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Abstract. Parkinson’s Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of
millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in
recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging,
as another important information source for neurodegenerative disease, has also arisen considerable interests from the
PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for
fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from
controls. On Parkinson’s Progression Markers Initiative (PPMI) cohort, our approach achieved 0.9537±0.0587 AUC,
compared with 0.6443± 0.0223 AUC achieved by traditional approaches such as PCA.

1 Introduction

Parkinson’s Disease (PD) [1] is one of the most prevalent neurodegenerative diseases, which occur when nerve cells in
the brain or peripheral nervous system lose function over time and ultimately die. PD affects predominately dopamin-
ergic neurons in substantia nigra, which is a specific area of the brain. PD is a highly progressive disease, with related
symptoms progressing slowly over the years. Typical PD symptoms include bradykinesia, rigidity, and rest tremor,
which affect speech, hand coordination, gait, and balance. According to the statistics from National Institute of En-
vironmental Healths (NIEHS), at least 500,000 Americans are living with PD1. The Centers for Disease Control and
Prevention (CDC) rated complications from PD as the 14th cause of death in the United States [2].

The cause of PD remains largely unknown. There is no cure for PD and its treatments include mainly medications
and surgery. The progression of PD is highly heterogeneous, which means that its clinical manifestations vary from
patient to patient. In order to understand the underlying disease mechanism of PD and develop effective therapeutics,
many large-scale cross-sectional cohort studies have been conducted. The Parkinson’s Progression Markers Initiative
(PPMI) [3] is one such example including comprehensive evaluations of early stage (idiopathic) PD patients with
imaging, biologic sampling, and clinical and behavioral assessments. The patient recruitment in PPMI is taking place
at clinical sites in the United States, Europe, Israel, and Australia. This injects enough diversity into the PPMI cohort
and makes the downstream analysis/discoveries representative and generalizable.

Quite a few computational studies have been conducted on PPMI data in recent years. For example, Dinov et al.
[4] built a big data analytics pipeline on the clinical, biomarker and assessment data in PPMI to perform various
prediction tasks. Schrag et al. [5] predicted the cognitive impairment of the patients in PPMI with clinical variables
and biomarkers. Nalls et al. [6] developed a diagnostic model with clinical and genetic classifications with PPMI
cohort. We also developed a sequential deep learning based approach to identify the subtypes of PD on the clinical
variables, biomarkers and assessment data in PPMI, and our solution won the PPMI data challenge in 2016 [7]. These
studies provided insights to PD researchers in addition to the clinical knowledge.

So far research on PPMI has been mostly utilizing its clinical, biomarker and assessment information. Another im-
portant part but under-utilized part of PPMI is its rich neuroimaging information, which includes Magnetic Resonance
Imaging (MRI), functional MRI, Diffusion Tensor Imaging (DTI), CT scans, etc. During the last decade, neuroimag-
ing studies including structural, functional and molecular modalities have also provided invaluable insights into the
underlying PD mechanism [8]. Many imaging based biomarkers have been demonstrated to be closely related to the

1https://www.niehs.nih.gov/research/supported/health/neurodegenerative/index.cfm
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progression of PD. For example, Chen et al. [9] identified significant volumetric loss in the olfactory bulbs and tracts
of PD patients versus controls from MRI scans, and the inverse correlation between the global olfactory bulb volume
and PD duration. Different observations have been made on the volumetric differences in substantia nigra (SN) on
MRI [10, 11]. Decreased Fractional Anisotropy (FA) in the SN is commonly observed in PD patients using DTI [12].
With high-resolution DTI, greater FA reductions in caudal (than in middle or rostral) regions of the SN were identified,
distinguishing PD from controls with 100% sensitivity and specificity [13]. One can refer to [14] for a comprehensive
review on imaging biomarkers for PD. Many of these neuroradiology studies are strongly hypothesis driven, based on
the existing knowledge on PD pathology.

In recent years, with the arrival of the big data era, many computational approaches have been developed for neu-
roimaging analysis [15, 16, 17]. Different from conventional hypothesis driven radiology methods, these computa-
tional approaches are typically data driven and hypothesis free – they derive features and evidences directly from
neuroimages and utilize them in the derivation of clinical insights on multiple problems such as brain network dis-
covery [18, 19] and imaging genomics [20, 21]. Most of these algorithms are linear [22] or multilinear [23], and they
work on a single modality of brain images.

