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Abstract

Communication overhead is one of the key chal-

lenges that hinders the scalability of distributed

optimization algorithms to train large neural net-

works. In recent years, there has been a great

deal of research to alleviate communication cost

by compressing the gradient vector or using local

updates and periodic model averaging. In this pa-

per, we advocate the use of redundancy towards

communication-efficient distributed stochastic al-

gorithms for non-convex optimization. In partic-

ular, we, both theoretically and practically, show

that by properly infusing redundancy to the train-

ing data with model averaging, it is possible to

significantly reduce the number of communica-

tion rounds. To be more precise, we show that

redundancy reduces residual error in local averag-

ing, thereby reaching the same level of accuracy

with fewer rounds of communication as compared

with previous algorithms. Empirical studies on

CIFAR10, CIFAR100 and ImageNet datasets in

a distributed environment complement our theo-

retical results; they show that our algorithms have

additional beneficial aspects including tolerance

to failures, as well as greater gradient diversity.

1. Introduction

The Stochastic Gradient Descent (SGD) is a fundamental

tool for solving numerous optimization problems in machine

learning. SGD is an iterative method in which the model

parameters x(t),x(t+1) respectively at the tth and (t+ 1)st

iteration are related as:

x
(t+1) = x

(t)
− ηg̃(t), (1)

where g̃(t) is the stochastic gradient of the cost function. Re-

quiring immense computational resources, large scale ma-

1 School of Electrical Engineering and Computer Science
2College of Information Sciences and Technology, The Pennsylva-
nia State University, University Park, PA, USA. Correspondence
to: Farzin Haddadpour <fxh18@psu.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

chine learning models such as deep neural networks which

use SGD are, nowadays, trained in distributed systems on

several computation nodes.

In particular, the dataset D is partitioned into shards and

distributed to computation nodes. Each node evaluates the

partial gradients over a randomly sampled mini-batch from

its shard. In fully synchronous SGD, the computation nodes,

after evaluation of gradients over the sampled mini-batch,

exchanges their updates in every iteration to ensure that all

nodes have the same updated model. Thus, implementing

fully synchronous SGD to update the model as (1) incurs

significant amount of communication both in terms of num-

ber of rounds and data exchange. This communication cost

is, in fact, among the primary obstacles towards scaling

distributed SGD.

A promising strand of research that aims at mitigating com-

munication bottlenecks in large scale SGD is model averag-

ing, where each node locally updates the model sequentially

on different data partitions, and the models of the different

nodes are averaged periodically (McDonald et al., 2010;

Wang & Joshi, 2018; Yu et al., 2018; Zhang et al., 2016;

Zhou & Cong, 2017; Zinkevich et al., 2010). Because of

local updates, the model averaging approach reduces the

number of rounds of communication in training and can

therefore be much faster in practice. However, since the

model for every iteration is not updated based on the entire

data, it suffers from a residual error with respect to fully

synchronous SGD; this residual error lowers the accuracy

in training for model averaging. In this paper, we develop

a new approach towards model averaging by infusing re-

dundancy in the data stored at the computation nodes. Our

approach retains the benefits of model averaging - lower

number of rounds of communication - and yet leads to im-

proved model accuracy via residual error reduction.

In summary, the main contributions of the present work are

as follows:

• We present in Section 3, the Redundancy-Infused SGD

(RI-SGD) algorithm, which is a variation of distributed

SGD. In RI-SGD, the data is partitioned into shards;

each node has its own shard of data, and is allowed to

partially access the shards of a subset of other workers
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averaging in (McDonald et al., 2010; Zinkevich et al., 2010),

wherein they show numerically that model averaging works

well in several optimization problems. Model averaging is

shown to experimentally work well in (Chen & Huo, 2016;

Kamp et al., 2018; Lin et al., 2018; McMahan et al., 2016;

Povey et al., 2014; Su & Chen, 2015) by reducing com-

munication costs; it is also shown to improve privacy and

security in the federated learning (McMahan et al., 2016).

However, it is also known (Zhang et al., 2016) that one-shot

averaging leads to inaccurate models in non-convex opti-

mization settings. The study of the benefits and trade-offs

in model averaging, in particular its convergence properties,

have been explored from a theoretical/analytical viewpoint

in (Chaudhari et al., 2017; Wang & Joshi, 2018; Yu et al.,

2018; Zhang et al., 2015; Zhou & Cong, 2017).

