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ABSTRACT

Understanding occupants’ thermal comfort is essential for the effective operation of heating,
ventilation, and air conditioning (HVAC) systems. Existing studies of the “human-in-the-loop”
HVAC control generally suffer from: (1) excessive reliance on cumbersome human feedback;
and (2) intrusiveness caused by conventional data collection methods. To address these
limitations, this paper investigates the low-cost thermal camera as a non-intrusive approach to
assess thermal comfort in real time using facial skin temperature. The framework developed can
automatically detect occupants, extract facial regions, measure skin temperature, and interpret
thermal comfort with minimal interruption or participation of occupants. The framework is
validated using the facial skin temperature collected from twelve occupants. Personal comfort
models trained from different machine learning algorithms are compared and results show that
random forest model can achieve an accuracy of 85% and also suggest that the skin temperature
of ears, nose, and cheeks are most indicative of thermal comfort.

INTRODUCTION AND BACKGROUND

Lack of thermal comfort in buildings is a common problem where studies reveal that up to
43% of building occupants are dissatisfied with the indoor thermal environment, which can lead
to sick building syndrome, health complications, and reduced productivity (Karmann et al.
2018). On the other hand, HVAC systems represent the largest energy end-use accounting for
more than 50% of the total energy required to operate residential and commercial buildings
(DOE 2017). Therefore, there will be significant social and economic benefits if building HVAC
systems can be optimized to improve occupants’ comfort, satisfaction, and health while
achieving reduced energy consumption (Li et al. 2017a, 2017b). To this end, researchers need to
understand occupants’ thermal preferences and needs in real time.

To address this research question, existing studies have extensively investigated the “human-in-
the-loop” approach which integrates human participation into controlling the HVAC systems or
personal heating/cooling devices (Jazizadeh et al. 2013, Kim et al. 2018, Li et al. 2017b, 2017¢).
This category of studies focuses on developing personal comfort prediction models using
occupants’ feedback or bio-signal data, which have been suggested to outperform the Predicted
Mean Vote (PMV) and adaptive models. For example, Li et al. (2017b) proposed an HVAC
control framework which used wristband sensors, smartphone applications, and environment
sensors to collect human and environmental data, such as skin temperature, heart rate, clothing
level, thermal preference, and room temperature. Personal comfort models developed in this
study achieved an 80% accuracy in predicting the three-point thermal preference (i.e., warmer,
no change, cooler). Kim et al. (2018) developed a personal comfort chair which can record
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heating and cooling requests from occupants under various room conditions. This study
compared the predictive performance of different machine learning algorithms and reported a
73% accuracy in thermal preference prediction.

Despite the significant contributions of the aforementioned studies in assessing occupants’
thermal comfort, these approaches are intrusive and can cause interruption of building occupants.
First, this human participation oriented solution relies on occupants’ continuous feedback to
interpret their comfort states over time. This is based on the assumption that the human body is
the best “comfort sensor” which can periodically indicate the need to adjust the indoor thermal
condition through feedback (e.g., requests to make the room warmer or cooler). However, in
practice the frequency of feedback tends to decrease with time as the novelty and excitement of
the system fades away (Li et al. 2017b). In addition, the requirement of human input is
distracting during regular work time, especially over heavy workload periods. Moreover, these
studies require occupants to use wearables (e.g., wrist-worn sensors), certain devices (e.g.,
comfort chair) or mobile applications, which is inconvenient and also lacks scalability.

On the other hand, it is well established that thermal conditions can affect human
thermoregulation (e.g., vasodilation and vasoconstriction) (Charkoudian 2003), which can lead to
changes in the skin temperature. Therefore, to address the limitation of intrusiveness in existing
studies, infrared thermal imaging is an ideal tool as it can collect an individual’s skin temperature
and interpret the thermal comfort without direct contact with the skin surface. Specifically,
human face is selected as the region of interest as (1) faces have a higher density of blood vessels
than other locations, which can lead to more significant variations in skin temperature when
ambient thermal environment changes; and (2) faces are usually not covered by clothing and thus
the emitted infrared energy can be directly measured by thermal cameras.

Figure 1. Lepton (léft) and the facial thermal imaging (right)

Table 1. Specifications of Lepton

Features Descriptions
Dimensions 8.5x11.7x 5.6 mm
Resolution 80(h) x 60(v) pixels

Thermal sensitivity <50 mK

Accuracy +5 °C or £5% of reading

Price $ 199

OBJECTIVES

This paper explores the feasibility of low-cost infrared thermal imaging as a truly non-
intrusive data collection approach to interpret human thermal comfort in indoor environments in
real time. To achieve this objective, the authors developed an approach to non-intrusively obtain,

© ASCE

Computing in Civil Engineering 2019



Downloaded from ascelibrary.org by University of Michigan on 08/05/19. Copyright ASCE. For personal use only; all rights reserved.

