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SOFAR: Large-Scale Association Network Learning
Yoshimasa Uematsu , Yingying Fan, Kun Chen, Jinchi Lv , and Wei Lin

Abstract— Many modern big data applications feature large
scale in both numbers of responses and predictors. Better
statistical efficiency and scientific insights can be enabled by
understanding the large-scale response-predictor association net-
work structures via layers of sparse latent factors ranked by
importance. Yet sparsity and orthogonality have been two largely
incompatible goals. To accommodate both features, in this paper,
we suggest the method of sparse orthogonal factor regres-
sion (SOFAR) via the sparse singular value decomposition with
orthogonality constrained optimization to learn the underlying
association networks, with broad applications to both unsuper-
vised and supervised learning tasks, such as biclustering with
sparse singular value decomposition, sparse principal component
analysis, sparse factor analysis, and spare vector autoregression
analysis. Exploiting the framework of convexity-assisted noncon-
vex optimization, we derive nonasymptotic error bounds for the
suggested procedure characterizing the theoretical advantages.
The statistical guarantees are powered by an efficient SOFAR
algorithm with convergence property. Both computational and
theoretical advantages of our procedure are demonstrated with
several simulations and real data examples.

Index Terms— Big data, large-scale association network,
simultaneous response and predictor selection, latent factors,
sparse singular value decomposition, orthogonality constrained
optimization, nonconvex statistical learning.

I. INTRODUCTION

THE genetics of gene expression variation may be com-
plex due to the presence of both local and distant
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genetic effects and shared genetic components across multiple
genes [14], [18]. A useful statistical analysis in such studies
is to simultaneously classify the genetic variants and gene
expressions into groups that are associated. For example, in a
yeast expression quantitative trait loci (eQTLs) mapping analy-
sis, the goal is to understand how the eQTLs, which are regions
of the genome containing DNA sequence variants, influence
the expression level of genes in the yeast MAPK signaling
pathways. Extensive genetic and biochemical analysis has
revealed that there are a few functionally distinct signaling
pathways of genes [14], [36], suggesting that the association
structure between the eQTLs and the genes is of low rank.
Each signaling pathway involves only a subset of genes, which
are regulated by only a few genetic variants, suggesting that
each association between the eQTLs and the genes is sparse
in both the input and the output (or in both the responses
and the predictors), and the pattern of sparsity should be
pathway specific. Moreover, it is known that the yeast MAPK
pathways regulate and interact with each other [36]. The
complex genetic structures described above clearly call for
a joint statistical analysis that can reveal multiple distinct
associations between subsets of genes and subsets of genetic
variants. If we treat the genetic variants and gene expressions
as the predictors and responses, respectively, in a multivariate
regression model, the task can then be carried out by seeking a
sparse representation of the coefficient matrix and performing
predictor and response selection simultaneously. The problem
of large-scale response-predictor association network learning
is indeed of fundamental importance in many modern big data
applications featuring large scale in both numbers of responses
and predictors.

Observing n independent pairs (xi , yi ), i = 1, · · · , n, with
xi ∈ R

p the covariate vector and yi ∈ R
q the response

vector, motivated from the above applications we consider the
following multivariate regression model

Y = XC∗ + E, (1)

where Y = (y1, . . . , yn)
T ∈ R

n×q is the response matrix, X =
(x1, . . . , xn)T ∈ R

n×p is the predictor matrix, C∗ ∈ R
p×q is

the true regression coefficient matrix, and E = (e1, . . . , en)T is
the error matrix. To model the sparse relationship between the
responses and the predictors as in the yeast eQTLs mapping
analysis, we exploit the following singular value decomposi-
tion (SVD) of the coefficient matrix

C∗ = U∗D∗V∗T =
r�

j=1

d∗j u∗j v∗Tj , (2)
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where 1 ≤ r ≤ min(p, q) is the rank of matrix C∗, D∗ =
diag(d∗1 , . . . , d∗r ) is a diagonal matrix of nonzero singular val-
ues, and U∗ = (u∗1, . . . , u∗r ) ∈ R

p×r and V∗ = (v∗1, . . . , v∗r ) ∈
R

q×r are the orthonormal matrices of left and right singular
vectors, respectively. Here, we assume that C∗ is low-rank with
only r nonzero singular values, and the matrices U∗ and V∗
are sparse.

Under the sparse SVD structure (2), model (1) can be
rewritten as

�Y = �XD∗ +�E,

where �Y = YV∗, �X = XU∗, and �E = EV∗ ∈ R
n×r

are the matrices of latent responses, predictors, and random
errors, respectively. The associations between the predic-
tors and responses are thus diagonalized under the pairs of
transformations specified by U∗ and V∗. When C∗ is of
low rank, this provides an appealing low-dimensional latent
model interpretation for model (1). Further, note that the
latent responses and predictors are linear combinations of the
original responses and predictors, respectively. Thus, the inter-
pretability of the SVD can be enhanced if we require that the
left and right singular vectors be sparse so that each latent
predictor/response involves only a small number of the original
predictors/responses, thereby performing the task of variable
selection among the predictors/responses, as needed in the
yeast eQTLs analysis.

The above model (1) with low-rank coefficient matrix
has been commonly adopted in the literature. In particular,
the reduced rank regression [1], [39], [55] is an effective
approach to dimension reduction by constraining the coef-
ficient matrix C∗ to be of low rank. Bunea et al. [15]
proposed a rank selection criterion that can be viewed as an
L0 regularization on the singular values of C∗. The popularity
of L1 regularization methods such as the Lasso [60] led to
the development of nuclear norm regularization in multivariate
regression [66]. Chen et al. [21] proposed an adaptive nuclear
norm penalization approach to bridge the gap between L0 and
L1 regularization methods and combine some of their advan-
tages. With the additional SVD structure (2), Chen et al. [19]
proposed a new estimation method with a correctly specified
rank by imposing a weighted L1 penalty on each rank-1 SVD
layer for the classical setting of fixed dimensionality. Chen
and Huang [22] and Bunea et al. [16] explored a low-rank
representation of C∗ in which the rows of C∗ are sparse;
however, their approaches do not impose sparsity on the right
singular vectors and, hence, are inapplicable to settings with
high-dimensional responses where response selection is highly
desirable.

Recently, there have been some new developments in
sparse and low-rank regression problems. Ma and Sun [50]
studied the properties of row-sparse reduced-rank regression
model with nonconvex sparsity-inducing penalties, and later
Ma et al. [49] extended their work to two-way sparse reduced-
rank regression. Chen and Huang [23] extended the row-sparse
reduced-rank regression by incorporating covariance matrix
estimation, and the authors mainly focused on computational
issues. Lian et al. [46] proposed a semiparametric reduced-
rank regression with a sparsity penalty on the coefficient

matrix itself. Goh et al. [33] studied the Bayesian counter-
part of the row/column-sparse reduced-rank regression and
established its posterior consistency. However, none of these
works considered the possible entrywise sparsity in the SVD
of the coefficient matrix. The sparse and low-rank regression
models have also been applied in various fields to solve
important scientific problems. To name a few, Chen et al. [20]
applied a sparse and low-rank bi-linear model for the task of
source-sink reconstruction in marine ecology, Zhu et al. [70]
used a Bayesian low-rank model for associating neuroimaging
phenotypes and genetic markers, and Ma et al. [48] used
a threshold SVD regression model for learning regulatory
relationships in genomics.

In view of the key role that the sparse SVD plays for
simultaneous dimension reduction and variable selection in
model (1), in this paper we suggest a unified regulariza-
tion approach to estimating such a sparse SVD structure.
Our proposal successfully meets three key methodological
challenges that are posed by the complex structural con-
straints on the SVD. First, sparsity and orthogonality are
two largely incompatible goals and would seem difficult to
be accommodated within a single framework. For instance,
a standard orthogonalization process such as QR factorization
will generally destroy the sparsity pattern of a matrix. Previous
methods either relaxed the orthogonality constraint to allow
efficient search for sparsity patterns [19], or avoided imposing
both sparsity and orthogonality requirements on the same
factor matrix [16], [22]. To resolve this issue, we formulate
our approach as an orthogonality constrained regularization
problem, which yields simultaneously sparse and orthogonal
factor matrices in the SVD. Second, we employ the nuclear
norm penalty to encourage sparsity among the singular values
and achieve rank reduction. As a result, our method produces
a continuous solution path, which facilitates rank parameter
tuning and distinguishes it from the L0 regularization method
adopted by Bunea et al. [16]. Third, unlike rank-constrained
estimation, the nuclear norm penalization approach makes
the estimation of singular vectors more intricate, since one
does not know a priori which singular values will vanish
and, hence, which pairs of left and right singular vectors
are unidentifiable. Noting that the degree of identifiability
of the singular vectors increases with the singular value,
we propose to penalize the singular vectors weighted by
singular values, which proves to be meaningful and effective.
Combining these aspects, we introduce sparse orthogonal
factor regression (SOFAR), a novel regularization framework
for high-dimensional multivariate regression. While respecting
the orthogonality constraint, we allow the sparsity-inducing
penalties to take a general, flexible form, which includes
special cases that adapt to the entrywise and rowwise sparsity
of the singular vector matrices, resulting in a nonconvex
objective function for the SOFAR method.