In this paper, we develop a computational framework for analyzing the neuroimages in PPMI data based on Graph
Convolutional Networks (GCN) [24]. Our framework learns pairwise relationships with the following steps.

Graph Construction. We parcel the structural MRI brain images of each acquisition into a set of Region-of-Interests
(ROIs). Each region is treated as a node on a Brain Geometry Graph (BGG), which is undirected and weighted.
The weight associated with each pair of nodes is calculated according to the average distance between the geometric
coordinates of them in each acquisition. All acquisitions share the same BGG.

Feature Construction. We use different brain tractography algorithms on the DTI parts of the acquisitions to obtain
different Brain Connectivity Graphs (BCGs), which are used as the features for each acquisition. Each acquisition has
a BCG for each type of tractography.

Relationship Prediction. For each acquisition, we learn a feature matrix from each of its BCG through a GCN. Then
all the feature matrices are aggregated through element-wise view pooling. Finally, the feature matrices from each
acquisition pair are aggregated into a vector, which is fed into a softmax classifier for relationship prediction.

It is worthwhile to highlight the following aspects of the proposed framework.

Pairwise Learning. Instead of performing sample-level learning, we learn pairwise relationships, which is more flex-
ible and weaker (sample level labels can always be transformed to pairwise labels but not vice versa). Importantly,
such a pairwise learning strategy can increase the training sample size (because each pair of training samples becomes
an input), which is very important to learning algorithms that need large-scale training samples (e.g., deep learning).

Nonlinear Feature Learning. As we mentioned previously, most of the existing machine learning approaches for neu-
roimaging analysis are based on either linear or multilinear models, which have a limited capacity of exploring the
information contained in neuroimages. We leverage GCN, which is a powerful tool that can explore graph character-
istics at a spectrum of frequency bands. This brings our framework more potential to achieve good performance.

Multi-Graph Fusion. Different from conventional approaches that focus on a single graph (image modality), our
framework fuses 1) spatial information on the BGG obtained from the MRI part of each acquisition; 2) the features
obtained from different BCGs obtained from the DTI part of each acquisition. This effectively leverages the comple-
mentary information scattered in different sources.

2 Methodology

In this section, we first describe the problem setting and then present the details of our proposed approach. To facilitate
the description, we denote scalars by lowercase letters (e.g., x), vectors by boldfaced lowercase letters (e.g., x), and
matrices by boldface uppercase letters (e.g., X). We also use lowercase letters i, j as indices. We write xi to denote
the ith entry of a vector x, and xi,j the entry with row index i and column index j in a matrix X. All vectors are
column vectors unless otherwise specified.



2.1 Problem Setting

Suppose we have a population of N acquisitions, where each acquisition is subject-specific and associated with M
BCGs obtained from different measurements or views. A BCG can be represented as an undirected weighted graph
G = (V,E). The vertex set V = {v1, · · · , vn} consists of ROIs in the brain and each edge in E is weighted by a
connectivity strength, where n is the number of ROIs. We represent edge weights by an n × n similarity matrix X
with xi,j denoting the connectivity between ROI i and ROI j. We assume that the vertices remain the same while the
edges vary with views. Thus, for each subject, we have M BCGs: {G(k) = (V,E(k))}Mk=1. A group of similarity
matrices {X(1), · · · ,X(k), · · · ,X(M)} can be derived.

An undirected weighted BGG G̃ = (V,E) is defined based on the geometric information of the region coordinates,
which is a K-Nearest Neighbor (K-NN) graph. The graph has ROIs as vertices V = {v1, · · · , vn}, where each
ROI is associated with coordinates of its center. Edges are weighted by the Gaussian similarity function of Euclidean
distances, i.e., e(vi, vj) = exp(−‖vi−vj‖

2

2σ2 ). We identify the set of vertices Ni that are neighbors to the vertex vi
using K-NN, and connect vi and vj if vi ∈ Nj or if vj ∈ Ni. An adjacency matrix Ã can then be associated with G̃
representing the similarity to nearest similar ROIs for each ROI, with the elements:

ãi,j =

{
e(vi, vj), if vi ∈ Nj or vj ∈ Ni
0, otherwise.