Periodic averaging, a generalization of one-shot averaging

where the models are averaged across nodes afters every τ
local updates; here we focus on a common periodic aver-

aging technique sometimes referred to as parallel restarted

SGD (PR-SGD)1 (Yu et al., 2018). Reference (Zhou &

Cong, 2017) demonstrated that the convergence error of

PR-SGD grows with the number of local updates. This

method is empirically shown to work well in (Chaudhari

et al., 2017). Recently, (Yu et al., 2018) improved the con-

vergence rate of (Zhou & Cong, 2017) showing that the

same convergence rate as fully synchronous SGD can be

achieved by properly tuning the number of local updates.

Nonetheless, in (Yu et al., 2018; Zhou & Cong, 2017), the

residual error grows quadratically in τ . Recently, (Wang

& Joshi, 2018) demonstrated that the residual error can be

linear in the number of local updates τ , if every node can

sample mini-batches from the entire data, rather than their

own locally stored partition. Interestingly, (Wang & Joshi,

2018) also removed the bounded gradient assumption which

was used in (Yu et al., 2018; Zhou & Cong, 2017).

Our algorithm can be viewed as a redundancy-infused vari-

ant of PR-SGD discussed before. In our work, we show

a residual error that grows linearly in τ similar to (Wang

& Joshi, 2018). Importantly, we do not assume that each

node draws samples from the entire data. Rather, we make

the more practical assumption that each node only samples

from the partitions that it stores locally. We discuss further

comparisons of our work with (Wang & Joshi, 2018; Zhou

& Cong, 2017) in Appendix C.

3. RI-SGD: Redundancy Infused SGD

Consider a setting with p distributed worker nodes, each of

which has a disjoint chunk of data, Dj for 1 ≤ j ≤ p. We

are interested in solving the following optimization problem

1The term PR-SGD also helps distinguish the technique we
study from elastic-averaging SGD (Zhang et al., 2015), where
nodes perform a weighted average rather than a simple average.

in a distributed manner

min
x∈Rd

F (x) ,
1

p

p
∑

j=1

f(x;Dj), (2)

where the function f(·;Dj) is the training loss over the

samples in jth chunk Dj . Recall that a commonly studied

centralized approach towards solving this optimization prob-

lem is mini-batch stochastic gradient descent (SGD) for ran-

domly sampled mini-batches ξ(t) ⊂ D = {D1 ∪ . . . ∪ Dp},

which requires the same update rule as in (1), where

g̃(t) = 1
|ξ(t)|∇f(x(t); ξ(t)) is the stochastic unbiased gradi-

ent over a uniformly sampled mini-batch ξ(t) ⊆ D from all

the data samples D. Here we study a decentralized approach

to the above problem in homogeneous redundancy setting

and defer the heterogeneous setting to Appendix D.

In homogeneous sample size setting, we assume that the

data budget at each worker node is γ ,
q
p

, where q is

a predetermined integer satisfying p ≥ q ≥ 1 and p is

the total number of chunks of the data set as well as the

number of workers. The assumption that q is an integer

is a mathematical simplification, as it is indicated in the

experiments with non-integer choice of q. We assume that

the jth worker receives Dj and q−1 other distinct chunks of

data from D1,D2, . . . ,Dj−1,Dj+1, . . .Dp. We define the

redundancy factor as µ ,
q−1
p

= γ− 1
p

. We denote the data

chunks at the jth worker as D̃j , {Dj,1, . . . ,Dj,q} where

1 ≤ j ≤ p and Dj,ℓ ∈ {D1,D2, . . . ,Dp}, ℓ = 1, 2, . . . , q.
We assume that the qth data chunk at each worker j is its

own local data Dj,q = Dj . In our algorithm, denoted by

RI-SGD(τ) where τ represents the number of local updates,

at iteration t worker j, 1 ≤ j ≤ p samples mini-batches

ξ
(t)
j,i identically and independently from data chunk Dj,i for

1 ≤ i ≤ q. Then the samples are used to compute the

stochastic gradient as follows:

g̃
(t)
j,i = ∇f(x

(t)
j ; ξ

(t)
j,i ) , g̃

(t)
j ,

q
∑

i=1

g̃
(t)
j,i , (3)