In addition to the aforementioned three methodological
challenges, the nonconvexity of the SOFAR objective func-
tion also poses important algorithmic and theoretical chal-
lenges in obtaining and characterizing the SOFAR estimator.
To address these challenges, we suggest a two-step approach
exploiting the framework of convexity-assisted nonconvex
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optimization (CANO) to obtain the SOFAR estimator. More
specifically, in the first step we minimize the L1-penalized
squared loss for the multivariate regression (1) to obtain
an initial estimator. Then in the second step, we minimize
the SOFAR objective function in an asymptotically shrinking
neighborhood of the initial estimator. Thanks to the convexity
of its objective function, the initial estimator can be obtained
effectively and efficiently. Yet since the finer sparsity structure
imposed through the sparse SVD (2) is completely ignored in
the first step, the initial estimator meets none of the aforemen-
tioned three methodological challenges. Nevertheless, since
it is theoretically guaranteed that the initial estimator is not
far away from the true coefficient matrix C∗ with asymp-
totic probability one, searching in an asymptotically shrinking
neighborhood of the initial estimator significantly alleviates the
nonconvexity issue of the SOFAR objective function. In fact,
under the framework of CANO we derive nonasymptotic
bounds for the prediction, estimation, and variable selection
errors of the SOFAR estimator characterizing the theoretical
advantages. In implementation, to disentangle the sparsity
and orthogonality constraints we develop an efficient SOFAR
algorithm and establish its convergence properties.

Our suggested SOFAR method for large-scale association
network learning is in fact connected to a variety of statistical
methods in both unsupervised and supervised multivariate
analysis. For example, the sparse SVD and sparse princi-
pal component analysis (PCA) for a high-dimensional data
matrix can be viewed as unsupervised versions of our gen-
eral method. Other prominent examples include sparse factor
models, sparse canonical correlation analysis [63], and sparse
vector autoregressive (VAR) models for high-dimensional time
series. See Section II-B for more details on these applications
and connections.

The rest of the paper is organized as follows. Section II
introduces the SOFAR method and discusses its applications to
several unsupervised and supervised learning tasks. We present
the nonasymptotic properties of the method in Section III.
Section IV develops an efficient optimization algorithm and
discusses its convergence and tuning parameter selection.
We provide several simulation and real data examples in
Section V. All the proofs of main results and technical details
are detailed in the Supplementary Material. An associated R
package implementing the suggested method is available at
https://cran.r-project.org/package=rrpack.

II. LARGE-SCALE ASSOCIATION NETWORK

LEARNING VIA SOFAR

A. Sparse Orthogonal Factor Regression
To estimate the sparse SVD of the true regression coefficient

matrix C∗ in model (1), we start by considering an estimator
of the form UDVT , where D = diag(d1, . . . , dm) ∈ R

m×m

with d1 ≥ · · · ≥ dm ≥ 0 and 1 ≤ m ≤ min{p, q} is a diagonal
matrix of singular values, and U = (u1, . . . , um) ∈ R

p×m and
V = (v1, . . . , vm) ∈ R

q×m are orthonormal matrices of left
and right singular vectors, respectively. Although it is always
possible to take m = min(p, q) without prior knowledge of the
rank r , it is often sufficient in practice to take a small m that
is slightly larger than the expected rank (estimated by some

procedure such as in Bunea et al. [15]), which can dramatically
reduce computation time and space. Throughout the paper, for
any matrix M = (mij ) we denote by �M�F , �M�1, �M�∞,
and �M�2,1 the Frobenius norm, entrywise L1-norm, entry-
wise L∞-norm, and rowwise (2, 1)-norm defined, respectively,
as �M�F =

��
i, j m2

i j

�1/2
, �M�1 = �

i, j |mij |, �M�∞ =
maxi, j |mij |, and �M�2,1 = �

i

��
j m2

i j

�1/2. We also denote
by � · �2 the induced matrix norm (operator norm).

As mentioned in the Introduction, we employ the nuclear
norm penalty to encourage sparsity among the singular values,
which is exactly the entrywise L1 penalty on D. Penalization
directly on U and V, however, is inappropriate since the
singular vectors are not equally identifiable and should not be
subject to the same amount of regularization. Singular vectors
corresponding to larger singular values can be estimated more
accurately and should contribute more to the regularization,
whereas those corresponding to vanishing singular values
are unidentifiable and should play no role in the regulariza-
tion. Therefore, we propose an importance weighting by the
singular values and place sparsity-inducing penalties on the
weighted versions of singular vector matrices, UD and VD.
Note also that our goal is to estimate not only the low-
rank matrix C∗ but also the factor matrices D∗, U∗, and V∗.
Taking into account these points, we consider the orthogonality
constrained optimization problem

(�D,�U,�V)

= arg min
D,U,V

�1

2
�Y − XUDVT �2F

+ λd�D�1 + λaρa(UD)+ λbρb(VD)
	

subject to UT U = Im, VT V = Im, (3)

where ρa(·) and ρb(·) are penalty functions to be clarified
later, and λd , λa, λb ≥ 0 are tuning parameters that control
the strengths of regularization. We call this regularization
method sparse orthogonal factor regression (SOFAR) and the
regularized estimator (�D,�U,�V) the SOFAR estimator. Note
that ρa(·) and ρb(·) can be equal or distinct, depending on the
scientific question and the goals of variable selection. Letting
λd = λb = 0 while setting ρa(·) = � · �2,1 reduces the
SOFAR estimator to the sparse reduced-rank estimator of Chen
and Huang [22]. In view of our choices of ρa(·) and ρb(·),
although D appears in all three penalty terms, rank reduction is
achieved mainly through the first term, while variable selection
is achieved through the last two terms under necessary scalings
by D.

We note that one major advantage of SOFAR is that the
final estimates satisfy the orthogonality constraints in (3).
This is also the major distinction of our method from many
existing ones. The orthogonality constraints are motivated
from a combination of practical, methodological, and theo-
retical considerations. On the practical side, the orthogonality
constraints maximize the separation of different latent layers,
ensure that the importance of these layers can be measured
by the magnitudes of diagonals in D∗, and thus enhance
the interpretation. On the methodological side, they are a
natural, convenient way to ensure the identifiability of the
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factor matrices D∗, U∗, and V∗ [7]. On the theoretical side,
they allow us to establish rigorous error bound inequalities
for the estimates �D, �A, and �B. Nevertheless the orthogonality
condition among the sparse latent factors may not hold exactly
in certain real applications. Thus in Section V, we will
investigate the robustness of our method through simulation
studies where the orthogonality condition in the model is
violated. It would be interesting to formally study the scenario
when the orthogonality condition may hold approximately,
which is beyond the scope of the current paper and we leave
it for future research.

Note that for simplicity we do not explicitly state the
ordering constraint d1 ≥ · · · ≥ dm ≥ 0 in optimization
problem (3). In fact, when ρa(·) and ρb(·) are matrix norms
that satisfy certain invariance properties, such as the entrywise
L1-norm and rowwise (2, 1)-norm, this constraint can be
easily enforced by simultaneously permuting and/or changing
the signs of the singular values and the corresponding singular
vectors. The orthogonality constraints are, however, essential
to the optimization problem in that a solution cannot be
simply obtained through solving the unconstrained regular-
ization problem followed by an orthogonalization process.
The interplay between sparse regularization and orthogonality
constraints is crucial for achieving important theoretical and
practical advantages, which distinguishes our SOFAR method
from most previous procedures.

