Trading Redundancy for Communication:
Speeding up Distributed SGD for Non-convex Optimization

Farzin Haddadpour ! Mohammad Mahdi Kamani’> Mehrdad Mahdavi' Viveck R. Cadambe '

Abstract

Communication overhead is one of the key chal-
lenges that hinders the scalability of distributed
optimization algorithms to train large neural net-
works. In recent years, there has been a great
deal of research to alleviate communication cost
by compressing the gradient vector or using local
updates and periodic model averaging. In this pa-
per, we advocate the use of redundancy towards
communication-efficient distributed stochastic al-
gorithms for non-convex optimization. In partic-
ular, we, both theoretically and practically, show
that by properly infusing redundancy to the train-
ing data with model averaging, it is possible to
significantly reduce the number of communica-
tion rounds. To be more precise, we show that
redundancy reduces residual error in local averag-
ing, thereby reaching the same level of accuracy
with fewer rounds of communication as compared
with previous algorithms. Empirical studies on
CIFAR10, CIFAR100 and ImageNet datasets in
a distributed environment complement our theo-
retical results; they show that our algorithms have
additional beneficial aspects including tolerance
to failures, as well as greater gradient diversity.

1. Introduction

The Stochastic Gradient Descent (SGD) is a fundamental
tool for solving numerous optimization problems in machine
learning. SGD is an iterative method in which the model
parameters x(*), x(**1) respectively at the tth and (¢ 4 1)st
iteration are related as:

xH) = x() _ pe®) (1)

)

where g(*) is the stochastic gradient of the cost function. Re-
quiring immense computational resources, large scale ma-
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chine learning models such as deep neural networks which
use SGD are, nowadays, trained in distributed systems on
several computation nodes.

In particular, the dataset D is partitioned into shards and
distributed to computation nodes. Each node evaluates the
partial gradients over a randomly sampled mini-batch from
its shard. In fully synchronous SGD, the computation nodes,
after evaluation of gradients over the sampled mini-batch,
exchanges their updates in every iteration to ensure that all
nodes have the same updated model. Thus, implementing
fully synchronous SGD to update the model as (1) incurs
significant amount of communication both in terms of num-
ber of rounds and data exchange. This communication cost
is, in fact, among the primary obstacles towards scaling
distributed SGD.

A promising strand of research that aims at mitigating com-
munication bottlenecks in large scale SGD is model averag-
ing, where each node locally updates the model sequentially
on different data partitions, and the models of the different
nodes are averaged periodically (McDonald et al., 2010;
Wang & Joshi, 2018; Yu et al., 2018; Zhang et al., 2016;
Zhou & Cong, 2017; Zinkevich et al., 2010). Because of
local updates, the model averaging approach reduces the
number of rounds of communication in training and can
therefore be much faster in practice. However, since the
model for every iteration is not updated based on the entire
data, it suffers from a residual error with respect to fully
synchronous SGD; this residual error lowers the accuracy
in training for model averaging. In this paper, we develop
a new approach towards model averaging by infusing re-
dundancy in the data stored at the computation nodes. Our
approach retains the benefits of model averaging - lower
number of rounds of communication - and yet leads to im-
proved model accuracy via residual error reduction.

In summary, the main contributions of the present work are
as follows:

e We present in Section 3, the Redundancy-Infused SGD
(RI-SGD) algorithm, which is a variation of distributed
SGD. In RI-SGD, the data is partitioned into shards;
each node has its own shard of data, and is allowed to
partially access the shards of a subset of other workers
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Figure 1. Training CIFAR10 using ResNet44 on 4 parallel GPUs,
using a generic Model Averaging introduced in (Yu et al., 2018),
and our framework with 25% redundancy infused. In both runs
the number for local updates is 50. For more details, see the
experiment setup in Section 5.

to the level of imposed redundancy budget (either ex-
plicitly by data replication or implicitly by sampling
data from other workers’ shard). RI-SGD operates by
performing local updates and periodically averaging
the models across the nodes.

