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Abstract. The benefits of computational model building in STEM domains are 
well documented yet the synergistic learning processes that lead to the effective 
learning gains are not fully understood. In this paper, we analyze the discus-
sions between students working collaboratively to build computational models 
to solve physics problems. From this collaborative discourse, we identify strat-
egies that impact their model building and learning processes. 
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1 Introduction 

Technology-enhanced environments can be productive vehicles for engaging students 
in computational model building and problem solving, a process shown to be effective 
for learning K-12 science concepts (e.g. [2, 6, 18]). This mutually supportive ap-
proach to STEM and CT learning has produced synergistic learning environments [3, 
17, 9, 13]where students express domain concepts and laws in a computational form, 
and then interpret the behaviors generated by these computational constructs to refine 
their knowledge of the domain. The necessity to combine, represent, interpret, and 
analyze the two simultaneously in a mutually supportive way is what we call syner-
gistic learning. While we have theorized the advantages of synergistic learning [13], 
and assessments have demonstrated students’ learning gains attributed to these envi-
ronments [1, 2], how they develop and apply these synergistic learning processes to 
their learning and modeling tasks are not fully understood.  

For this research, students learn by building, simulating, testing, and refining their 
models in C2STEM [9]. We analyze collaborative discourse as students work in small 
groups to develop a shared understanding of a phenomena by jointly constructing 
models [11]. While working on their model building tasks on a shared screen, stu-
dents have the opportunity to discuss, explain, argue about and evaluate their models 
[14]. In this paper we use students’ collaborative problem-solving dialogues along 
with information on how they progress in their model building to identify students’ 
STEM and CT learning processes, while also gaining some insight into their group 
dynamics. Specifically, we perform an exploratory analysis to identify dialogue char-
acteristics and model building moves that may be indicative of strategies they use in 
their computational modeling tasks.  
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2 Background 

Computational modeling of scientific processes provides an effective framework 
for learning scientific concepts and practices through computational representations 
and simulation models, as well as CT practices like those evaluated in [17].  Recipro-
cally, the concepts and practices emphasized in CT are better contextualized and, 
therefore, easier to understand and learn when they are situated in domain specific 
model building, analysis, and problem-solving tasks [4, 13]. Such environments that 
facilitate synergistic learning have proven to be effective in increasing learning gains 
in the STEM and CT domains [1, 2, 9]. Our work extends these approaches using a 
block-based computational modeling environment, C2STEM, equipped with tools 
aimed at scaffolding the learning of STEM and CT. These tools include a domain-
specific modeling language (DSML) with physics constructs to help students create 
dynamic (simulation) models in Physics and control-structure blocks to initialize 
needed variables (Green Flag) and to program the dynamic behavior changes of each 
object (the Simulation Step block), aimed at evaluating the step-by-step update of the 
model via animations and data tools.  
 We analyze collaborative student dialogue with a learning and social framework to 
better understand successful and unsuccessful learning processes building on related 
work [8,10]. Dialogue is characterized by the domain (Physics or CT) of focus during  
knowledge construction. Discussion are further characterized by a combination of the 
ICAP framework [5] and the framework proposed by Weinberger & Fischer [16]. The 
ICAP framework designates four different modes of learning: Interactive, Construc-
tive, Active and Passive. The Passive mode is characterized by a learner receiving 
information without visible response, whereas an Active learner responds by manipu-
lating the learned knowledge. Constructive learners add one more step by manipulat-
ing the information to construct something new. Interactive learners discuss and con-
struct knowledge with a fellow learner. We incorporate the five different social modes 
in argumentative knowledge construction from Weinberger & Fischer’s framework 
with the ICAP learner modes to interpret the types of dialogues. The social modes are 
defined as conflict-oriented consensus building, integration-oriented consensus build-
ing, quick consensus building, elicitation, and externalization. The three consensus 
building modes occur when there is a discussion between learners. Elicitation can lead 
to a consensus building or a learner may answer their own question. Externalization is 
a primarily singular mode where one learner is vocalizing what they are doing while 
the other learner(s) in their group are quiet. We combine these two frameworks by 
mapping the learning modes to the social modes [15].  

3 Methods 

We conducted a study with 26 high school sophomore students using C2STEM. The 
students spent one day a week for 2 months completing a CT training module, 3 kin-
ematics modules: 1D and 2D motion including gravity, and 1 force module. Our cur-
riculum included three types of tasks: instructional, model building, and challenge [9]. 
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We divided the students into 9 different groups, 8 groups had three students per 
group, and the ninth was a group of 2 students. Each group was instructed to work 
together on one computer screen to build their models. There was discussion across 
groups. These were not discouraged and are reported as part of our analysis. 