B. Applications of SOFAR
The SOFAR method provides a unified framework for a

variety of statistical problems in multivariate analysis. We give
four such examples, and in each example, briefly review
existing techniques and suggest new methods.

1) Biclustering With Sparse SVD: The biclustering problem
of a data matrix, which can be traced back to Hartigan [37],
aims to simultaneously cluster the rows (samples) and columns
(features) of a data matrix into statistically related subgroups.
A variety of biclustering techniques, which differ in the
criteria used to relate clusters of samples and clusters of
features and in whether overlapping of clusters is allowed,
have been suggested as useful tools in the exploratory analysis
of high-dimensional genomic and text data. See, for example,
Busygin et al. [17] for a survey. One way of formulating the
biclustering problem is through the mean model

X = C∗ + E, (4)

where the mean matrix C∗ admits a sparse SVD (2) and the
sparsity patterns in the left (or right) singular vectors serve
as indicators for the samples (or features) to be clustered.
Lee et al. [44] proposed to estimate the first sparse SVD layer
by solving the optimization problem

(d̂,�u,�v)

= arg min
d,u,v



1

2
�X− duvT �2F + λaρa(du)+ λbρb(dv)

�

subject to �u�2 = 1, �v�2 = 1, (5)

and obtain the next sparse SVD layer by applying the same
procedure to the residual matrix X − d̂�u�vT . Clearly, prob-
lem (5) is a specific example of the SOFAR problem (3) with

m = 1 and λd = 0; however, the orthogonality constraints are
not maintained during the layer-by-layer extraction process.
The orthogonality issue also exists in most previous proposals,
for example, Zhang et al. [68].

The multivariate linear model (1) with a sparse SVD (2) can
be viewed as a supervised version of the above biclustering
problem, which extends the mean model (4) to a general
design matrix and can be used to identify interpretable clusters
of predictors and clusters of responses that are significantly
associated. Applying the SOFAR method to model (4) yields
the new estimator

(�D,�U,�V)= arg min
D,U,V

�1

2
�X− UDVT �2F

+ λd�D�1 + λaρa(UD)+ λbρb(VD)
	

subject to UT U = Im , VT V = Im , (6)

which estimates all sparse SVD layers simultaneously while
determining the rank by nuclear norm penalization and pre-
serving the orthogonality constraints.

2) Sparse PCA: A useful technique closely related to sparse
SVD is sparse principal component analysis (PCA), which
enhances the convergence and improves the interpretability
of PCA by introducing sparsity in the loadings of principal
components. There has been a fast growing literature on
sparse PCA due to its importance in dimension reduction
for high-dimensional data. Various formulations coupled with
efficient algorithms, notably through L0 regularization and
its L1 and semidefinite relaxations, have been proposed by
Zou et al. [72], d’Aspremont et al. [25], Shen and Huang [57],
Johnstone and Lu [40], and Guo et al. [35], among others.
Recently, Benidis et al. [9] developed a new method to
estimate sparse eigenvectors without trading off their orthog-
onality based on the eigenvalue decomposition rather than the
SVD using the Procrustes reformulation.

We are interested in two different ways of casting sparse
PCA in our sparse SVD framework. The first approach bears
a resemblance to the proposal of Zou et al. [72], which
formulates sparse PCA as a regularized multivariate regression
problem with the data matrix X treated as both the responses
and the predictors. Specifically, they proposed to solve the
optimization problem

(�A,�V) = arg min
A,V



1

2
�X− XAVT �2F + λaρa(A)

�

subject to VT V = Im, (7)

and the loading vectors are given by the normalized columns
of �A, �a j/��a j�2, j = 1, . . . , m. However, the orthogonality
of the loading vectors, a desirable property enjoyed by the
standard PCA, is not enforced by problem (7). Similarly
applying the SOFAR method leads to the estimator

(�D,�U,�V) = arg min
D,U,V

�1

2
�X − XUDVT �2F

+ λd�D�1 + λaρa(UD)
	

subject to UT U = Im, VT V = Im,
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which explicitly imposes orthogonality among the loading
vectors (the columns of �U). One can optionally ignore the
nuclear norm penalty and determine the number of principal
components by some well-established criterion.

The second approach exploits the connection of sparse PCA
with regularized SVD suggested by Shen and Huang [57].
They proposed to solve the rank-1 matrix approximation
problem

(�u,�b) = arg min
u,b



1

2
�X− ubT �2F + λbρb(b)

�

subject to �u�2 = 1, (8)

and obtain the first loading vector �b/��b�2. Applying the
SOFAR method similarly to the rank-m matrix approximation
problem yields the estimator

(�D,�U,�V) = arg min
D,U,V

�1

2
�X− UDVT �2F

+ λd�D�1 + λbρb(VD)
	

subject to UT U = Im, VT V = Im ,

which constitutes a multivariate generalization of problem (8),
with the desirable orthogonality constraint imposed on the
loading vectors (the columns of �V) and the optional nuclear
norm penalty useful for determining the number of principal
components.

3) Sparse Factor Analysis: Factor analysis plays an impor-
tant role in dimension reduction and feature extraction for
high-dimensional time series. A low-dimensional factor struc-
ture is appealing from both theoretical and practical angles,
and can be conveniently incorporated into many other statisti-
cal tasks, such as forecasting with factor-augmented regres-
sion [59] and covariance matrix estimation [28]. See, for
example, Bai and Ng [6] for an overview.

Let xt ∈ R
p be a vector of observed time series. Consider

the factor model

xt = �ft + et , t = 1, . . . , T, (9)

where ft ∈ R
m is a vector of latent factors, � ∈ R

p×m is the
factor loading matrix, and et is the idiosyncratic error. Most
existing methods for high-dimensional factor models rely on
classical PCA [2], [5] or maximum likelihood to estimate the
factors and factor loadings [3], [4]; as a result, the estimated
factors and loadings are generally nonzero. However, in order
to assign economic meanings to the factors and loadings and
to further mitigate the curse of dimensionality, it would be
desirable to introduce sparsity in the factors and loadings.
Writing model (9) in the matrix form

X = F�T + E

with X = (x1, . . . , xT )T , F = (f1, . . . , fT )T , and E =
(e1, . . . , eT )T reveals its equivalence to model (4). Therefore,
under the usual normalization restrictions that FT F/T =
Im and �T � is diagonal, we can solve for (�D,�U,�V) in
problem (6) and estimate the sparse factors and loadings by
�F = √T�U and �� = �V�D/

√
T .

4) Sparse VAR Analysis: Vector autoregressive (VAR)
models have been widely used to analyze the joint
dynamics of multivariate time series; see, for example,
Stock and Watson [58]. Classical VAR analysis suffers greatly
from the large number of free parameters in a VAR model,
which grows quadratically with the dimensionality. Early
attempts in reducing the impact of dimensionality have
explored reduced rank methods such as canonical analysis
and reduced rank regression [12], [62]. Regularization methods
such as the Lasso have recently been adapted to VAR analysis
for variable selection [8], [38], [42], [52].

We present an example in which our parsimonious model
setup is most appropriate. Suppose we observe the data
(yt , xt ), where yt ∈ R

q is a low-dimensional vector of time
series whose dynamics are of primary interest, and xt ∈ R

p

is a high-dimensional vector of informational time series.
We assume that xt are generated by the VAR equation

xt = C∗T xt−1 + et ,

where C has a sparse SVD (2). This implies a low-dimensional
latent model of the form

gt = D∗ft−1 +�et ,

where ft = U∗T xt , gt = V∗T xt , and �et = V∗T et . Fol-
lowing the factor-augmented VAR (FAVAR) approach of
Bernanke et al. [10], we augment the latent factors ft and
gt to the dynamic equation of yt and consider the joint model

�
yt

gt


=

�
AT BT

0 D∗
 �

yt−1
ft−1


+

�
εt

�et


.

We can estimate the parameters A, B, and D∗ by a two-
step method: first apply the SOFAR method to obtain esti-
mates of D∗ and ft , and then estimate A and B by a usual
VAR since both yt and ft are of low dimensionality. Our
approach differs from previous methods in that we enforce
sparse factor loadings; hence, it would allow the factors to
be given economic interpretations and would be useful for
uncovering the structural relationships underlying the joint
dynamics of (yt , xt ).