e In Section 4, we perform a convergence analysis of RI-
SGD for non-convex Lipschitz-continuous loss func-
tions. Under certain assumptions, our bounds show that
the error converges inversely proportional to the num-
ber of local updates. Importantly, for a fixed number of
number of iterations and local updates, our algorithm
can be designed to have lower residual error as com-
pared with the previous algorithms where there is no
redundancy. The main technical contribution of our
paper is an error analysis in distributed local SGD with
non-identical and non-uniform sampling at the differ-
ent nodes. As a special case, this includes the practical
case where data is partitioned among the computation
nodes, and each node draws mini-batches from the
locally stored data. The important consequences of
our analysis are (a) the role of diversity in the residual
error, (b) the role of redundancy reducing this error to
speed up convergence and (c) fault tolerance.

e In Section 5, we demonstrate the accuracy and conver-
gence properties empirically - see for e.g., Fig. 1. Our
results show that with some redundancy, both train-
ing and testing can be significantly more accurate as

compared with conventional algorithms for the same
communication. Depending on the minibatch size, RI-
SGD can incur an additional computation cost due to
the redundancy in the data. Despite this, for a fixed
level of accuracy, our experiments demonstrate that
RI-SGD trains faster (lower wall clock times) as com-
pared with the no-redundancy case. This speed up is
due to communication being a more severe bottleneck
than computation. Furthermore, even when we reduce
the minibatch size of RI-SGD inversely proportional
to the amount of redundancy to make its computation
burden equal to the no-redundancy counterpart, our
experiments reveal that RI-SGD can still lead to in-
creased accuracy due to greater diversity (see Section 5
for more details). We also show a positive byproduct
of redundancy in the form of increased fault-tolerance
in our paper.

2. Related work

The primary approach to distribute the training process
across several workers is the parameter-server framework
(Cui et al., 2014; Dean et al., 2012; Li et al.). These methods
suffer from synchronization delay and high communication
cost. A line of work is to mitigate the synchronization delay
via asynchronous model update methods (Cui et al., 2014;
Gupta et al., 2016; Mitliagkas et al., 2016; Recht et al.,
2011). These methods, though faster than synchronized
methods, lead to convergence error issues due to stale gra-
dients. This line of work is orthogonal to our work as we
focus on communication issues.

Communication bottlenecks in distributed SGD manifest in
two ways; first, the number of bits communicated can be
significant, and second, the number of rounds of commu-
nication can be large. Several studies aim to minimize the
number of transmitted bits in each iteration by quantizing
(Alistarh et al., 2017; Bernstein et al., 2018; Seide et al.,
2014; Wangni et al., 2018) or sparsifying (Aji & Heafield,
2017; Dryden et al., 2016; Strom, 2015) the gradient vector.
Another approach to reducing communication is decentral-
ized parallel SGD (Jiang et al., 2017; Jin et al., 2016; Lian
et al., 2017), which performs decentralized training with
sparse-connected network of computation nodes. All these
methods are complementary to ours, as we focus on ap-
proaches that have fewer number of communication rounds
relative to the number of iterations. Similar to us, refer-
ences (Haddadpour et al., 2018; Ye & Abbe, 2018) use
redundancy to reduce communication costs. However their
technical content is orthogonal to ours since they focus on
exact gradient descent and quadratic cost functions.

We focus on model averaging methods where nodes to per-
form updates locally based on their own model. These
methods were first introduced under the name of one-shot
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averaging in (McDonald et al., 2010; Zinkevich et al., 2010),
wherein they show numerically that model averaging works
well in several optimization problems. Model averaging is
shown to experimentally work well in (Chen & Huo, 2016;
Kamp et al., 2018; Lin et al., 2018; McMahan et al., 2016;
Povey et al., 2014; Su & Chen, 2015) by reducing com-
munication costs; it is also shown to improve privacy and
security in the federated learning (McMahan et al., 2016).
However, it is also known (Zhang et al., 2016) that one-shot
averaging leads to inaccurate models in non-convex opti-
mization settings. The study of the benefits and trade-offs
in model averaging, in particular its convergence properties,
have been explored from a theoretical/analytical viewpoint
in (Chaudhari et al., 2017; Wang & Joshi, 2018; Yu et al.,
2018; Zhang et al., 2015; Zhou & Cong, 2017).