Next, each worker, updates its own local version of the

model x
(t)
j using x

(t+1)
j = x

(t)
j − η g̃

(t)
j . After every τ iter-

ations, we do the model averaging, where we average local

versions of the model in all p workers. The pseudocode of

RI-SGD is shown in Algorithm 1. We note that the intro-

duced algorithm does not necessarily imply data replication

in practice, although data replication leads to one natural

way of implementing the algorithm. Specifically, as long as

every worker can sample mini-batch samples from the data

chunk of other workers (e.g., via network communication),

our algorithm and results apply.

A few remarks and comparison with related works.

The case of τ = 1 corresponds to one round of commu-

nication for every iteration. The case of τ > 1 is referred to
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as periodic averaging in literature, and leads to lower com-

munication cost albeit, with a residual error in the model. In

our results in the next section, we show that the residual error

grows linearly with τ, the number of local updates.The case

of γ = 1/p corresponds to PR-SGD (Yu et al., 2018); this

algorithm is shown to have a residual error that is quadratic

in τ . Thus, our analysis can be viewed as an improvement of

the analysis of (Yu et al., 2018). In addition, we can reduce

the residual error by tuning the parameter γ.

If γ = 1, every node has access to all the chunks. This

case is comparable to (Wang & Joshi, 2018) as well to fully

synchronous mini-batch SGD where τ = 1, and the workers

sample mini-batches from the entire data in every iteration.

However, a subtle difference is that in our approach, we

sample the data differently. The workers first sample mini-

batches the various partitions of the data and then perform

updates on the various mini-batches. Thus our approach

leads to the samples being more uniformly spread across the

different partitions across different iterations; the effect of

this difference is explored empirically in Section 5. Similar

to (Wang & Joshi, 2018), we show that our residual error

only linear in τ , even if γ < 1 meaning that the workers

do not have access to the entire data. The main technical

difference between the γ = 1 case (e.g., (Wang & Joshi,

2018)) and the γ < 1 case is that in the latter case, since

each worker samples a mini-batches from the its data chunks,

instead of entire dataset, the mini-batch gradients are biased.

This technical difference is the main challenge we overcome

in our proofs of convergence analysis.

4. Convergence Analysis

In this section, we present the convergence analysis of the

proposed algorithm. We first state the main assumptions

and then present the convergence rates. All the proofs are

deferred to the appendix. In what follows, we use gj ,
∑q

i=1 gj,i to denote the full batch gradients over all q data

chunks at jth worker, where gj,i , ∇f(·;Dj,i) is the full

gradient over ith chunk.

4.1. Assumptions

Our convergence analysis is based on the following standard

assumptions in non-convex optimization.

Assumption 1 (Unbiased estimation over chunks). The

stochastic gradient evaluated on a mini-batch ξj,i ⊂ Dj,i

is an unbiased estimator of the partial full gradient, i.e.

Eξj,i [g̃j,i|xj ] = gj,i for 1 ≤ j ≤ p and 1 ≤ i ≤ q.

Assumption 2 (Lipschitz continuity and lower bounded-

ness). The objective function F (x) is differentiable and L-

smooth, i.e., ‖∇F (x)−∇F (y)‖ ≤ L‖x−y‖, ∀x,y ∈ R
d.

The function value is bounded below by a scalar F ∗.

Assumption 3 (Bounded variance). The variance of

Algorithm 1 RI-SGD(τ): Redundancy Infused SGD

1: Offline phase:

2: The worker j receives set of random chunks D̃j ,

{Dj,1, . . . ,Dj,q}, where 1 ≤ j ≤ p and Dj,k 6= Dj,l

for k 6= l and 1 ≤ k, l ≤ q and Dj,q = Dj for 1 ≤ j ≤
p.

3: Online-phase:

4: Inputs: {D̃1, . . . , D̃p} and x(1) as an initial global

model.