III. THEORETICAL PROPERTIES

We now investigate the theoretical properties of the SOFAR
estimator (3) for model (1) under the sparse SVD structure (2).
Our results concern nonasymptotic error bounds, where both
response dimensionality q and predictor dimensionality p
can diverge simultaneously with sample size n. The major
theoretical challenges stem from the nonconvexity issues of
our optimization problem which are prevalent in nonconvex
statistical learning.

A. Technical Conditions
We begin with specifying a few assumptions that facilitate

our technical analysis. To simplify the technical presentation,
we focus on the scenario of p ≥ q and our proofs can be
adapted easily to the case of p < q with the only difference
that the rates of convergence in Theorems 1 and 2 will be
modified correspondingly. Assume that each column of X,



UEMATSU et al.: SOFAR: LARGE-SCALE ASSOCIATION NETWORK LEARNING 4929

�x j with j = 1, . . . , p, has been rescaled such that ��x j�22 = n.
The SOFAR method minimizes the objective function in (3).
Since the true rank r is unknown and we cannot expect that
one can choose m to perfectly match r , the SOFAR estimates
�U, �V, and �D are generally of different sizes than U∗, V∗,
and D∗, respectively. To ease the presentation, we expand the
dimensions of matrices U∗, V∗, and D∗ by simply adding
columns and rows of zeros to the right and to the bottom of
each of the matrices to make them of sizes p× q , q × q , and
q× q , respectively. We also expand the matrices �D, �U, and �V
similarly to match the sizes of D∗, U∗, and V∗, respectively.
Define A∗ = U∗D∗ and B∗ = V∗D∗, and correspondingly
�A = �U�D and �B = �V�D using the SOFAR estimates (�U,�V,�D).

Definition 1 (Robust Spark). The robust spark κc of the n× p
design matrix X is defined as the smallest possible positive
integer such that there exists an n × κc submatrix of n−1/2X
having a singular value less than a given positive constant c.

Condition 1. (Parameter Space) The true parameters
(C∗, D∗, A∗, B∗) lie in C×D×A×B, where C = {C ∈ R

p×q :
�C�0 < κc2/2}, D = {D = diag{d j } ∈ R

q×q : d j = 0 or
|d j | ≥ τ }, A = {A = (ai j ) ∈ R

p×q : ai j = 0 or |ai j | ≥ τ },
and B = {B = (bi j ) ∈ R

q×q : bi j = 0 or |bi j | ≥ τ } with
κc2 the robust spark of X, c2 > 0 some constant, and τ > 0
asymptotically vanishing.

Condition 2. (Constrained Eigenvalue) It holds that
max�u�0<κc2 /2, �u�2=1 �Xu�22 ≤ c3n and max1≤ j≤r �Xu∗j�22 ≤
c3n for some constant c3 > 0, where u∗j is the left singular
vector of C∗ corresponding to singular value d∗j .

Condition 3. (Error Term) The error term E ∈ R
n×q ∼

N(0, In⊗�) with the maximum eigenvalue αmax of � bounded
from above and diagonal entries of � being σ 2

j ’s.

Condition 4. (Penalty Functions) For matrices M and M∗ of
the same size, the penalty functions ρh with h ∈ {a, b} satisfy
|ρh(M)− ρh(M∗)| ≤ �M−M∗�1.

Condition 5. (Relative Spectral Gap) The nonzero singular
values of C∗ satisfy that d∗2j−1−d∗2j ≥ δ1/2d∗2j−1 for 2 ≤ j ≤ r
with δ > 0 some constant, and r and

�r
j=1(d

∗
1 /d∗j )2 can

diverge as n→∞.

The concept of robust spark in Definition 1 was introduced
initially in [30] and [69], where the thresholded parame-
ter space was exploited to characterize the global optimum
for regularization methods with general penalties. Similarly,
the thresholded parameter space and the constrained eigen-
value condition which builds on the robust spark condition
of the design matrix in Conditions 1 and 2 are essential
for investigating the computable solution to the nonconvex
SOFAR optimization problem in (3). By [30, Proposition 1],
the robust spark κc2 can be at least of order O{n/(log p)}
with asymptotic probability one when the rows of X are inde-
pendently sampled from multivariate Gaussian distributions
with dependency. Although Condition 3 assumes Gaussianity,
our theory can in principle carry over to the case of sub-
Gaussian errors, provided that the concentration inequalities
for Gaussian random variables used in our proofs are replaced
by those for sub-Gaussian random variables.

Condition 4 includes many kinds of penalty functions that
bring about sparse estimates. Important examples include the
entrywise L1-norm and rowwise (2, 1)-norm, where the for-
mer encourages sparsity among the predictor/response effects
specific to each rank-1 SVD layer, while the latter pro-
motes predictor/response-wise sparsity regardless of the spe-
cific layer. To see why the rowwise (2, 1)-norm satisfies
Condition 4, observe that

�M�1 ≡
�

i

�

j

|mij | =
�

i

⎛

⎝
�

j,k

|mij ||mik |
⎞

⎠
1/2

≥
�

i

⎛

⎝
�

j

m2
i j

⎞

⎠
1/2

≡ �M�2,1,

which along with the triangle inequality entails that Condi-
tion 4 is indeed satisfied. Moreover, Condition 4 allows us to
use concave penalties such as SCAD [29] and MCP [67]; see,
for instance, the proof of Lemma 1 in [30].

Intuitively, Condition 5 rules out the nonidentifiable case
where some nonzero singular values are tied with each other
and the associated singular vectors in matrices U∗ and V∗
are identifiable only up to some orthogonal transformation.
In particular, Condition 5 enables us to establish the key
Lemma 3 in Section F of Supplementary Material, where the
matrix perturbation theory can be invoked.

B. Main Results
Since the objective function of the SOFAR method (3)

is nonconvex, solving this optimization problem is highly
challenging. To overcome the difficulties, as mentioned in the
Introduction we exploit the framework of CANO and suggest
a two-step approach, where in the first step we solve the
following L1-penalized squared loss minimization problem

�C = arg min
C∈Rp×q

�
(2n)−1�Y− XC�2F + λ0�C�1

	
(10)

to construct an initial estimator �C with λ0 ≥ 0 some regu-
larization parameter. If �C = 0, then we set the final SOFAR
estimator as �C = 0; otherwise, in the second step we do a
refined search and minimize the SOFAR objective function (3)
in an asymptotically shrinking neighborhood of �C to obtain the
final SOFAR estimator �C. In the case of �C = 0, our two-step
procedure reduces to a one-step procedure. Since Theorem 1
below establishes that �C can be close to C∗ with asymptotic
probability one, having �C = 0 is a good indicator that the
true C∗ = 0.

Thanks to its convexity, the objective function in (10) in
the first step can be solved easily and efficiently. In fact, since
the objective function in (10) is separable it follows that the
j th column of �C can be obtained by solving the univariate
response Lasso regression

min
β∈Rp

�
(2n)−1�Ye j − Xβ�22 + λ0�β�1

	
,

where e j is a q-dimensional vector with j th component 1
and all other components 0. The above univariate response
Lasso regression has been studied extensively and well under-
stood, and many efficient algorithms have been proposed
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for solving it. Denote by (�D,�U,�V) the initial estimator of
(D∗, U∗, V∗) obtained from the SVD of �C, and let �A = �U�D
and �B = �V�D. Since the bounds for the SVD are key to the
analysis of SOFAR estimator in the second step, for com-
pleteness we present the nonasymptotic bounds on estimation
errors of the initial estimator in the following theorem.

Theorem 1 (Error Bounds for Initial Estimator). Assume that
Conditions 1–3 hold and let λ0 = c0σmax

�
n−1 log(pq)

�1/2

with σmax = max1≤ j≤q σ j and c0 >
√

2 some constant. Then
with probability at least 1− 2(pq)1−c2

0/2, the estimation error
is bounded as

��C− C∗�F ≤ Rn ≡ c(n−1s log(pq))1/2 (11)

with s = �C∗�0 and c > 0 some constant. Under additional
Condition 5, with the same probability bound the following
estimation error bounds hold simultaneously

��D− D∗�F ≤ c(n−1s log(pq))1/2, (12)

��A− A∗�F + ��B − B∗�F ≤ cηn(n
−1s log(pq))1/2, (13)

where ηn = 1+ δ−1/2
��r

j=1(d
∗
1 /d∗j )2

�1/2
.