Computing in Civil Engineering 2019

retrieve, and analyze facial skin temperature features for each building occupant in real
operational indoor environments using thermal cameras, computer vision, and machine learning
techniques. In addition, we extended Li et al. (2018) by comparing different machine learning
algorithms in the comfort prediction.

TECHNICAL APPROACH
Low-cost thermal camera

This study used the FLIR Lepton 2.5 radiometric thermal camera (hereinafter referred to as
the Lepton) to collect skin temperature data (see Figure 1) (FLIR 2014). Lepton is an uncooled
long-wave infrared thermal imaging core with factory-calibrated temperature measurements. The
relevant specifications of Lepton can be found in Table 1.

Data collection and analysis

Figure 2 illustrates the workflow of the proposed non-intrusive thermal comfort
interpretation framework. This framework leverages a range of techniques including: (1)
computer vision to detect human faces; (2) facial geometry to locate different facial regions; (3)
signal processing methods to clean the raw skin temperature data; and (4) machine learning
algorithms to develop personal comfort models and identify important features. Details of each
step are explained in the following subsections.
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Figure 2. The workflow of the non-intrusive thermal comfort interpretation framework
Face detection

The Haar Cascade algorithm was applied to detect human faces using the OpenCV package
(Figure 2a). Haar Cascade is a fast and effective face detection algorithm, which recognizes
frontal and profile faces by checking the existence of certain edges or textures in the image
(Viola and Jones 2001). Although the Lepton has a low resolution of 80 by 60 pixels, the
outlines of facial contours are clearly preserved in the thermal image (see Figure 2b, the image
was taken one meter away from the occupant to represent a non-intrusive distance), which makes
the Haar Cascade algorithm suitable for this task.

Feature extraction

After detecting human faces, different facial regions were located based on the facial
geometry, which include the forehead, nose, cheeks, ears, mouth, and neck (see Figure 2b, each
region was highlighted for the demonstration purpose). The area and location of each facial
region were tuned on several subjects prior to the data collection experiment to ensure all
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features can be detected across different subjects. Then, temperature measurements of each
identified region were extracted to produce skin temperature features. In this study, a total of 26
skin temperature features were extracted including (1) global temperature features: the maximum
and minimum value of the whole face; and (2) local temperature features: the lowest, highest,
mean, and gradient temperature of each facial region. The authors also conducted a preliminary
experiment to evaluate the accuracy of the Lepton by comparing its measurements with a
reference FLIR T450SC camera. Details about the comparative experiment can be found in Li et
al. (2018).

Data cleaning

Two types of measurement errors of skin temperature were considered: (1) measurements of
non-facial features, e.g., hands are falsely detected as the mouth region when a subject drinks
water during the experiment, which corresponds to a spike in the raw data; and (2) the random
measurement error of the thermal camera which can be assumed to follow a Gaussian
distribution with a zero mean. In this study, the authors first applied a median filter to remove
large spikes in the raw data and averaged image frames captured in every minute. Then, a
Gaussian filter was applied to smooth the raw data. Figure 2¢ shows a subject’s skin temperature
measurements in the experiment (detailed in section 4) where the thin broken lines represent the
raw data from the thermal camera and the thick solid lines represent the processed data after
removing outliers and smoothing. It is obvious that large measurement errors have been removed
through the data cleaning and the increasing and decreasing trends of skin temperature are well
preserved.

Model training

The prediction of thermal preference is a classification problem with three categorical values,
i.e., warmer, cooler, and neutral. Thus, the personal model is formulated as

P=F (T facial vféwial) , where TP is the target variable thermal preference, and 7'

facial >

\%

facial
are the skin temperature features and the corresponding gradients.

To train personal comfort models for each subject, various machine learning methods can be
compared to select the best performing algorithm (Kim et al. 2018). In this study, we compared
four widely used algorithms including Random Forest (RF), Classification Tree (CTree), Support
Vector Machine (SVM), and Logistic Regression (LR). We used the Python Scikit-learn package
to train the model and tuned the hyper-parameters through grid search for performance
optimization. For example, the hyper-parameters for the RF model were searched through
['n_estimators': [300, 500, 700, 1000], 'max_features": ['auto', 'sqrt', 'log2']; 'max_depth": [2, 3, 4,
5]. In the RF model, the maximum number of features allowed in each estimator and the
maximum tree depth were intentionally controlled at a small size to reduce the problem of
overfitting.