5: for t = 1, 2, . . . , T do

6: parallel for j = 1, 2, . . . , p do

7: j-th worker forms the set of mini-batches as ξ̃
(t)
j ,

{ξ(t)j,1, . . . , ξ
(t)
j,q}, where ξ

(t)
j,k, k = 1, . . . , q is uniformly

sampled from kth chunk

8: Evaluates stochastic gradient over each mini-

batches, g̃
(t)
j,i for i = 1, . . . , q, and computes g̃

(t)
j as

in (3)

9: if t divides τ do

10: x
(t+1)
j = 1

p

∑p
j=1

[

x
(t)
j − η g̃

(t)
j

]

11: else do

12: x
(t+1)
j = x

(t)
j − η g̃

(t)
j

13: end if

14: end parallel for

15: end

16: Output: x̄(T ) = 1
p

∑p
j=1 x

(T )
j

stochastic gradients evaluated on a mini-batch ξj,i for all

1 ≤ j ≤ p and 1 ≤ i ≤ q is bounded as

Eξj,i

[

‖g̃j,i − gj,i‖2|
]

≤ C1‖gj,i‖2 +
C2

2

p
(4)

where C1 and C2 are non-negative constants and inversely

proportion to the mini-batch size.

Remark 1. We note that, as p increases, the data chunk

size reduces, and therefore, the mini-batch size increases

relative the the size of the data chunk. As a result, the vari-

ance reduces; this justifies the assumption that the variance

is inversely proportional to p. For further clarification, sup-

pose that total number of the data points is n and let the

data chunk at each worker node have n
p

data points. Then,

let p = n
b

where is the mini-batch size at each worker node.

In this case, each data chunk at workers will have n
p
= b

data points and therefore g̃j,i = gj,i. Therefore, for larger

p and fixed number of the data points the variance reduces.

We make the following assumption about the partial full

gradients among different workers.

Assumption 4. We assume that the local full gradients

over pair of chunks for every pair of workers satisfies

|〈gj,i,gj′,i′〉| ≤ β, ∀1 ≤ i, j, i′, j′ ≤ p, i 6= i′, j 6= j′.

We note that Assumption 4 is easily implied by the as-
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sumption of uniformly bounded gradient. To see this, we

note that if ‖gj,i‖ ≤
√
β holds, a simple application of

Cauchy-Schwartz inequality implies that |〈gj,i,gj′,i′〉| ≤
‖gj,i‖‖gj′,i′‖ = β. However, Assumption 4 does not nec-

essarily imply uniformly bounded gradient assumption.

Finally, we note that since F (x) is a non-convex function,

SGD may converge to a local minimum or a saddle point.

We say the algorithm achieves an ǫ-submoptimal (Alistarh

et al., 2017; Ghadimi & Lan, 2013; Lian et al., 2017) solu-

tion if

E

[ 1

T

T
∑

t=1

‖∇F (x̄(t))‖2
]

≤ ǫ,

where x̄(t) is average model at tth iteration. This condition

guarantees convergence of the algorithm to a stationary

point, which will be used to show the convergence rate.

4.2. Main results

We now turn to provide the convergence analysis for Al-

gorithm 1. To illustrate our key technical contribution in

convergence analysis, let us define an auxiliary variable

x̄(t) = 1
p

∑p
j=1 x

(t)
j , which is the average model across p

different workers at iteration t. Using the definition of x̄(t),

the update rule in Algorithm 1, becomes:

x̄(t+1) = x̄(t) − η
[1

p

p
∑

j=1

g̃
(t)
j

]

(5)

As mentioned earlier, when γ < 1, the mini-batch stochastic

gradients used in local updates are a biased estimate of the

full gradient. Specifically, the update rule in (5) can be

re-written as

x̄(t+1) = x̄(t) − η∇F (x̄(t)) + η
[

∇F (x̄(t))− 1

p

p
∑

j=1

g̃
(t)
j

]

,

which establishes a connection between our algorithm

and the perturbed SGD with deviation
(

∇F (x̄(t)) −
1
p

∑p
j=1 g̃

(t)
j

)

. We show that by introducing data redun-

dancy among workers, we can reduce the variance of biased

gradients and obtain the desired convergence rates.

We start by stating the convergence rate of RI-SGD(τ) algo-

rithm.