For the case of q = 1, the estimation error bound
(11) is consistent with the well-known oracle inequality for
Lasso [11]. The additional estimation error bounds (12) and
(13) for the SVD in Theorem 1 are, however, new to the
literature. It is worth mentioning that Condition 5 and the
latest results in [65] play a crucial role in establishing these
additional error bounds.

After obtaining the initial estimator �C from the first step,
we can solve the SOFAR optimization problem in an asymp-
totically shrinking neighborhood of �C. More specifically,
we define �Pn = {C : �C − �C�F ≤ 2Rn} with Rn the upper
bound in (11). Then it is seen from Theorem 1 that the true
coefficient matrix C∗ is contained in �Pn with probability at
least 1− 2(pq)1−c2

0/2. Further define

Pn = �Pn ∩ (C ×D ×A× B), (14)

where sets C, D, A, and B are defined in Condition 1.
Then with probability at least 1 − 2(pq)1−c2

0/2, the set Pn

defined in (14) is nonempty with at least one element C∗ by
Condition 1. We minimize the SOFAR objective function (3)
by searching in the shrinking neighborhood Pn and denote by
�C the resulting SOFAR estimator. Then it follows that with
probability at least 1− 2(pq)1−c2

0/2,

��C− C∗�F ≤ ��C−�C�F + ��C− C∗�F ≤ 3Rn,

where the first inequality is by the triangle inequality and
the second one is by the construction of set Pn and Theorem 1.
Therefore, we see that the SOFAR estimator given by our
two-step procedure is guaranteed to have convergence rate at
least O(Rn).

Since the initial estimator investigated in Theorem 1 com-
pletely ignores the finer sparse SVD structure of the coefficient
matrix C∗, intuitively the second step of SOFAR estimation
can lead to improved error bounds. Indeed we show in
Theorem 2 below that with the second step of refinement,

up to some columnwise sign changes the SOFAR estimator
can admit estimator error bounds in terms of parameters r , sa ,
and sb with r = �D∗�0, sa = �A∗�0, and sb = �B∗�0. When
r , sa , and sb are drastically smaller than s, these new upper
bounds can have better rates of convergence.

Theorem 2 (Error Bounds for SOFAR Estimator). Assume
that Conditions 1–5 hold, λmax ≡ max(λd , λa, λb) =
c1

�
n−1 log(pr)

�1/2
with c1 > 0 some large constant,

log p = O(nα), q = O(nβ/2), s = O(nγ ), and η2
n =

o(min{λ−1
maxτ, n1−α−β−γ τ 2}) with α, β, γ ≥ 0, α+β+γ < 1,

and ηn as given in Theorem 1. Then with probability at least

1−
�

2(pq)1−c2
0/2 + 2(pr)−c̃2

+ 2 pr exp
�
−c̃3n1−β−γ τ 2η−2

n

� 	
, (15)

the SOFAR estimator satisfies the following error bounds
simultaneously:

(a) ��C− C∗�F

≤ c min{s, (r + sa + sb)η
2
n}1/2{n−1 log(pq)}1/2, (16)

(b) ��D− D∗�F + ��A− A∗�F + ��B − B∗�F

≤ c min{s, (r + sa + sb)η
2
n}1/2ηn{n−1 log(pq)}1/2,

(17)

(c) ��D− D∗�0 + ��A− A∗�0 + ��B− B∗�0
≤ (r + sa + sb)[1+ o(1)], (18)

(d) ��D− D∗�1 + ��A− A∗�1 + ��B− B∗�1
≤ c(r + sa + sb)η

2
nλmax, (19)

(e) n−1�X(�C− C∗)�2F
≤ c(r + sa + sb)η

2
nλ

2
max, (20)

where c0 >
√

2 and c, c̃2, c̃3 are some positive constants.

We see from Theorem 2 that the upper bounds in (16) and
(17) are the minimum of two rates, one involving r + sa + sb

(the total sparsity of D∗, A∗, and B∗) and the other one
involving s (the sparsity of matrix C∗). The rate involving
s is from the first step of Lasso estimation, while the rate
involving r + sa + sb is from the second step of SOFAR
refinement. For the case of s > (r + sa + sb)η

2
n , our two-step

procedure leads to enhanced error rates under the Frobenius
norm. Moreover, the error rates in (18)–(20) are new to the
literature and not shared by the initial Lasso estimator, showing
again the advantages of having the second step of refinement.
It is seen that our two-step SOFAR estimator is capable of
recovering the sparsity structure of D∗, A∗, and B∗ very well.

Let us gain more insights into these new error bounds.
In the case of univariate response with q = 1, we have
ηn = 1+δ, r = 1, sa = s, and sb = 1. Then the upper bounds
in (16)–(20) reduce to c{sn−1 log p}1/2, c{sn−1 log p}1/2,
cs, cs{n−1 log p}1/2, and cn−1s log p, respectively, which
are indeed within a logarithmic factor of the oracle rates
for the case of high-dimensional univariate response regres-
sion. Furthermore, in the rank-one case of r = 1 we
have ηn = 1 + δ−1/2 and s = sasb. Correspondingly,
the upper bounds in (11)–(13) for the initial Lasso esti-
mator all become c{n−1sasb log(pq)}1/2, while the upper
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bounds in (16)–(20) for the SOFAR estimator become c{(sa+
sb)n−1 log(pq)}1/2, c{(sa + sb)n−1 log(pq)}1/2, c(sa + sb),
c(sa+sb){n−1 log(pq)}1/2, and cn−1(sa+sb) log(pq), respec-
tively. In particular, we see that the SOFAR estimator can
have much improved rates of convergence even in the setting
of r = 1.

IV. IMPLEMENTATION OF SOFAR

The interplay between sparse regularization and orthogo-
nality constraints creates substantial algorithmic challenges
for solving the SOFAR optimization problem (3), for which
many existing algorithms can become either inefficient or
inapplicable. For example, coordinate descent methods that
are popular for solving large-scale sparse regularization prob-
lems [32] are not directly applicable because the penalty
terms in problem (3) are not separable under the orthogo-
nality constraints. Also, the general framework for algorithms
involving orthogonality constraints [26] does not take sparsity
into account and hence does not lead to efficient algorithms
in our context. Recently, Benidis et al. [9] focused on the
unsupervised learning setting and introduced a new algorithm
for estimating sparse eigenvectors without trading off their
orthogonality based on the eigenvalue decomposition rather
than the SVD. To obtain sparse orthogonal eigenvectors,
they applied the minorization-maximization framework on the
sparse PCA problem, which results in solving a sequence of
rectangular Procrustes problems. Inspired by a recently revived
interest in the augmented Lagrangian method (ALM) and its
variants for large-scale optimization in statistics and machine
learning [13], in this section we develop an efficient algorithm
for solving problem (3).

A. SOFAR Algorithm With ALM-BCD

The architecture of the proposed SOFAR algorithm is based
on the ALM coupled with block coordinate descent (BCD).
The first construction step is to utilize variable splitting to
separate the orthogonality constraints and sparsity-inducing
penalties into different subproblems, which then enables effi-
cient optimization in a block coordinate descent fashion.
To this end, we introduce two new variables A and B, and
express problem (3) in the equivalent form

(��, ��) = arg min
�,�

�1

2
�Y− XUDVT �2F

+ λd�D�1 + λaρa(A)+ λbρb(B)
	

(21)

subject to UT U = Im , VT V = Im ,

UD = A, VD = B,

where � = (D, U, V) and � = (A, B). We form the
augmented Lagrangian for problem (21) as

Lμ(�,�,�) = 1

2
�Y− XUDVT �2F

+ λd�D�1 + λaρa(A)+ λbρb(B)+ ��a, UD− A�
+ ��b, VD− B� + μ

2
�UD− A�2F +

μ

2
�VD− B�2F ,

TABLE I

SOFAR ALGORITHM WITH ALM-BCD

where � = (�a,�b) is the set of Lagrangian multipliers and
μ > 0 is a penalty parameter. Based on ALM, the proposed
algorithm consists of the following iterations:

1) (�,�)-step: (�k+1,�k+1)
← arg min� : UT U=VT V=Im,� Lμ(�,�,�k);

2) �-step: �k+1
a ← �k

a+μ(Uk+1Dk+1−Ak+1) and �k+1
b ←

�k
b + μ(Vk+1Dk+1 − Bk+1).