Our data sources are OBS™ screen-capture videos that recorded the students’ 
screens along with the webcam video and audio and model scores on submitted tasks.  
We focused our qualitative analysis on the 2D motion with constant velocity chal-
lenge task. In this module, students modeled a boat crossing a flowing river while 
stopping at two different islands along the way. Model scores were computed utilizing 
a pre-defined rubric divided into use of physics and CT constructs in order to evaluate 
proficiency in each domain separately. 

4 Results 

Using the collaborative dialogue framework described above for qualitative analysis, 
we identified 5 predominate problem-solving strategies. Table 1 provides transcript 
evidence to support our identification of problem-solving approaches. We saw in-
creased performances by groups 2, 4 and 5 over time. Interestingly, Group 2 seemed 
to have the strongest CT skills from the onset of the curriculum. This group showed 
gains in Physics (75% to 87.5%) and CT (75% to 90%) performance,. Group 5 started 
with a high performance in Physics (100%) and maintained that with a 100% on the 
2D motion challenge (there was a slight dip in score when they started with 2D mo-
tion). We hypothesize this indicates some prior knowledge in Physics. Group 5 did 
show increases in CT over time (from a 62.5% to 90%). Group 7’s Physics and CT 
performances dropped (from 75% to 25 and 62.5% to 20%, respectively). Groups 6 
and 9 scored lower in CT but maintained their performance in Physics. We conjecture 
this correlates with the common difficulty of translating Physics knowledge to a com-
putational model [13]. 

Table 1. Dialogue Examples of Strategies 

Strategy G Example Quotes 
Hardcoding 1, 

2 
S1: "it goes 5 m/s, but to go 6 meters forward it would be 1.2 seconds. 
So we need to figure out, we know the distance we know the time we 
know the change in distance over the change in time now that will give 
us the velocity. So 15 / 1.2 [calculates it on paper]. 12.5. 

Data Tools 4, 
5 

S10: “So we find x y coordinates and find the slope and then go there 
and there [referencing the islands] 
S11: “So where is this. Wait how do we look at the variables” 
S9: “Display x and y position” 

Debugging 5 S12: “just for testing purposes let’s make this an if else and put stop 
simulation in the else so once it gets there it should stop moving” 

Trial and  
Error 

6, 
8, 
9 

S22: “just change the velocity to be lower” 
S23: “okay we will change that” 
S22: “just trial and error, make it -4” 

Replication/ 
Help 

7 Other group: “Here’s the thing, your x velocity should be 5” 
S19: “No I think that since the river is 2 you need to add more to it” 
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5 Discussion 

The only group to receive lower scores in Physics and CT on this task compared to 
previous tasks utilized a replication problem solving approach, aiming to copy a solu-
tion of another group. This was the only group to engage in constructive externaliza-
tion, instead of working together or communicating as a team. This group began with 
a successful strategy (using the data tools) but were unable to interpret the physics 
calculations. We conjecture that confidence in knowledge application or abilities to 
translate gained Physics knowledge to a more challenging computational model may 
have caused this decline as the group elected to seek help elsewhere.  
 The two groups that showed constant Physics scores but decreasing CT scores 
utilized trial and error or replicating code strategies. These strategies avoid switching 
between physics and CT. In fact, the groups who did trial and error primarily focused 
on the computational model and did not attempt to utilize physics concepts like the 
kinematics equations to solve the problem. Alternately, Group 8 utilized a combina-
tion of  trial and error and the data tools. The combination of one unsuccessful strate-
gy, trial and error, with a successful strategy, data tool use, seems to have resulted in 
neither a loss nor a gain in knowledge construction in both Physics and CT. 
 Finally, the groups whose model scores remained constant or increased in physics 
and CT, based on model scores utilized hardcoding, data tools, and debugging strate-
gies. These strategies show switching of focus between physics and CT understand-
ing. The hard coding of values into the computational model requires some physics 
knowledge. Utilizing the data tools, students identified initial positions values for use 
in their physics equations. Debugging strategies required students to interpret their 
model behaviors using physics constructs and to identify errors in their models. All of 
these strategies can be considered synergistic learning processes. 

6 Conclusion 

A systematic approach that combines quantitative and qualitative analysis of collabo-
rative, computational model building strategies provides useful information into how 
students problem solve to learn Physics and CT simultaneously. Through careful 
evaluation of instances in which both Physics and CT knowledge are needed to build 
a computational model, successful strategies can be characterized by the use of syner-
gistic processes. For example, when a group implements a combination of strategies 
such as debugging (a CT strategy [7]) and data evaluation (a Physics strategy [12] and 
a CT process [17]), this results in increased scores in both domains. Unsuccessful 
strategies do not exploit synergy between the domains, and lead to drop in perfor-
mance. Combination of good and bad strategies produce mixed results.    
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