Our goal is to learn a feature representation for each subject by fusing its BCGs and the shared BGG, which captures
both the local traits of each individual subject and the global traits of the population of subjects. Specifically, we
develop a customized Multi-View Graph Convolutional Network (MVGCN) model to learn feature representations on
neuroimaging data.

2.2 Our Approach

Figure 1: Overall flowchart of our framework.
Overview. Fig. 1 provides an overview of the MVGCN framework we develop for relationship prediction on multi-
view brain graphs. Our model is a deep neural network consisting of three main components: the first component
is a multi-view GCN for extracting the feature matrices from each acquisition, the second component is a pairwise
matching strategy for aggregating the feature matrices from each pair of acquisitions into feature vectors, and the
third component is a softmax predictor for relationship prediction. All of these components are trained using back-
propagation and stochastic optimization. Note that MVGCN is an end-to-end architecture without extra parameters
involved for view pooling and pairwise matching, Also, all branches of the used views share the same parameters in
the multi-view GCN component. We next give details of each component.

• C1: Multi-View GCN. Traditional convolutional neural networks (CNN) rely on the regular grid-like structure with
a well-defined neighborhood at each position in the grid (e.g. 2D and 3D images). On a graph structure there is usually
no natural choice for an ordering of the neighbors of a vertex, therefore it is not trivial to generalize the convolution



operation to the graph setting. Shuman et al. showed that this generalization can be made feasible by defining graph
convolution in the spectral domain and proposed a GCN. Motivated by the fact that GCN can effectively model the
nonlinearity of samples in a population and has superior capability to explore graph characteristics at a spectrum of
frequency bands, we propose a multi-view GCN for an effective fusion of populations of graphs with different views.
It consists of two fundamental steps: (i) the design of convolution operator on multiple graphs across views, (ii) a view
pooling operation that groups together multi-view graphs.

Graph Convolution. An essential point in GCN is to define graph convolution in the spectral domain based on Lapla-
cian matrix and graph Fourier transform (GFT). We consider the normalized graph Laplacian L = I−D−1/2AD−1/2,
where A ∈ Rn×n is the adjacency matrix associated with the graph, D ∈ Rn×n is the diagonal degree matrix with
di,i =

∑
j ai,j , and I ∈ Rn×n is the identity matrix. As L is a real symmetric positive semidefinite matrix, it can

be decomposed as L = UΛUT, where U ∈ Rn×n is the matrix of eigenvectors with UUT = I (referred to as
the Fourier basis) and Λ ∈ Rn×n is the diagonal matrix of eigenvalues {λi}ni=1. The eigenvalues represent the fre-
quencies of their associated eigenvectors, i.e. eigenvectors associated with larger eigenvalues oscillate more rapidly
between connected vertices. Specifically, in order to obtain a unique frequency representation for the signals on the
set of graphs, we define the Laplacian matrix on the BGG G̃, as all graphs share a common structure with adjacency
matrix Ã.

Let x ∈ Rn be a signal defined on the vertices of a graph G, where xi denotes the value of the signal at the i-th vertex.
The GFT is defined as x̂ = UTx, which converts signal x to the spectral domain spanned by the Fourier basis U.
Then the graph convolution can be defined as:

y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx, (1)

where θ is a vector of Fourier coefficients to be learned, and gθ is called the filter which can be regarded as a function
of Λ. To render the filters s-localized in space and reduce the computational complexity, gθ can be approximated by a
truncated expansion in terms of Chebyshev polynomials of order s [24]. That is,

gθ(Λ) =
∑s−1

p=0
θpTp(Λ̃), (2)

where the parameter θp ∈ Rs is a vector of Chebyshev coefficients and Tp(Λ̃) ∈ Rn×n is the Chebyshev polynomial
of order s evaluated at Λ̃ = 2Λ/λmax − I, a diagonal matrix of scaled eigenvalues that lies in [−1, 1].

Substituting Eq. (2) into Eq. (1) yields y = gθ(L)x =
∑s−1
p=0 θpTp(L̃)x, where L̃ = 2

λmax
L − I. Denoting x̃p =

Tp(L̃)x, we can use the recurrence relation to compute x̃i = 2L̃x̃p−1 − x̃p−2 with x̃0 = x and x̃1 = L̃x. Finally, the
jth output feature map in a GCN is given by:

yj =
∑Fin

i=1
gθi,j (L)xi, (3)

yielding Fin × Fout vectors of trainable Chebyshev coefficients θi,j ∈ Rs, where xi denotes the input feature maps
from a graph. For each BCG, xi corresponds to the i-th row of the respective input connectivity matrix X, and the
initial Fin is n which equals to the number of brain ROIs. The outputs are collected into a feature matrix Y =
[y1,y2, · · · ,yFout

] ∈ Rn×Fout , where each row represents the extracted features of an ROI.