Theorem 4.1. For RI-SGD(τ), under Assumptions 1 - 4,

if the learning rate satisfies η2L2
(

2τC1(
p+1
p

) + τ(τ −

1)
)

+ ηL(C1+γp2)
p

≤ 1 and all local model parameters

are initialized at the same point x(1), for the given budget
1
p
≤ γ ≤ 1 the average-squared gradient after T iterations

is bounded by:

E

[ 1

T

T
∑

t=1

‖∇F (x̄(t))‖2
]

≤
2
[

F (x̄(1))− F ∗
]

ηT
+ ηLC

2
2
γ

p

+ γ(
p+ 1

p
)η2

L
2(τ − 1)C2

2 + (γ − 1)
1

T

T
∑

t=1

G̃
(t)

+
p2

2

[

3γ2 − 4γ + (3−
1

p
)
]

β, (6)

where G̃(t) ,
∑p

j=1 G̃
(t)
j and G̃

(t)
j , minDi∈D\D̃j

‖g
(t)
j,i‖

2 for

1 ≤ j ≤ p.

A few remarks regarding the convergence rate in Theo-

rem 4.1 are in place. First, the obtained bound depends on

the diversity of local gradients parameter β which is also

illustrated in our experimental results as well, in particu-

lar Figure 3. Specifically, the rate increases with β, which

means that for larger values of β, more rounds of com-

munication are needed to achieve the same error. This is

consistent with the result of (Yin et al., 2018), because the

larger β implies smaller gradient diversity. We also note

that due to our data allocation policy where each worker

samples from multiple chunks of data instead of sampling

from the entire dataset, the possibility of sampling the same

data by multiple worker nodes decreases, leading to faster

convergence rate.

Corollary 4.1.1. The learning rate condition in Theorem

4.1 implies that η ≤ 1

L
√

2τC1(
p+1
p

)+τ(τ−1)
. Therefore, for

the larger τ we need to choose smaller learning rate.

The following theorem strengthens Theorem 4.1 under a

mild condition on the gradients, which specializes to the

fully synchronous distributed SGD in case of full data re-

dundancy.

Theorem 4.2. For RI-SGD(τ), if for all 1 ≤ t ≤ T ,

there exists constants ρ(t) > 0 such that
∑p

j=1 ‖
∑

i g
(t)
j,i +

∑

i g
(t)
j,i
‖2 ≥ ρ(t)

∑p
j=1

(

∑

i ‖g
(t)
j,i‖2

)

, under Assump-

tions 1-4, the learning rate satisfies η2L2
(

2τC1(
p+1
p

) +

τ(τ−1)
)

+ ηL(C1+γp2)
p

< ρ(t) for 1 ≤ t ≤ T and all local

model parameters are initialized at the same point x̄(1), for

the given budget 1
p
≤ γ ≤ 1 the average-squared gradient

after τ iterations is bounded as follows:

E

[ 1

T

T
∑

t=1

‖∇F (x̄(t))‖2
]

≤ 2
[

F (x̄(1))− F ∗]

ηT
+ ηLC2

2

γ

p

+ (
p+ 1

p
)γC2

2η
2L2(τ − 1) + 2p2

[

(1− γ)
]

β (7)

Remark 2. In Theorem 4.2, if we let τ = 1 and γ = 1, we

get the convergence error terms reduce to the convergence
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error of fully synchronous SGD (Bottou et al., 2018). If

we let γ = 1 (i.e. full redundancy), the error bound in

(7) reduces to the error bound provided by (Wang & Joshi,

2018) which is proved to achieve a convergence rate of

O( 1√
pT

). Therefore, by letting γ = 1 − O( 1
p2

√
pT

), and

η =
√
p

L
√
T

, we can achieve the convergence rate of O( 1√
pT

).

This is shown more formally in Appendix G. On the other

hand, if we let γ = 1
p

, (7) gives the error for the case

where there is no redundancy and each worker applies local

updates.

These theoretical bounds are validated through experimental

results in Section 5 where we compare RI-SGD to PR-SGD

algorithm (µ = 0) proposed in (Yu et al., 2018) and (Wang

& Joshi, 2018), in which it is assumed that each worker

can sample its mini-batches from the entire dataset. The

detailed comparison of convergence of various algorithm

can be found in Appendix C.