EXPERIMENTAL SETUP

The authors conducted an experiment to collect the skin temperature data and subjects’
responses in a research office at the University of Michigan (UM) during the heating season
from December 2017 to February 2018. The average high and low outdoor temperature was 1.6
°C and -6.7 °C, correspondingly. In the testbed office, a thermal camera was placed one meter
away from the subject which monitors the frontal face (see Figure 3). The testbed office had two
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COZIR temperature (accuracy: =1 °C) and humidity sensors (accuracy: £5%) to continuously
collect the ambient data within the close proximity to the subject during the experiment.

Figure 3. Experimental setup

Twelve subjects participated in the experiment consisting of four phases as outlined in Figure
4. In the preparation phase, subjects were provided with a customized phone app to report their
thermal preferences during the experiment through a three-point scale, i.e., warmer, cooler,
neutral. Details about the phone app can be found in Li et al. (2017b). In the following 60-min
steady-state phase, subjects were asked to perform regular office activities such as reading,
typing, or browsing. In this phase, room temperature was maintained at 25 °C to represent a
neutral steady-state condition. Next, the heating (room temperature increased from 22 °C to 28
°C) or cooling phase (room temperature decreased from 28 °C to 22 °C) started in a random
order. The COZIR sensors showed that in both phases the room temperature approximately
changed at a constant rate of +1 °C per 10 minutes. The random order of heating and cooling
experiments was designed to eliminate subjects’ bias in thermal sensation and comfort. For
example, if a subject knows the current room temperature is decreasing, he or she may
unconsciously think it is getting cold. The data collection experiment has been approved by the
UM Institutional Review Board (IRB) for conducting human subjects research.

@) I:'-i'?l &) — Pick one @*ORQ Pioct‘;:r‘c ©&OR*
10 mins (25 °C) I:> 60 mins (25 °C) I:> 60 mins (22~28 °C) |:> 60 mins (22~28 °C)

Preparation Steady-state Cooling or Heating Heating or Cooling

Figure 4. Timeline of the data collection experiment
RESULTS AND DISCUSSION

Appendix Table A.1 presents a summary of the skin temperature statistics in the experiment.
The mean and standard deviation (SD) of each feature were calculated from the Eq. (1) and Eq.
(2) as shown below.

g [T
u—nzkzluk,SD(u)—\/n_lzkzl(uk ) (1)
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F=i Y 5, SD(F) = |—— 2 (5, ~¥) )

n—1
Where g and SD(z) are the mean and SD of skin temperature of all subjects in a particular
phase; 5 and SD(5) are the mean and SD of the sample standard deviation; »n is the number of
subjects.

As shown in Appendix Table A.1, the variations of skin temperature in the cooling (column
2) and heating (column 4) phases were much larger than those in the steady-state phase (column
6), which implied that skin temperature was affected by the room temperature. Moreover, nose
and ears regions had a larger temperature variation compared to other regions in the cooling
(nose: 0.60 £ 0.25 °C, ear: 0.67 = 0.20 °C) and heating phases (nose: 0.77 + 0.34 °C, ear: 0.71 £
0.43 °C). Skin temperature features from these two regions are useful to predict thermal
preferences as they are sensitive to the change of the environment. For more details please refer
to Liet al. (2018).

After tuning the hyper-parameters, ten-fold cross-validations were conducted to evaluate the
personal comfort models developed using different algorithms. As shown in Table 2, the RF
algorithm achieved the best performance most of the time, which is consistent with the results in
Kim et al. (2018). On average, by using the selected facial skin temperature features, personal
comfort models can achieve an 85.0% accuracy in predicting subjects’ thermal comfort
preferences.

Table 2. Prediction accuracy of different algorithms for each subject

1D 1 2 3 4 5 6 7 8 9 10 | 11 12 | Avg.

SVM |0.71 1 0.72 | 0.81 [ 0.88 | 0.74 | 0.73 | 0.83 | 0.75 | 0.66 | 0.86 | 0.89 | 0.80 | 0.78
CTree | 0.64 | 0.65|0.83 090|091 085|091 |0.87|0.81 |0.91|0.85|0.80]| 0.83
LR 0.79 1 0.73 1 0.82 | 0.88 | 0.87 | 0.81 { 0.93 | 0.78 | 0.72 | 0.90 | 0.92 | 0.77 | 0.83
RF 0.7310.80 | 0.83 | 0.92 | 0.90 | 0.88 | 0.86 | 0.85 | 0.83 | 0.89 | 0.91 | 0.81 | 0.85