View Pooling. For each subject, the output of GCN areM feature matrices {Y(1), · · · ,Y(k), · · · ,Y(M)}, where each
matrix Y(k) ∈ Rn×Fout corresponds to a view. Similar to the view pooling layer in the multi-view CNN [25], we use
element-wise maximum operation across all M feature matrices in each subject to aggregate multiple views together,
producing a shared feature matrix Z. An alternative is an element-wise mean operation, but it is not as effective in our
experiments (see Table 2). The reason might be that the maximum operation learns to combine the views instead of
averaging, and thus can use the more informative views of each feature while ignoring others.

Fig. 2 gives the flowchart of our multi-view GCN. Based on this multi-view GCN, different views of BCGs can be
progressively fused in accordance with their similarity matrices, which can capture both local and global structural
information from BCGs and BGG.



Figure 2: The flowchart of the multi-view GCN component.

• C2: Pairwise Matching. Training deep learning model requires a large amount of training data, but usually very few
data are available from clinical practice. We take advantage of the pairwise relationships between subjects to guide the
process of deep learning [26, 17]. Similarity is an important type of pairwise relationship that measures the relatedness
of two subjects. The basic assumption is that, if two subjects are similar, they should have a high probability to have
the same class label.

Let Zp and Zq be the feature matrices for any subject pair obtained from multi-view GCN, we can use them to compute
an ROI-ROI similarity score. To do so, we first normalize each matrix so that the sum of squares of each row is equal
to 1, and then define the following pairwise similarity measure using the row-wise inner product operator:

sim(zip, z
i
q) = zip

T
ziq, i = 1, 2, · · · , n. (4)

where zip and ziq are the i-th row vectors of the normalized matrices Zp and Zq , respectively.

• C3: Softmax. For each pair, the output of the pairwise matching layer is a feature vector r, where each element is
given by Eq. (4). Then, this representation is passed to a fully connected softmax layer for classification. It computes
the probability distribution over the labels:

p(y = j|r) = exp(wT
j r)/

[∑C

c=1
exp(wT

c r)

]
, (5)

where wc is the weight vector of the c-th class, and r is the final abstract representation of the input example obtained
by a series of transformations from the input layer through a series of convolution and pooling operations.

3 Experiments and Results

In order to evaluate the effectiveness of our proposed approach, we conduct extensive experiments on real-life Parkin-
sons Progression Markers Initiative (PPMI) data for relationship prediction and compare with several state-of-the-art
methods. In the following, we introduce the datasets used and describe details of the experiments. Then we present
the results as well as the analysis.

Data Description. We consider the DTI acquisition on 754 subjects, where 596 subjects are Parkinson’s Disease (PD)
patients and the rest 158 are Healthy Control (HC) ones. Each subject’s raw data were aligned to the b0 image using
the FSL2 eddy-correct tool to correct for head motion and eddy current distortions. The gradient table is also corrected
accordingly. Non-brain tissue is removed from the diffusion MRI using the Brain Extraction Tool (BET) from FSL.
To correct for echo-planar induced (EPI) susceptibility artifacts, which can cause distortions at tissue-fluid interfaces,
skull-stripped b0 images are linearly aligned and then elastically registered to their respective preprocessed structural
MRI using Advanced Normalization Tools (ANTs3) with SyN nonlinear registration algorithm. The resulting 3D
deformation fields are then applied to the remaining diffusion-weighted volumes to generate full preprocessed diffu-
sion MRI dataset for the brain network reconstruction. In the meantime, 84 ROIs are parcellated from T1-weighted
structural MRI using Freesufer4 and each ROI’s coordinate is defined using the mean coordinate for all voxels in that
ROI.

2http://www.fmrib.ox.ac.uk/fsl
3http://stnava.github.io/ANTs/
4https://surfer.nmr.mgh.harvard.edu

http://www.fmrib.ox.ac.uk/fsl
http://stnava.github.io/ANTs/
https://surfer.nmr.mgh.harvard.edu


Table 1: Results for classifying matching vs. non-matching brain networks in terms of AUC metric.