Periodic averaging, a generalization of one-shot averaging
where the models are averaged across nodes afters every
local updates; here we focus on a common periodic aver-
aging technique sometimes referred to as parallel restarted
SGD (PR-SGD)! (Yu et al., 2018). Reference (Zhou &
Cong, 2017) demonstrated that the convergence error of
PR-SGD grows with the number of local updates. This
method is empirically shown to work well in (Chaudhari
etal., 2017). Recently, (Yu et al., 2018) improved the con-
vergence rate of (Zhou & Cong, 2017) showing that the
same convergence rate as fully synchronous SGD can be
achieved by properly tuning the number of local updates.
Nonetheless, in (Yu et al., 2018; Zhou & Cong, 2017), the
residual error grows quadratically in 7. Recently, (Wang
& Joshi, 2018) demonstrated that the residual error can be
linear in the number of local updates 7, if every node can
sample mini-batches from the entire data, rather than their
own locally stored partition. Interestingly, (Wang & Joshi,
2018) also removed the bounded gradient assumption which
was used in (Yu et al., 2018; Zhou & Cong, 2017).

Our algorithm can be viewed as a redundancy-infused vari-
ant of PR-SGD discussed before. In our work, we show
a residual error that grows linearly in 7 similar to (Wang
& Joshi, 2018). Importantly, we do not assume that each
node draws samples from the entire data. Rather, we make
the more practical assumption that each node only samples
from the partitions that it stores locally. We discuss further
comparisons of our work with (Wang & Joshi, 2018; Zhou
& Cong, 2017) in Appendix C.

3. RI-SGD: Redundancy Infused SGD

Consider a setting with p distributed worker nodes, each of
which has a disjoint chunk of data, D; for 1 < 5 < p. We
are interested in solving the following optimization problem

'The term PR-SGD also helps distinguish the technique we
study from elastic-averaging SGD (Zhang et al., 2015), where
nodes perform a weighted average rather than a simple average.

in a distributed manner

min F(x
x€R4

P
fpu i @
where the function f(-;D;) is the training loss over the
samples in jth chunk D;. Recall that a commonly studied
centralized approach towards solving this optimization prob-
lem is mini-batch stochastic gradient descent (SGD) for ran-
domly sampled mini-batches £() ¢ D = {D; U...U Dy},
which requires the same update rule as in (1), where
gt = E“H V£ (x®; €M) is the stochastic unbiased gradi-

ent over a uniformly sampled mini-batch £() C D from all
the data samples D. Here we study a decentralized approach
to the above problem in homogeneous redundancy setting
and defer the heterogeneous setting to Appendix D.

’E\)—‘

In homogeneous sample size setting, we assume that the
data budget at each worker node is 7y £ %, where ¢ is
a predetermined integer satisfying p > ¢ > 1 and p is
the total number of chunks of the data set as well as the
number of workers. The assumption that ¢ is an integer
is a mathematical simplification, as it is indicated in the
experiments with non-integer choice of g. We assume that
the jth worker receives D; and g — 1 other distinct chunks of
data from Dy, Dy, ..., D;_1,Dji1,... Dy. We define the

redundancy factor as y £ 4 1 — ¥ — %. We denote the data

chunks at the jth worker as D; £ {D; 1, ..., D; ,} where
1<j<pandDj, € {Dy,Dy,...., D}, L =1,2,....q.
We assume that the gth data chunk at each worker j is its
own local data D; , = D;. In our algorithm, denoted by
RI-SGD(7) where T represents the number of local updates,

at iteration ¢ worker j,1 < j < p samples mini-batches

fj(tz) identically and independently from data chunk D; ; for
1 < 7 < q. Then the samples are used to compute the
stochastic gradient as follows:

q
Vi) gV 238l o)
=1

Next, each worker, updates its own local version of the
model xg ) using x( - g-t) ( ). After every 7 iter-
ations, we do the model averaging, where we average local
versions of the model in all p workers. The pseudocode of
RI-SGD is shown in Algorithm 1. We note that the intro-
duced algorithm does not necessarily imply data replication
in practice, although data replication leads to one natural
way of implementing the algorithm. Specifically, as long as
every worker can sample mini-batch samples from the data
chunk of other workers (e.g., via network communication),
our algorithm and results apply.

A few remarks and comparison with related works.
The case of 7 = 1 corresponds to one round of commu-
nication for every iteration. The case of 7 > 1 is referred to
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as periodic averaging in literature, and leads to lower com-
munication cost albeit, with a residual error in the model. In
our results in the next section, we show that the residual error
grows linearly with 7, the number of local updates.The case
of v = 1/p corresponds to PR-SGD (Yu et al., 2018); this
algorithm is shown to have a residual error that is quadratic
in 7. Thus, our analysis can be viewed as an improvement of
the analysis of (Yu et al., 2018). In addition, we can reduce
the residual error by tuning the parameter .