The (�,�)-step can be solved by a block coordinate descent
method [61] cycling through the blocks U, V, D, A, and B.
Note that the orthogonality constraints and the sparsity-
inducing penalties are now separated into subproblems with
respect to � and �, respectively. To achieve convergence of
the SOFAR algorithm in practice, an inexact minimization
with a few block coordinate descent iterations is often suffi-
cient. Moreover, to enhance the convergence of the algorithm
to a feasible solution we optionally increase the penalty
parameter μ by a ratio γ > 1 at the end of each iteration.
This leads to the SOFAR algorithm with ALM-BCD described
in Table I.

We still need to solve the subproblems in algorithm I. The
U-update is similar to the weighted orthogonal Procrustes
problem considered by Koschat and Swayne [43]. By expand-
ing the squares and omitting terms not involving U, this
subproblem is equivalent to minimizing

1

2
�XUDk�2F
− tr(UT XT YVkDk)− tr(UT (μkAk − �k

a)D
k)

subject to UT U = Im . Taking a matrix Z such that ZT Z =
ρ2Ip − XT X, where ρ2 is the largest eigenvalue of XT X,
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we can follow the argument of Koschat and Swayne [43] to
obtain the iterative algorithm: for j = 0, 1, . . . , form the p×m
matrix C1 = (XT YVk+μkAk−�k

a+ZT ZU j Dk)Dk , compute
the SVD U1�1VT

1 = C1, and update U j+1 = U1VT
1 . Note that

C1 depends on ZT Z only, and hence the explicit computation
of Z is not needed. The V-update is similar to a standard
orthogonal Procrustes problem and amounts to maximizing

tr(VT YT XUk+1Dk)+ tr(VT (μkBk − �k
b)D

k)

subject to VT V = Im . A direct method for this problem
[34, pp. 327–328] gives the algorithm: form the q × m
matrix C2 = (YT XUk+1 +μkBk − �k

b)D
k , compute the SVD

U2�2VT
2 = C2, and set V = U2VT

2 . Since m is usually small,
the SVD computations in the U- and V-updates are cheap.
The Lasso problem in the D-update reduces to a standard
quadratic program with the nonnegativity constraint, which
can be readily solved by efficient algorithms; see, for example,
Sha et al. [56]. Note that the D-update may set some singular
values to exactly zero; hence, a greedy strategy can be taken to
further bring down the computational complexity, by removing
the zero singular values and reducing the sizes of the relevant
matrices accordingly in subsequent computations. The updates
of A and B are free of orthogonality constraints and therefore
easy to solve. With the popular choices of � · �1 and � · �2,1
as the penalty functions, the updates can be performed by
entrywise and rowwise soft-thresholding, respectively.

Following the theoretical analysis for the SOFAR method
in Section III, we employ the SVD of the cross-validated
L1-penalized estimator �C in (10) to initialize U, V, D, A,
and B; the �a and �b are initialized as zero matrices.
In practice, for large-scale problems we can further scale up
the SOFAR method by performing feature screening with the
initial estimator �C, that is, the response variables correspond-
ing to zero columns in �C and the predictors corresponding to
zero rows in �C could be removed prior to the finer SOFAR
analysis.

B. Convergence Analysis and Tuning Parameter Selection
For general nonconvex problems, an ALM algorithm needs

not to converge, and even if it converges, it needs not to
converge to an optimal solution. We have the following
convergence results regarding the proposed SOFAR algorithm
with ALM-BCD.

Theorem 3 (Convergence of SOFAR Algorithm). Assume
that

�∞
k=1{[�Lμ(Uk)]1/2+[�Lμ(Vk)]1/2+[�Lμ(Dk)]1/2} <

∞ and the penalty functions ρa(·) and ρb(·) are convex,
where �Lμ(·) denotes the decrease in Lμ(·) by a block
update. Then the sequence generated by the SOFAR algorithm
converges to a local solution of the augmented Lagrangian for
problem (21).

Note that without the above assumption on (Uk), (Vk),
and (Dk), we can only show that the differences between
two consecutive U-, V-, and D-updates converge to zero by
the convergence of the sequence (Lμ(·)), but the sequences
(Uk), (Vk), and (Dk) may not necessarily converge. Although
Theorem 3 does not ensure the convergence of algorithm I
to an optimal solution, numerical evidence suggests that the

algorithm has strong convergence properties and the produced
solutions perform well in numerical studies.

The above SOFAR algorithm is presented for a fixed triple
of tuning parameters (λd , λa, λb). One may apply a fine grid
search with K -fold cross-validation or an information criterion
such as BIC and its high-dimensional extensions including
GIC [31] to choose an optimal triple of tuning parameters and
hence a best model. In either case, a full search over a three-
dimensional grid would be prohibitively expensive, especially
for large-scale problems. Theorem 2, however, suggests that
the parameter tuning can be effectively reduced to one or two
dimensions. Hence, we adopt a search strategy which is com-
putationally affordable and still provides reasonable and robust
performance. To this end, we first estimate an upper bound on
each of the tuning parameters by considering the marginal null
model, where two of the three tuning parameters are fixed
at zero and the other is set to the minimum value leading
to a null model. We denote the upper bounds thus obtained
by (λ∗d , λ∗a, λ∗b), and conduct a search over a one-dimensional
grid of values between (λ∗d , λ∗a, λ∗b) and (ελ∗d , ελ∗a, ελ∗b), with
ε > 0 sufficiently small (e.g., 10−3) to ensure the coverage
of a full spectrum of reasonable solutions. Our numerical
experience suggests that this simple search strategy works well
in practice while reducing the computational cost dramatically.
More flexibility can be gained by adjusting the ratios between
λd , λa , and λb if additional information about the relative
sparsity levels of D, A, and B is available.

V. NUMERICAL STUDIES

A. Simulation Examples
Our Condition 4 in Section III-A accommodates a large

group of penalty functions including concave ones such as
SCAD and MCP. As demonstrated in [27] and [73], nonconvex
regularization problems can be solved using the idea of local
linear approximation, which essentially reduces the original
problem to the weighted L1-regularization with the weights
chosen adaptively based on some initial solution. For this
reason, in the simulation study we focus on the entrywise
L1-norm � · �1 and the rowwise (2, 1)-norm � · �2,1, as well
as their adaptive extensions. The use of adaptively weighted
penalties has also been explored in the contexts of reduced
rank regression [21] and sparse PCA [45]. We next provide
more details on the adaptive penalties used in our simulation
study. To simplify the presentation, we use the entrywise
L1-norm as an example.

Incorporating adaptive weighting into the penalty terms in
problem (21) leads to the adaptive SOFAR estimator

(��, ��) = arg min
�,�

�1

2
�Y − XUDVT �2F

+ λd�Wd ◦ D�1 + λa�Wa ◦ A�1 + λb�Wb ◦ B�1
	

subject to UT U = Im , VT V = Im ,

UD = A, VD = B,

where Wd ∈ R
m×m , Wa ∈ R

p×m , and Wb ∈ R
q×m are

weighting matrices that depend on the initial estimates �D,
�A, and �B, respectively, and ◦ is the Hadamard or entry-
wise product. The weighting matrices are chosen to reflect
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the intuition that singular values and singular vectors of larger
magnitude should be less penalized in order to reduce bias
and improve efficiency in estimation. As suggested in [73],
if one is interested in using some nonconvex penalty functions
ρa(·) and ρb(·) then the weight matrices can be constructed
by using the first order derivatives of the penalty functions
and the initial solution (�A,�B,�D). In our implementation,
for simplification we adopt the alternative popular choice of
Wd = diag(�d−1

1 , . . . , �d−1
m ) with �d j the j th diagonal entry

of �D, as suggested in Zou [71]. Similarly, we set Wa = (�a−1
i j )

and Wb = (�b−1
i j ) with �ai j and �bi j the (i, j)th entries of

�A and �B, respectively. Extension of the SOFAR algorithm with
ALM-BCD in Section IV-A is also straightforward, with the
D-update becoming an adaptive Lasso problem and the updates
of A and B now performed by adaptive soft-thresholding.
A further way of improving the estimation efficiency is to
exploit regularization methods in the thresholded parameter
space [30] or thresholded regression [69], which we do not
pursue in this paper.

