ k−1∏
j=1

p(sj , rj |sj−1, aj)

k−1∏
	=1

π(a	|s	−1),

we obtain

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=k

γt−1rt p
π
k−1(sk−1)

∞∏
j=k

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
	=k+1

π(a	|s	−1).

Let us rename the integration variables by decreasing their indices by k − 1:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=1

γt+k−2rt p
π
k−1(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(s0, a1)− χ(s0)π(a1|s0)
π(s0)

∞∏
	=2

π(a	|s	−1).

Substituting in

V π(s0) =

∫ ∞∑
t=1

γt−1rt

∞∏
j=1

p(sj , rj |sj−1, aj)

∞∏
	=1

π(a	|s	−1),

Qπ(s0, a1) =

∫ ∞∑
t=1

γt−1rt

∞∏
j=1

p(sj , rj |sj−1, aj)

∞∏
	=2

π(a	|s	−1),
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we obtain

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫
γk−1 pπk−1(s0)

Qπ(s0, a1)χ(s0, a1)− V π(s0)χ(s0)

π(s0)
.

Finally, by Lemma 1, we obtain that

ΨRL(s, a) = −
∑∞

k=0 γ
kpπk (s)

π(s)
(Qπ(s, a)− V π(s)).

Proposition 16. The convex conjugate of JRL is

J�
RL(ϕ) = (1− γ)Ep0(s)Vϕ(s) + {Vϕ exists},

where Vϕ is the unique solution to ϕ = −AVϕ, if it exists.

Proof. As mentioned in the text, we set the arbitrary distribution π(s) = (1 − γ)
∑∞

t=0 γ
tpπt (s). In doing so, π(s, a)

becomes a state-action occupancy measure that describes the frequency of encounters of the state-action pair (s, a) over

trajectories governed by the policy π(a|s). It is known that there is a bijection between occupancy measures π(s, a) and

policies π(a|s) (Syed et al., 2008; Ho & Ermon, 2016).

We can enforce this setting by redefining

JRL(π) = −E

∞∑
t=1

γt−1rt +
{
∀s : π(s) = (1− γ)

∞∑
t=0

γtpπt (s)
}
,

where again {·} is the convex indicator function. This equation can be rewritten as

JRL(π) = −Eπ(s,a)R(s, a) +
{
∀s′ : π(s′) = (1− γ)p0(s

′) + γEπ(s,a)p(s
′|s, a)

}
,

where R(s, a) = Ep(s′,r|s,a)[r]. The constraint is known as the Bellman flow equation. This formulation is convex, as it is

the sum of an affine function and an indicator of a convex set (indeed, an affine subspace).

We recall −ϕ = AVϕ, where AV (s, a) = Ep(s′,r|s,a)[r + γV (s′)]− V (s). Now, Vϕ is uniquely defined by ϕ if a solution

to the equation exists. To see this, note that Vϕ is the fixed point of the Bellman operator T a defined by

(T aV )(s) = (R+ ϕ)(s, a) + γEp(s′|s,a)V (s′),

which is contractive and therefore has a unique fixed point. A representation of Vϕ may be obtained via fixed point iteration

using T a for an arbitrary action a:

Vϕ(s) = lim
k→∞

(T a)k0 = E
a

∞∑
t=1

γt−1(R+ ϕ)(st, a),

where the expectation is taken under the deterministic policy a.

We rewrite JRL using a Lagrange multiplier V (s)

JRL(π) = −Eπ(s,a)R(s, a) + sup
V

∫
V (s′)

[
π(s′)− (1− γ)p0(s

′)− γEπ(s,a)p(s
′|s, a)

]
ds′

= sup
V

−Eπ(s,a)R(s, a) + Eπ(s)V (s)− (1− γ)Ep0(s)V (s)− γEπ(s,a)Ep(s′|s,a)V (s′)

= sup
ϕ

Eπ(s,a)ϕ(s, a)− (1− γ)Ep0(s)Vϕ(s)− {Vϕ exists}.
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Note that (1− γ)Ep0(s)Vϕ(s) + {Vϕ exists} is convex in ϕ; this stems from the fact that

Vαϕ+(1−α)ϕ′ = αVϕ + (1− α)Vϕ′ .

The result follows from Lemma 2.