If v = 1, every node has access to all the chunks. This
case is comparable to (Wang & Joshi, 2018) as well to fully
synchronous mini-batch SGD where 7 = 1, and the workers
sample mini-batches from the entire data in every iteration.
However, a subtle difference is that in our approach, we
sample the data differently. The workers first sample mini-
batches the various partitions of the data and then perform
updates on the various mini-batches. Thus our approach
leads to the samples being more uniformly spread across the
different partitions across different iterations; the effect of
this difference is explored empirically in Section 5. Similar
to (Wang & Joshi, 2018), we show that our residual error
only linear in 7, even if v < 1 meaning that the workers
do not have access to the entire data. The main technical
difference between the v = 1 case (e.g., (Wang & Joshi,
2018)) and the v < 1 case is that in the latter case, since
each worker samples a mini-batches from the its data chunks,
instead of entire dataset, the mini-batch gradients are biased.
This technical difference is the main challenge we overcome
in our proofs of convergence analysis.

4. Convergence Analysis

In this section, we present the convergence analysis of the
proposed algorithm. We first state the main assumptions
and then present the convergence rates. All the proofs are
deferred to the appendix. In what follows, we use g; =
>4 | g;. to denote the full batch gradients over all ¢ data
chunks at jth worker, where g ; = V f(-;D; ;) is the full
gradient over ith chunk.

4.1. Assumptions

Our convergence analysis is based on the following standard
assumptions in non-convex optimization.

Assumption 1 (Unbiased estimation over chunks). The
stochastic gradient evaluated on a mini-batch §;; C D; ;
is an unbiased estimator of the partial full gradient, i.e.
Ee, . [8),ilx;] = gjifor1 < j<pand1<i<gq

Assumption 2 (Lipschitz continuity and lower bounded-
ness). The objective function F(x) is differentiable and L-
smooth, i.e., |VF(x)—VF(y)| < L|x—y||, ¥x,y € R%
The function value is bounded below by a scalar F'*.

Assumption 3 (Bounded variance). The variance of

Algorithm 1 RI-SGD(7): Redundancy Infused SGD

1: Offline phase:

2: The worker j receives set of random chunks D; 2
{Dj1,....,Djq}, where 1 < j < pand D;;, # Dj,
fork#land1 <k,l <gandD;,=Djforl <j<
D.

3: Online-phase:

4:  Inputs: {Dy,...
model.

5. fort=1,2,...,Tdo

: parallel for j = 1,2, ... pdo
j-th worker forms the set of mini-batches as éj(.” =

{g(“ ce ](fz},where f(t) k=1,...

,D,} and x(1) as an initial global

, q is uniformly

71 Jik?
sampled from kth chunk
8: Evaluates stochastic gradient over each mini-
batches, gﬁ fori = 1,...,q, and computes g§t> as
in (3)
9: if c(iivilc%es 7 do » o
. t+1) _ 1 5P t 5(t
10: Xj T p 2= [Xj — N8, }
11: else(do1 )
t t ~(t
12: xj+):x§ —ngg-)
13: end if
14:  end parallel for
15: end )
. L2(T) _ 15P
16: Output: x(7) = 52 j=1%;

stochastic gradients evaluated on a mini-batch §; ; for all
1<j7<pandl <1 < qisbounded as

: .
Ee,. Iy — il < Orllgsal®+ = @

where C1 and Cs are non-negative constants and inversely
proportion to the mini-batch size.

Remark 1. We note that, as p increases, the data chunk
size reduces, and therefore, the mini-batch size increases
relative the the size of the data chunk. As a result, the vari-
ance reduces; this justifies the assumption that the variance
is inversely proportional to p. For further clarification, sup-
pose that total number of the data points is n and let the
data chunk at each worker node have 2 data points. Then,
let p = % where is the mini-batch size at each worker node.
In this case, each data chunk at workers will have > = b
data points and therefore g; ; = g; ;. Therefore, for larger
p and fixed number of the data points the variance reduces.

We make the following assumption about the partial full
gradients among different workers.