Methods
Modals

FACT RK2 SL TL ODF-RK2 Hough
Raw Edges 58.47 (4.05) 62.54 (6.88) 59.39 (5.99) 61.94 (5.00) 60.93 (5.60) 64.49 (3.56)
PCA 64.10 (2.10) 63.40 (2.72) 64.43 (2.23) 62.46 (1.46) 60.93 (2.63) 63.46 (3.52)
FCN 66.17 (2.00) 65.11 (2.63) 65.00 (2.29) 64.33 (3.34) 68.80 (2.80) 61.91 (3.42)
FCN2l 82.36 (1.87) 81.02 (4.28) 81.68 (2.49) 81.99 (3.44) 82.53 (4.74) 81.77 (3.74)
GCN 92.67 (4.94) 92.99 (4.95) 92.68 (5.32) 93.75 (5.39) 93.04 (5.26) 93.90 (5.48)

Table 2: Comparison of binary classification (AUC) and acquisition clustering (NMI) results using both single-view
and multi-view architectures.

Architectures AUC NMI

PCA100-M-S 64.43 (2.23) 0.39
FCN1024-M-FCN64-S 82.53 (4.74) 0.87
GCN128-M-S 93.75 (5.39) 0.98

MVGCN128-M-Smean 94.74 (5.62) 1.00
MVGCN128-M-Smax 95.37 (5.87) 1.00

Based on these 84 ROIs, we reconstruct six types of BCGs for each subject using six whole brain tractography al-
gorithms, including four tensor-based deterministic approaches: Fiber Assignment by Continuous Tracking (FACT)
[27], the 2nd-order Runge-Kutta (RK2) [28], interpolated streamline (SL) [29], the tensorline (TL) [30], one Orien-
tation Distribution Function (ODF)-based deterministic approach [31]: ODF-RK2 and one ODF-based probabilistic
approach: Hough voting [32]. Please refer to [33] for the details of whole brain tractography computations. Each
resulted network for each subject is 84 × 84. To avoid computation bias in the later feature extraction and evaluation
sections, we normalize each brain network by the maximum value in the matrix, as matrices derived from different
tractography methods have different scales and ranges.

Experimental Settings. To learn similarities between graphs, brain networks in the same group (PD or HC) are
labeled as matching pairs while brain networks from different groups are labeled as non-matching pairs. Hence,
we have 283, 881 pairs in total, with 189, 713 matching samples and 94, 168 non-matching samples. 5-fold cross
validation is adopted in all of our experiments by separating brain graphs into 5 stratified randomized sets, where 1-
fold held-out data used for the testing sample pairs and the rest used for training. Using the coordinate information of
ROIs in DTI, we construct a 10-NN BGG in our method, which has 84 vertices and 527 edges. For graph convolutional
layers, the order of Chebyshev polynomials s = 30 and the output feature dimension Fout = 128 are used. For fully
connected layers, the number of feature dimensions is 1024 in the baseline of one fully connected layer, and those
are set as 1024 and 64 for the baseline of two layers. The Adam optimizer [34] is used with the initial learning rate
0.005. The above parameters are optimal settings for all the methods by performing cross-validation. MVGCN code
and scripts are available on a public repository (https://github.com/sheryl-ai/MVGCN).

Results. Since our target is to predict relations (matching vs. non-matching) between pairwise BCGs, the performance
of binary classification are evaluated using the metric of Area Under the Curve (AUC). Table 1 provides the results
of individual views using the following methods: raw edges-weights, PCA, feed-forward fully connected networks
(FCN and FCN2l), and graph convolutional network (GCN), where FCN2l is a two-layer FCN. Through the compared
methods, the feature representation of each subject in pairs can be learned. For a fair comparison, pairwise matching
component and software component are utilized for all the methods. The best performance of GCN-based method
achieves an AUC of 93.90%. It is clear that GCN outperforms the raw edges-weights, conventional linear dimension
reduction method PCA and nonlinear neural networks FCN and FCN2l.

