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ABSTRACT 

Understanding occupants’ thermal comfort is essential for the effective operation of heating, 
ventilation, and air conditioning (HVAC) systems. Existing studies of the “human-in-the-loop” 
HVAC control generally suffer from: (1) excessive reliance on cumbersome human feedback; 
and (2) intrusiveness caused by conventional data collection methods. To address these 
limitations, this paper investigates the low-cost thermal camera as a non-intrusive approach to 
assess thermal comfort in real time using facial skin temperature. The framework developed can 
automatically detect occupants, extract facial regions, measure skin temperature, and interpret 
thermal comfort with minimal interruption or participation of occupants. The framework is 
validated using the facial skin temperature collected from twelve occupants. Personal comfort 
models trained from different machine learning algorithms are compared and results show that 
random forest model can achieve an accuracy of 85% and also suggest that the skin temperature 
of ears, nose, and cheeks are most indicative of thermal comfort. 

INTRODUCTION AND BACKGROUND 

Lack of thermal comfort in buildings is a common problem where studies reveal that up to 
43% of building occupants are dissatisfied with the indoor thermal environment, which can lead 
to sick building syndrome, health complications, and reduced productivity (Karmann et al. 
2018). On the other hand, HVAC systems represent the largest energy end-use accounting for 
more than 50% of the total energy required to operate residential and commercial buildings 
(DOE 2017). Therefore, there will be significant social and economic benefits if building HVAC 
systems can be optimized to improve occupants’ comfort, satisfaction, and health while 
achieving reduced energy consumption (Li et al. 2017a, 2017b). To this end, researchers need to 
understand occupants’ thermal preferences and needs in real time. 
To address this research question, existing studies have extensively investigated the “human-in-
the-loop” approach which integrates human participation into controlling the HVAC systems or 
personal heating/cooling devices (Jazizadeh et al. 2013, Kim et al. 2018, Li et al. 2017b, 2017c). 
This category of studies focuses on developing personal comfort prediction models using 
occupants’ feedback or bio-signal data, which have been suggested to outperform the Predicted 
Mean Vote (PMV) and adaptive models. For example, Li et al. (2017b) proposed an HVAC 
control framework which used wristband sensors, smartphone applications, and environment 
sensors to collect human and environmental data, such as skin temperature, heart rate, clothing 
level, thermal preference, and room temperature. Personal comfort models developed in this 
study achieved an 80% accuracy in predicting the three-point thermal preference (i.e., warmer, 
no change, cooler). Kim et al. (2018) developed a personal comfort chair which can record 
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heating and cooling requests from occupants under various room conditions. This study 
compared the predictive performance of different machine learning algorithms and reported a 
73% accuracy in thermal preference prediction. 
Despite the significant contributions of the aforementioned studies in assessing occupants’ 
thermal comfort, these approaches are intrusive and can cause interruption of building occupants. 
First, this human participation oriented solution relies on occupants’ continuous feedback to 
interpret their comfort states over time. This is based on the assumption that the human body is 
the best “comfort sensor” which can periodically indicate the need to adjust the indoor thermal 
condition through feedback (e.g., requests to make the room warmer or cooler). However, in 
practice the frequency of feedback tends to decrease with time as the novelty and excitement of 
the system fades away (Li et al. 2017b). In addition, the requirement of human input is 
distracting during regular work time, especially over heavy workload periods. Moreover, these 
studies require occupants to use wearables (e.g., wrist-worn sensors), certain devices (e.g., 
comfort chair) or mobile applications, which is inconvenient and also lacks scalability. 
On the other hand, it is well established that thermal conditions can affect human 
thermoregulation (e.g., vasodilation and vasoconstriction) (Charkoudian 2003), which can lead to 
changes in the skin temperature. Therefore, to address the limitation of intrusiveness in existing 
studies, infrared thermal imaging is an ideal tool as it can collect an individual’s skin temperature 
and interpret the thermal comfort without direct contact with the skin surface. Specifically, 
human face is selected as the region of interest as (1) faces have a higher density of blood vessels 
than other locations, which can lead to more significant variations in skin temperature when 
ambient thermal environment changes; and (2) faces are usually not covered by clothing and thus 
the emitted infrared energy can be directly measured by thermal cameras. 

 
Figure 1. Lepton (left) and the facial thermal imaging (right) 

Table 1. Specifications of Lepton 

Features Descriptions 

Dimensions 8.5 x 11.7 x 5.6 mm 
Resolution 80(h) x 60(v) pixels 

Thermal sensitivity < 50 mK 
Accuracy ±5 ˚C or ±5% of reading 

Price $ 199 

OBJECTIVES 

This paper explores the feasibility of low-cost infrared thermal imaging as a truly non-
intrusive data collection approach to interpret human thermal comfort in indoor environments in 
real time. To achieve this objective, the authors developed an approach to non-intrusively obtain, 
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retrieve, and analyze facial skin temperature features for each building occupant in real 
operational indoor environments using thermal cameras, computer vision, and machine learning 
techniques. In addition, we extended Li et al. (2018) by comparing different machine learning 
algorithms in the comfort prediction. 