Assumption 4. We assume that the local full gradients
over pair of chunks for every pair of workers satisfies

|<g',i?g*’ z’>| S B? V1 S iajvi/aj/ SP,Z #i/aj #]/
J 9"

We note that Assumption 4 is easily implied by the as-
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sumption of uniformly bounded gradient. To see this, we
note that if ||g; ;|| < +/B holds, a simple application of
Cauchy-Schwartz inequality implies that |(g;;, g;7.i)| <
llg;.illllg;,i|| = B. However, Assumption 4 does not nec-
essarily imply uniformly bounded gradient assumption.

Finally, we note that since F'(x) is a non-convex function,
SGD may converge to a local minimum or a saddle point.
We say the algorithm achieves an e-submoptimal (Alistarh
et al., 2017; Ghadimi & Lan, 2013; Lian et al., 2017) solu-
tion if

T
1 _
E[= Y IVFE®O)|?
t=1

where x(*) is average model at tth iteration. This condition
guarantees convergence of the algorithm to a stationary
point, which will be used to show the convergence rate.

4.2. Main results

We now turn to provide the convergence analysis for Al-
gorithm 1. To illustrate our key technical contribution in
convergence analysis, let us define an auxiliary variable
() = 1 p 1 xt ), which is the average model across p
different workers at iteration ¢. Using the definition of x(*),
the update rule in Algorithm 1, becomes:

p
Zg§ d 5)

(1) — [

’BM—‘

As mentioned earlier, when « < 1, the mini-batch stochastic
gradients used in local updates are a biased estimate of the
full gradient. Specifically, the update rule in (5) can be
re-written as

2+ — 0 _ g Fx®) 4 n[VF(i(t)) —

>e],

<.
Il
—

which establishes a connection between our algorithm
and the perturbed SGD with deviation (VF(x")) —
Dy ggt)). We show that by introducing data redun-
dancy among workers, we can reduce the variance of biased

gradients and obtain the desired convergence rates.

We start by stating the convergence rate of RI-SGD(7) algo-
rithm.

Theorem 4.1. For RI-SGD(7), under Assumptions 1 - 4,
if the learning rate satisfies 1n>L? (2701(’%1) +7(r —
1)) + "L(le;wpz) < 1 and all local model parameters

are initialized at the same point XV, for the given budget
% < v < 1 the average-squared gradient after T iterations

is bounded by:
T ~(1) .
1 ()2 2[F(x™) — F¥]
il P S iz
E[T;HVF(X 1] < T +nLC3 Y .
T
pt+1l o0, 2 e 10
(LT = )G+ (4 l)T;G
P gy 1
P RNC R ©)
where G £ > G;t) and G;t) = ming, cp\p, ||gj |12 for
1<j<p

A few remarks regarding the convergence rate in Theo-
rem 4.1 are in place. First, the obtained bound depends on
the diversity of local gradients parameter 5 which is also
illustrated in our experimental results as well, in particu-
lar Figure 3. Specifically, the rate increases with 3, which
means that for larger values of 3, more rounds of com-
munication are needed to achieve the same error. This is
consistent with the result of (Yin et al., 2018), because the
larger 8 implies smaller gradient diversity. We also note
that due to our data allocation policy where each worker
samples from multiple chunks of data instead of sampling
from the entire dataset, the possibility of sampling the same
data by multiple worker nodes decreases, leading to faster
convergence rate.

Corollary 4.1.1. The learning rate condition in Theorem

4.1 implies that n < L\/QrCl(pT%l)JrT('rfl). Therefore, for

the larger T we need to choose smaller learning rate.

The following theorem strengthens Theorem 4.1 under a
mild condition on the gradients, which specializes to the
fully synchronous distributed SGD in case of full data re-
dundancy.

Theorem 4.2. For RI-SGD(7), if for all 1 < t < T,
there exists constants p*) > 0 such that 37_, || 3, gﬁ +

> g(_’f?”2 > pt) ZIL (Z ||g(t)||2) under Assump-
tions 1-4, the learning rate satisfies n°L? (27’0 (pH) +
(T — 1)) + % < p® for1 <t < T and all local

model parameters are initialized at the same point XV, for
the given budget % <~y < 1 the average-squared gradient
after T iterations is bounded as follows:

2[F(xW) — F*]

T
e[+ SoIVAEI] < S

p+1

+qLe2’
p

+ ot -+t a-)s o

Remark 2. In Theorem 4.2, ifwe let Tt =1 and v = 1, we
get the convergence error terms reduce to the convergence
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error of fully synchronous SGD (Bottou et al., 2018). If
we let v = 1 (i.e. full redundancy), the error bound in
(7) reduces to the error bound provided by (Wang & Joshi,
2018) which is proved to achieve a convergence rate of
O(ﬁ). Therefore, by letting v = 1 — O(ﬁ), and
n = %, we can achieve the convergence rate of O(ﬁ).
This is shown more formally in Appendix G. On the other
hand, if we let v = %, (7) gives the error for the case
where there is no redundancy and each worker applies local

updates.