4.3. Distribution-aware convergence

Based on Assumption 4, we consider an upper bound β for

the correlation between each pair of local full gradients of

each data chunk gj,i. Hence, convergence rates presented

in Theorems 4.1 and 4.2 do not explicitly reflect the effects

of each pair individually. In order to further elaborate on

the impact of distribution of data chunks on the final bound

we need to bound each pair independently. To that end,

we introduce an upper bound on the correlation between

gradients of the main chunk at the jth worker (i.e. gj =
∇f(·,Dj,q), recalling that the qth data chunk is local data)

and gradients of data chunks not present in the jth worker

(i.e. g
j,i

= ∇f(·,Di),Di 6∈ D̃j), as stated below.

Assumption 5. For 1 ≤ j ≤ p we assume an upper bound

on the inner products of gradients of each worker’s data

chunk and data chunks not presented in that worker as

follows:

|〈gj ,gj,i
〉| ≤ βj,i, (8)

We note that by setting maxj,i βj,i = β, we can get the

results which only depends on the number of mini-batches

rather than the chunks. In Appendix F we derive the con-

vergence of RI-SGD based on Assumption 5, where the

convergence is stated in terms of gradient dissimilarity be-

tween different shards of data.

4.4. Robustness to node failure

While performing distributed optimization using iterative

methods such as distributed fully synchronous scheme,

worker nodes have to exchange their gradients. If at each

round of communication certain straggling workers have

delays (or failed) in their computational task, this can cause

huge delay in entire optimization process. One popular ap-

proach (Chen et al., 2016) to deal with straggler nodes is

to ignore them. Our single and multi-round approach can

outperform a strategy that ignores stragglers by tuning the

degree of redundancy. To see this, let us assume the number

of failures is s. If we ignore failures in algorithm proposed

in (Wang & Joshi, 2018), the convergence error upper bound

becomes E(τ, s) , 2
[

F (x(1))−F∗

]

η(τ+T ) +
ηLC2

2

p−s
+η2L2C2

2 (τ−1)

Now, if we consider the convergence error of RI-SGD(τ),
we can see that it introduces the additional parameter γ, and

ignoring the stragglers in this algorithm results in conver-

gence error

ERI-SGD(τ, s, γ) =
2
[

F (x(1))− F ∗]

ηT
+ ηLC2

2

γ

(p− s)

+
(γ − 1)

p− s

p

T

T
∑

t=1

G̃(t) +
q(p− s+ 1)

(p− s)2
η2C2

2L
2(τ − 1)

+
p2

2

[

3γ2 − 4γ + (3− 1

p
)
]

β

where G̃(t) =
∑p−s

j=1 G̃j . Then, by proper choice of γ = γs,

we can satisfy E(τ, s) > ERI-SGD(τ, s, γs), which indicates

that taking advantage of the data redundancy, RI-SGD(τ) is

resilient against failures.

4.5. Redundancy and intra-node gradient diversity

As we discussed in the convergence of RI-SGD, by inducing

redundancy among workers, we can effectively reduce the

variance in local updates and reduce the number of commu-

nication rounds and yet enjoying faster convergence. We

can also investigate the effectiveness of redundancy infusion

from gradient diversity perspective introduced in (Yin et al.,

2018). In Appendix E, we mathematically demonstrate

the intimate connection between redundancy and gradient

diversity and show that under mild assumptions, infusing

redundancy increases the intra-node gradient diversity– the

effective quantity for the mini-batch size used for local up-

dates at each worker node. A direct implication is that the

effective size of mini-batch can be increased without any

saturation or decay in performance.

5. Experiments

In this section, we experimentally evaluate the performance

of our RI-SGD algorithm with parameters redundancy µ =
γ − 1/p = q−1

p
and step size τ. We compare our algorithm

with fully synchronous SGD (SyncSGD), (τ = 1, µ = 0),
PR-SGD (µ = 0, variable τ) and cooperative SGD (Wang

& Joshi, 2018), where they consider each node has access to

the whole dataset for mini-batch sampling. We first describe

the setup in which we conduct the experiment.

5.1. Experimental setup

We conduct different types of experiments on clusters with

4 and 8 GPUs (Tesla V 100 and GeForce GTX 1080 Ti), to
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