Table 2 reports the performance on classification and acquisition clustering of our proposed MVGCN with three base-
lines. The architectures of neural networks by the output dimensions of the corresponding hidden layers are presented.
M denotes the matching layer based on Eq. (4), S denotes the softmax operation in Eq. (5). The numbers denote the

https://github.com/sheryl-ai/MVGCN


(a) PCA (b) FCN2l (c) MVGCN
Figure 3: Visualization of the DTI acquisition clusters. The acquisitions are mapped to the 2D space using the t-SNE
algorithm with the predicted values of pairwise relationship as input. Blue denotes PD, Red denotes HC.

dimensions of extracted features at different layers. For our study, we evaluate both element-wise max pooling and
mean pooling in the view pooling component. Specifically, to test the effectiveness of the learned similarities, we also
evaluate the clustering performance in terms of Normalized Mutual Information (NMI). The acquisition clustering
algorithm we used is K-means (K = 2, PD and HC). The results show that our MVGCN outperforms all baselines on
both classification and acquisition clustering tasks, with an AUC of 95.37% and an NMI of 1.00.

In order to test whether the prediction results are meaningful for distinguishing brain networks as PD or HC, we
visualize the Euclidean distance for the given 754 DTI acquisitions. Since the output values of all the matching
models can indicate the pairwise similarities between acquisitions, we map it into a 2D space with t-SNE [35]. Fig. 3
compares the visualization results with different approaches. The feature extraction by PCA cannot separate the PD
and HC perfectly. The result of FCN2l in the view ODF-RK2 that has the best AUC is much better, and two clusters can
be observed with a few overlapped acquisitions. Compared with PCA and FCN2l, the visualization result of MVGCN
with max view pooling clearly shows two well-separated and relatively compact groups.

Furthermore, we investigate the extracted pairwise feature vectors of the proposed MVGCN. After the ROI-ROI based
pairwise matching, the output for each pair is a feature vector embedding the similarity of the given two acquisitions,
with each element associated with a ROI. By visualizing the value distribution over ROIs, we can interpret the learned
pairwise feature vector of our model. Fig. 4 reports the most 10 similar or dissimilar ROI for PD or HC groups.
The similarities are directly extracted from the output representations of the pairwise matching layer. We compute
the averaged values of certain groups. For instance, the similarity distributions are computed given the pairwise PD
samples, and the values of the top-10 ROI are shown in Fig. 4(a). According to the results, lateral orbitofrontal
area, middle temporal and amygdala areas are the three most similar ROIs for PD patients, while important ROIs
such as caudate and putamen areas are discriminative to distinguish PD and HC (see Fig. 4(d)). The observations
demonstrate that the learned pairwise feature vectors are consistent with some clinical discoveries [36] and thus verify
the effectiveness of the MVGCN for neuroimage analysis.

4 Discussion

The underlying rationale of the proposed method is modeling the multiple brain connectivity networks (BCGs) and a
brain geometry graph (BGG) based on the common ROI coordinate simultaneously. Since BCGs are non-Euclidean,
it is not straightforward to use a standard convolution that has impressive performances on the grid. Additionally,
multi-view graph fusion methods [37] allow us to explore various aspects of the given data. Our non-parametric view
pooling is promising in practice. Furthermore, the pairwise learning strategies can satisfy the “data hungry” neural
networks with few acquisitions [26]. Our work has demonstrated strong potentials of graph neural networks on the
scenario of multiple graph-structured neuroimages. Meanwhile, the representations learned by our approach can be
straightforwardly interpreted. However, there are still some limitations. The current approach is completely data-



(a) Top-10 similar ROI for PD group (b) Top-10 similar ROI for HC group

(c) Top-10 similar ROI between PD and HC (d) Top-10 dissimilar ROI between PD and HC
Figure 4: Visualization of the learned ROI-ROI similarities from averaged pairwise feature vectors in the certain
groups. Top-10 similar or dissimilar ROIs for PD and HC groups are shown in (a)-(d) respectively.

driven without utilization of any clinical domain knowledge. The clinical data such as Electronic Health Records are
not considered in the analysis of the disease. In the future, we will continue our research specifically along these
directions.

5 Conclusion

We propose a multi-view graph convolutional network method called MVGCN in this paper, which can directly take
brain graphs from multiple views as inputs and do prediction on that. We validate the effectiveness of MVGCN
on real-world Parkinson’s Progression Markers Initiative (PPMI) data for predicting the pairwise matching relations.
We demonstrate that our proposed MVGCN can not only achieve good performance, but also discover interesting
predictive patterns.
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