*Bold number denotes the highest accuracy among the four algorithms.
CONCLUSIONS

This paper presents a novel approach to non-intrusively obtain, retrieve, and analyze facial
skin temperature data and interpret occupants’ thermal preferences using low-cost infrared
thermography. The proposed approach leverages interdisciplinary techniques including the
thermoregulatory theory, computer vision, and machine learning. Results demonstrate that ears,
nose, and cheeks region have a larger skin temperature variation under cold and heat stress.
Therefore, features retrieved from these regions are most indicative of thermal comfort. In
addition, facial skin temperature data collected from the low-cost infrared thermal camera were
used to develop personal comfort models using four machine learning algorithms. The results
show that the Random Forest algorithm has the best performance and can achieve an 85%
accuracy in thermal comfort prediction, which offers the possibility for synchronous control of
indoor environments with minimal interruption of building occupants. The resulting new
knowledge from this study has the potential to transition the current building HVAC control
from a passive and user-empirical process to an automated, user-centric, and data-driven
mechanism that can simultaneously improve occupant satisfaction and well-being in indoor
environments.
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APPENDIX
Table A.1. Statistics of skin temperature features in the three phases
Features Cooling Heating Steady-State
g+SD(@) (1) §$+SD(5)(2) | g+SD() (3) 5+SD(5)(4) | g£SD() (5) 5+SD(3)(6)

maxVal 34.38+0.84 0.31+0.11 34.17+0.93 0.12+0.04 34.52+0.62 0.08+0.03
VmaxVal -.016+.005 .013+.006 .004+.003 .009+.002 -.003+.003 .006+.003
forehead_avg | 33.55+0.92 0.34+0.15 33.02£1.50 0.19+0.11 33.77+0.73 0.07+0.02
forehead_max | 34.17+0.86 0.33+0.13 34.01+1.08 0.13+0.05 34.49+0.62 0.09+0.03
forehead min | 30.05+0.72 0.44+0.25 29.58+0.48 0.20+0.17 30.16+0.71 0.10+0.09
Vforehead -.018+.007 .013+.005 .006+.009 .010£.002 -.002+.002 .006+.003
nose_avg 32.46+1.61 0.60+0.25 31.85+0.66 0.77+0.34 32.38+1.54 0.22+0.11
nose_max 33.33+1.20 0.45+0.17 32.80+0.58 0.46+0.17 33.21%1.07 0.17+£0.09
nose_min 30.87+2.51 0.56+0.20 30.29+1.50 0.81+0.33 31.15+2.05 0.20+0.08
Vnose -.032+.012 .022+.009 .032+.021 .034+.015 -.007+.007 017+.012
cheek_avg | 32.35+1.84 0.35+0.15 31.86+1.66 0.31:+0.12 32.70+1.46 0.09+0.05
cheek_max | 33.62+1.35 0.28+0.15 33.21+1.16 0.22+0.08 33.73+1.12 0.10+0.04
cheek_min 29.47+2.40 0.53£0.19 29.05+2.18 0.56+0.23 30.32+1.98 0.11£0.05
Vcheek -017+.006 .018+.005 .016+.006 .010+.002 -.001+.005 .007+.003
mouth_avg 33.42+1.04 0.32+£0.13 32.54x1.10 0.17£0.05 33.30+0.90 0.17+0.06
mouth_max | 33.96+0.95 0.28+0.16 33.43+0.81 0.15+0.06 33.88+0.81 0.12+0.04
mouth_min 32.75+£1.28 0.42+0.16 31.69+1.39 0.26+0.13 32.66=1.10 0.20+0.08
Vmouth -016+.006 019+.010 .004.006 015+.008 .000+.007 013+.005
ear_avg 27.01+1.36 0.67£0.20 26.59+1.47 0.71+0.43 27.61%1.51 0.11£0.05
ear_max 29.76+1.81 0.62+0.20 29.21+2.02 0.70+0.38 30.35+1.66 0.19+0.08
ear_min 25.30+1.12 0.66+0.25 24.69+121 0.60+0.46 25.67+1.39 0.15+0.10
Vear -.035+.010 .032+.090 .039+.024 021+.014 .003+.005 .010+.004
neck_avg 32.75+0.83 0.29+0.18 32.35+0.96 0.24£0.11 32.94+0.92 0.12+0.06
neck_max 33.79+0.61 0.30+0.12 33.55+0.64 0.14+0.05 33.90+0.53 0.07+0.03
neck_min 29.78+1.09 0.40+0.29 29.50+1.11 0.38+0.31 30.33+1.28 0.28+0.21
Vneck -.014+.009 .018+.009 .011+.008 .010+.001 .000+.005 .011+.004

Note: all numbers are in °C
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