We compare the SOFAR estimator with the entry-
wise L1-norm (Lasso) penalty (SOFAR-L) or the rowwise
(2, 1)-norm (group Lasso) penalty (SOFAR-GL) with five
alternative methods, including three classical methods, namely,
the ordinary least squares (OLS), separate adaptive Lasso
regressions (Lasso), and reduced rank regression (RRR), and
two recent sparse and low rank methods, namely, reduced
rank regression with sparse SVD (RSSVD) proposed by
Chen et al. [19] and sparse reduced rank regression (SRRR)
considered by Chen and Huang [22] (see also the rank
constrained group Lasso estimator in Bunea et al. 16). Both
Chen et al. [19] and Chen and Huang [22] used adaptive
weighted penalization. We thus consider both nonadaptive and
adaptive versions of the SOFAR-L, SOFAR-GL, RSSVD, and
SRRR methods.

1) Simulation Setups: We consider several simulation set-
tings with various model dimensions and sparse SVD patterns
in the coefficient matrix C∗. In all settings, we took the sample
size n = 200 and the true rank r = 3. Models 1 and 2 concern
the entrywise sparse SVD structure in C∗. The design matrix
X was generated with i.i.d. rows from Np(0,�x ), where
�x = (0.5|i− j |). In model 1, we set p = 100 and q = 40, and
let C∗ = �3

j=1 d∗j u∗j v∗Tj with d∗1 = 20, d∗2 = 15, d∗3 = 10,
and

ũ1 = (unif(Su, 5), rep(0, 20))T ,

ũ2 = (rep(0, 3),−ũ1,4, ũ1,5, unif(Su, 3), rep(0, 17))T ,

ũ3 = (rep(0, 8), unif(Su, 2), rep(0, 15))T ,

u∗j = ũ j/�ũ j�2, j = 1, 2, 3,

ṽ1 = (unif(Sv , 5), rep(0, 10))T ,

ṽ2 = (rep(0, 5), unif(Sv , 5), rep(0, 5))T ,

ṽ3 = (rep(0, 10), unif(Sv , 5))T ,

v∗j = ṽ j/�ṽ j�2, j = 1, 2, 3,

where unif(S, k) denotes a k-vector with i.i.d. entries from
the uniform distribution on the set S, Su = {−1, 1}, Sv =
[−1,−0.5] ∪ [0.5, 1], rep(α, k) denotes a k-vector replicating

the value α, and ũ j,k is the kth entry of ũ j . Model 2 is similar
to Model 1 except with higher model dimensions, where we
set p = 400, q = 120, and appended 300 and 80 zeros to
each u∗j and v∗j defined above, respectively.

Models 3 and 4 pertain to the rowwise/columnwise sparse
SVD structure in C∗. Also, we intend to study the case
of approximate low-rankness/sparsity, by not requiring the
signals be bounded away from zero. We generated X with i.i.d.
rows from Np(0,�x), where �x has diagonal entries 1 and
off-diagonal entries 0.5. The rowwise sparsity patterns were
generated in a similar way to the setup in Chen and Huang [22]
except that we allow also the matrix of right singular vectors
to be rowwise sparse, so that response selection may also be
necessary. Specifically, we let C∗ = C1CT

2 , where C1 ∈ R
p×r

with i.i.d. entries in its first p0 rows from N(0, 1) and the rest
set to zero, and C2 ∈ R

q×r with i.i.d. entries in its first q0
rows from N(0, 1) and the rest set to zero. We set p = 100,
p0 = 10, q = q0 = 10 in Model 3, and p = 400, p0 = 10,
q = 200, and q0 = 10 in Model 4. We also investigate models
with even higher dimensions. In Model 5, we experimented
with increasing the dimensions of Model 2 to p = 1000 and
q = 400, by adding more noise variables, i.e., appending zeros
to the u∗j and v∗j vectors.

Finally, we consider Model 6 where the orthogonality
among the sparse factors is violated. Specifically, Model 6 is
similar to Model 1, except that we modify the true values of
U∗ and V∗ as follows,

ũ1 = (unif(Su , 5), rep(0, 20))T ,

ũ2 = (rep(0, 3), unif(Su, 5), rep(0, 17))T ,

ũ3 = (rep(0, 8), unif(Su , 2), rep(0, 15))T ,

u∗j = ũ j/�ũ j�2, j = 1, 2, 3,

ṽ1 = (unif(Sv , 5), rep(0, 10))T ,

ṽ2 = (rep(0, 4), unif(Sv , 5), rep(0, 6))T ,

ṽ3 = (rep(0, 8), unif(Sv , 5), rep(0, 2))T ,

v∗j = ṽ j/�ṽ j�2, j = 1, 2, 3.

Model 7 is similar to Model 6 except with higher model
dimensionality, where we set p = 400, q = 120, and appended
300 and 80 zeros to each u∗j and v∗j defined above, respectively.
We would like to point out that when the sparse factors are
not exactly orthogonal, the model in fact can be regarded
as close to a two-way row-sparse SOFAR model (similar to
Models 3 and 4 where both U∗ and V∗ are orthogonal and
row-sparse); this is because if we compute the SVD of the
true coefficient matrix, the resulting orthogonal factors will
still have sparsity corresponding to the completely irrelevant
responses and predictors.

In all the seven settings, we generated the data Y from the
model Y = XC∗ +E, where the error matrix E has i.i.d. rows
from Nq (0, σ 2�) with � = (0.5|i− j |). In each simulation,
σ 2 is computed to control the signal to noise ratio, defined
as �d∗r Xu∗r v∗Tr �F/�E�F , to be exactly 1. The simulation was
replicated 300 times in each setting.

All methods under comparison except OLS require selection
of tuning parameters, which include the rank parameter in
RRR, RSSVD, and SRRR and the regularization parameters
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Fig. 1. Boxplots of MSE-Pred for Models 2 and 4 with nonadaptive (dark gray) and adaptive (light gray) versions of various methods.

TABLE II

SIMULATION RESULTS FOR MODELS 1–2 WITH VARIOUS METHODS1

in SOFAR-L, SOFAR-GL, RSSVD, and SRRR. To reveal the
full potential of each method, we chose the tuning parameters
based on the predictive accuracy evaluated on a large, indepen-
dently generated validation set of size 2000. The results with
tuning parameters chosen by cross-validation or GIC [31] were
similar to those based on a large validation set, and hence are
not reported.

The model accuracy of each method is measured by the
mean squared error ��C−C∗�2F/(pq) for estimation (MSE-Est)
and �X(�C−C∗)�2F/(nq) for prediction (MSE-Pred). The vari-
able selection performance is characterized by the false posi-
tive rate (FPR%) and false negative rate (FNR%) in recovering
the sparsity patterns of the SVD, that is, FPR = FP/(TN+FP)
and FNR = FN/(TP+FN), where TP, FP, TN, and FN are the
numbers of true nonzeros, false nonzeros, true zeros, and false
zeros, respectively. The rank selection performance is evalu-
ated by average estimated rank (Rank) and the percentage of

correct rank identification (Rank%). Finally, for the SOFAR-L,
SOFAR-GL, and RSSVD methods which explicitly produce
an SVD, the orthogonality of estimated factor matrices is
measured by 100(��UT �U�1 + ��VT �V�1 − 2r) (Orth), which is
minimized at zero when exact orthogonality is achieved.

2) Simulation Results: We first compare the performance
of nonadaptive and adaptive versions of the four sparse reg-
ularization methods. Because of the space constraint, only
the results in terms of MSE-Pred in high-dimensional mod-
els 2 and 4 are presented. The comparisons in other model
settings are similar and thus omitted. From Fig. 1, we observe
that adaptive weighting generally improves the empirical per-
formance of each method. For this reason, we only consider
the adaptive versions of these regularization methods in other
comparisons.