TECHNICAL APPROACH 

Low-cost thermal camera 

This study used the FLIR Lepton 2.5 radiometric thermal camera (hereinafter referred to as 
the Lepton) to collect skin temperature data (see Figure 1) (FLIR 2014). Lepton is an uncooled 
long-wave infrared thermal imaging core with factory-calibrated temperature measurements. The 
relevant specifications of Lepton can be found in Table 1. 

Data collection and analysis 

Figure 2 illustrates the workflow of the proposed non-intrusive thermal comfort 
interpretation framework. This framework leverages a range of techniques including: (1) 
computer vision to detect human faces; (2) facial geometry to locate different facial regions; (3) 
signal processing methods to clean the raw skin temperature data; and (4) machine learning 
algorithms to develop personal comfort models and identify important features. Details of each 
step are explained in the following subsections. 

 
Figure 2. The workflow of the non-intrusive thermal comfort interpretation framework 

Face detection 

The Haar Cascade algorithm was applied to detect human faces using the OpenCV package 
(Figure 2a). Haar Cascade is a fast and effective face detection algorithm, which recognizes 
frontal and profile faces by checking the existence of certain edges or textures in the image 
(Viola and Jones 2001). Although the Lepton has a low resolution of 80 by 60 pixels, the 
outlines of facial contours are clearly preserved in the thermal image (see Figure 2b, the image 
was taken one meter away from the occupant to represent a non-intrusive distance), which makes 
the Haar Cascade algorithm suitable for this task. 

Feature extraction 

After detecting human faces, different facial regions were located based on the facial 
geometry, which include the forehead, nose, cheeks, ears, mouth, and neck (see Figure 2b, each 
region was highlighted for the demonstration purpose). The area and location of each facial 
region were tuned on several subjects prior to the data collection experiment to ensure all 
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Where   and ( )SD   are the mean and SD of skin temperature of all subjects in a particular 

phase; s  and ( ) SD s  are the mean and SD of the sample standard deviation; n  is the number of 

subjects. 
As shown in Appendix Table A.1, the variations of skin temperature in the cooling (column 

2) and heating (column 4) phases were much larger than those in the steady-state phase (column 
6), which implied that skin temperature was affected by the room temperature. Moreover, nose 
and ears regions had a larger temperature variation compared to other regions in the cooling 

(nose: 0.60  0.25 °C, ear: 0.67  0.20 °C) and heating phases (nose: 0.77  0.34 °C, ear: 0.71  
0.43 °C). Skin temperature features from these two regions are useful to predict thermal 
preferences as they are sensitive to the change of the environment. For more details please refer 
to Li et al. (2018). 

After tuning the hyper-parameters, ten-fold cross-validations were conducted to evaluate the 
personal comfort models developed using different algorithms. As shown in Table 2, the RF 
algorithm achieved the best performance most of the time, which is consistent with the results in 
Kim et al. (2018). On average, by using the selected facial skin temperature features, personal 
comfort models can achieve an 85.0% accuracy in predicting subjects’ thermal comfort 
preferences. 

Table 2. Prediction accuracy of different algorithms for each subject 

ID 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

SVM 0.71 0.72 0.81 0.88 0.74 0.73 0.83 0.75 0.66 0.86 0.89 0.80 0.78 

CTree 0.64 0.65 0.83 0.90 0.91 0.85 0.91 0.87 0.81 0.91 0.85 0.80 0.83 

LR 0.79 0.73 0.82 0.88 0.87 0.81 0.93 0.78 0.72 0.90 0.92 0.77 0.83 

RF 0.73 0.80 0.83 0.92 0.90 0.88 0.86 0.85 0.83 0.89 0.91 0.81 0.85 
*Bold number denotes the highest accuracy among the four algorithms. 

CONCLUSIONS 

This paper presents a novel approach to non-intrusively obtain, retrieve, and analyze facial 
skin temperature data and interpret occupants’ thermal preferences using low-cost infrared 
thermography. The proposed approach leverages interdisciplinary techniques including the 
thermoregulatory theory, computer vision, and machine learning. Results demonstrate that ears, 
nose, and cheeks region have a larger skin temperature variation under cold and heat stress. 
Therefore, features retrieved from these regions are most indicative of thermal comfort. In 
addition, facial skin temperature data collected from the low-cost infrared thermal camera were 
used to develop personal comfort models using four machine learning algorithms. The results 
show that the Random Forest algorithm has the best performance and can achieve an 85% 
accuracy in thermal comfort prediction, which offers the possibility for synchronous control of 
indoor environments with minimal interruption of building occupants. The resulting new 
knowledge from this study has the potential to transition the current building HVAC control 
from a passive and user-empirical process to an automated, user-centric, and data-driven 
mechanism that can simultaneously improve occupant satisfaction and well-being in indoor 
environments. 
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