The comparison results with adaptive penalty for Models
1 and 2 are summarized in Table II. The entrywise sparse SVD
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TABLE III

SIMULATION RESULTS FOR MODELS 3–4 WITH VARIOUS METHODS1

TABLE IV

SIMULATION RESULTS FOR MODEL 5. WE USE MODEL 2 WITH INCREASED DIMENSIONS p = 1000, q = 400 BY ADDING NOISE VARIABLES1

structure is exactly what the SOFAR-L and RSSVD methods
aim to recover. We observe that SOFAR-L performs the best
among all methods in terms of both model accuracy and
sparsity recovery. Although RSSVD performs only second to
SOFAR-L in Model I, it has substantially worse performance
in Model 2 in terms of model accuracy. This is largely because
the RSSVD method does not impose any form of orthog-
onality constraints, which tends to cause nonidentifiability
issues and compromise its performance in high dimensions.
We note further that SOFAR-GL and SRRR perform worse
than SOFAR-L, since they are not intended for entrywise
sparsity recovery. However, these two methods still provide
remarkable improvements over the OLS and RRR methods
due to their ability to eliminate irrelevant variables, and over
the Lasso method due to the advantages of imposing a low-
rank structure. Compared to SRRR, the SOFAR-GL method
results in fewer false positives and shows a clear advantage
due to response selection.

The simulation results for Models 3 and 4 are reported
in Table III. For the rowwise sparse SVD structure in these
two models, SOFAR-GL and SRRR are more suitable than
the other methods. All sparse regularization methods result in
higher false negative rates than in Models 1 and 2 because of

the presence of some very weak signals. In Model 3, where
the matrix of right singular vectors is not sparse and the
dimensionality is moderate, SOFAR-GL has a slightly worse
performance compared to SRRR since response selection is
unnecessary. The advantages of SOFAR are clearly seen in
Model 4, where the dimension is high and many irrele-
vant predictors and responses coexist; SOFAR-GL performs
slightly better than SOFAR-L, and both methods substantially
outperform the other methods. In both models, SOFAR-L
and RSSVD result in higher false negative rates, since they
introduce more parsimony than necessary by encouraging
entrywise sparsity in U and V. Table IV shows that the SOFAR
methods still greatly outperform the others in both estimation
and sparse recovery. In contrast, RSSVD becomes unstable and
inaccurate; this again shows the effectiveness of enforcing the
orthogonality in high-dimensional sparse SVD recovery.

Finally, Table V summarizes the results for Models 6 and 7.
As expected, in Model 6 where the model dimensionality is
low, SOFAR-GL performs the best, followed by RSSVD and
SOFAR-L, whose performance is comparable to each other.
In Model 7 where the model dimensionality is much higher,
SOFAR-GL and SOFAR-L perform much better than RSSVD,
as the latter becomes less stable. In both models, SRRR is
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TABLE V

SIMULATION RESULTS FOR MODELS 6–7 WHEN THE SPARSE FACTORS ARE NOT EXACTLY ORTHOGONAL1

outperformed by SOFAR since the former does not pursue
sparsity in V. We have also experimented with other modified
settings, and all the results are consistent with what have
been reported. These results confirm that it is still preferable
to apply SOFAR even when the underlying sparse factors
are not exactly orthogonal, especially so in high-dimensional
problems.

B. Real Data Analysis
In genetical genomics experiments, gene expression levels

are treated as quantitative traits in order to identify expression
quantitative trait loci (eQTLs) that contribute to phenotypic
variation in gene expression. The task can be regarded as a
multivariate regression problem with the gene expression lev-
els as responses and the genetic variants as predictors, where
both responses and predictors are often of high dimension-
ality. Most existing methods for eQTL data analysis exploit
entrywise or rowwise sparsity of the coefficient matrix to
identify individual genetic effects or master regulators [54],
which not only tends to suffer from low detection power
for multiple eQTLs that combine to affect a subset of gene
expression traits, but also may offer little information about the
functional grouping structure of the genetic variants and gene
expressions. By exploiting a sparse SVD structure, the SOFAR
method is particularly appealing for such applications, and
may provide new insights into the complex genetics of gene
expression variation. Here the orthogonality can be roughly
interpreted as maximum separability, so that different asso-
ciation layers are more likely to reflect different functional
pathways.

We illustrate our approach by the analysis of a yeast eQTL
data set described by Brem and Kruglyak [14], where n = 112
segregants were grown from a cross between two budding
yeast strains, BY4716 and RM11-1a. For each of the segre-
gants, gene expression was profiled on microarrays containing
6216 genes, and genotyping was performed at 2957 markers.
Similar to Yin and Li [64], we combined the markers into

blocks such that markers with the same block differed by at
most one sample, and one representative marker was chosen
from each block; a marginal gene–marker association analysis
was then performed to identify markers that are associated
with the expression levels of at least two genes with a p-value
less than 0.05, resulting in a total of p = 605 markers.

Owing to the small sample size and weak genetic perturba-
tions, we focused our analysis on q = 54 genes in the yeast
MAPK signaling pathways [41]. We then applied the proposed
SOFAR methods with adaptive weighting. Both SOFAR-L and
SOFAR-GL methods resulted in a model of rank 3, indicating
that dimension reduction is very effective for the data set.
Also, the SVD layers estimated by the SOFAR methods are
indeed sparse. The SOFAR-L estimates include 140 nonzeros
in �U, which involve only 112 markers, and 40 nonzeros in �V,
which involve only 27 genes. The sparse SVD produced by
SOFAR-GL involves only 34 markers and 15 genes. The
SOFAR-GL method is more conservative since it tends to
identify markers that regulate all selected genes rather than a
subset of genes involved in a specific SVD layer. We compare
the original gene expression matrix Y and its estimates X�C
by the RRR, SOFAR-L and SOFAR-GL methods using heat
maps in Fig. 2. It is seen that the SOFAR methods achieve both
low-rankness and sparsity, while still capturing main patterns
in the original matrix.

Fig. 3 shows the scatterplots of the latent responses Y�v j

versus the latent predictors X�u j for j = 1, 2, 3, where �u j

and �v j are the j th columns of �U and �V, respectively. The
plots demonstrate a strong association between each pair
of latent variables, with the association strength descending
from layer 1 to layer 3. A closer look at the SVD layers
reveals further information about clustered samples and genes.
The plot for layer 1 indicates that the yeast samples form
two clusters, suggesting that our method may be useful for
classification based on the latent variables. Also, examining
the nonzero entries in �v1 shows that this layer is dominated by
four genes, namely, STE3 (−0.66), STE2 (0.59), MFA2 (0.40),
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Fig. 2. Heat maps of Y and its estimates by RRR, SOFAR-L, and SOFAR-GL (from left to right).

Fig. 3. Scatterplots of the latent responses versus the latent predictors in three SVD layers for the yeast data estimated by the SOFAR-L method.

and MFA1 (0.22). All four genes are upstream in the
pheromone response pathway, where MFA2 and MFA1 are
genes encoding mating pheromones and STE3 and STE2 are
genes encoding pheromone receptors [24]. The second layer is
mainly dominated by CTT1 (−0.93), and other leading genes
include SLN1 (0.16), SLT2 (−0.14), MSN4 (−0.14), and
GLO1 (−0.13). Interestingly, CTT1, MSN4, and GLO1 are
all downstream genes linked to the upstream gene SLN1 in
the high osmolarity/glycerol pathway required for survival
in response to hyperosmotic stress. Finally, layer 3 includes
the leading genes FUS1 (0.81), FAR1 (0.32), STE2 (0.25),
STE3 (0.24), GPA1 (0.22), FUS3 (0.18), and STE12 (0.11).
These genes consist of two major groups that are downstream
(FUS1, FAR1, FUS3, and STE12) and upstream (STE2, STE3,
and GPA1) in the pheromone response pathway. Overall, our
results suggest that there are common genetic components
shared by the expression traits of the clustered genes and

clearly reveal strong associations between the upstream and
downstream genes on several signaling pathways, which are
consistent with the current functional understanding of the
MAPK signaling pathways.

To examine the predictive performance of SOFAR and other
competing methods, we randomly split the data into a training
set of size 92 and a test set of size 20. The model was
fitted using the training set and the predictive accuracy was
evaluated on the test set based on the prediction error �Y −
X�C�2F/(nq). The splitting process was repeated 50 times. The
scaled prediction errors for the RRR, SOFAR-L, SOFAR-GL,
RSSVD, and SRRR methods are 3.4 (0.3), 2.6 (0.2), 2.5 (0.2),
2.9 (0.3), and 2.6 (0.2), respectively. The comparison shows
the advantages of sparse and low-rank estimation. RSSVD
yields higher prediction error and is less stable than the
SOFAR methods. Although the SRRR method yielded similar
predictive accuracy compared to SOFAR methods on this
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data set, it resulted in a less parsimonious model and cannot
be used for gene selection or clustering.
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