These theoretical bounds are validated through experimental
results in Section 5 where we compare RI-SGD to PR-SGD
algorithm (¢ = 0) proposed in (Yu et al., 2018) and (Wang
& Joshi, 2018), in which it is assumed that each worker
can sample its mini-batches from the entire dataset. The
detailed comparison of convergence of various algorithm
can be found in Appendix C.

4.3. Distribution-aware convergence

Based on Assumption 4, we consider an upper bound S for
the correlation between each pair of local full gradients of
each data chunk g; ;. Hence, convergence rates presented
in Theorems 4.1 and 4.2 do not explicitly reflect the effects
of each pair individually. In order to further elaborate on
the impact of distribution of data chunks on the final bound
we need to bound each pair independently. To that end,
we introduce an upper bound on the correlation between
gradients of the main chunk at the jth worker (i.e. g; =
V (-, Dj.q), recalling that the gth data chunk is local data)
and gradients of data chunks not present in the jth worker
(i.e. g, = Vi(,D;),D; & f)j), as stated below.

Assumption 5. For 1 < j < p we assume an upper bound
on the inner products of gradients of each worker’s data
chunk and data chunks not presented in that worker as
follows:

(g8, )1 < B ®)

We note that by setting max;; 8;; = 3, we can get the
results which only depends on the number of mini-batches
rather than the chunks. In Appendix F we derive the con-
vergence of RI-SGD based on Assumption 5, where the
convergence is stated in terms of gradient dissimilarity be-
tween different shards of data.

4.4. Robustness to node failure

While performing distributed optimization using iterative
methods such as distributed fully synchronous scheme,
worker nodes have to exchange their gradients. If at each
round of communication certain straggling workers have
delays (or failed) in their computational task, this can cause
huge delay in entire optimization process. One popular ap-
proach (Chen et al., 2016) to deal with straggler nodes is

to ignore them. Our single and multi-round approach can
outperform a strategy that ignores stragglers by tuning the
degree of redundancy. To see this, let us assume the number
of failures is s. If we ignore failures in algorithm proposed
in (Wang & Joshi, 2018), the convergence error upper bound

2| F(x)—F~ LC2

becomes £(7, ) £ [ e ] + np_f +n*L2C3(T—1)
Now, if we consider the convergence error of RI-SGD(7),
we can see that it introduces the additional parameter ~y, and
ignoring the stragglers in this algorithm results in conver-

gence error

2[F(xM)) — F*
Errsep(T, 8,7) = [(771)’] + nLCQZ(PVj
T
O =DP§~gm Wp=stD) 202
s T; (p—8)2 n 2 ( )

where G(*) = PRy G;. Then, by proper choice of y = 7,
we can satisfy (7, s) > Errsap (T, S, Ys), which indicates
that taking advantage of the data redundancy, RI-SGD(7) is
resilient against failures.

4.5. Redundancy and intra-node gradient diversity

As we discussed in the convergence of RI-SGD, by inducing
redundancy among workers, we can effectively reduce the
variance in local updates and reduce the number of commu-
nication rounds and yet enjoying faster convergence. We
can also investigate the effectiveness of redundancy infusion
from gradient diversity perspective introduced in (Yin et al.,
2018). In Appendix E, we mathematically demonstrate
the intimate connection between redundancy and gradient
diversity and show that under mild assumptions, infusing
redundancy increases the intra-node gradient diversity— the
effective quantity for the mini-batch size used for local up-
dates at each worker node. A direct implication is that the
effective size of mini-batch can be increased without any
saturation or decay in performance.

5. Experiments

In this section, we experimentally evaluate the performance
of our RI-SGD algorithm with parameters redundancy p =
vy—1/p= q% and step size 7. We compare our algorithm
with fully synchronous SGD (SyncSGD), (7 = 1, u = 0),
PR-SGD (p = 0, variable 7) and cooperative SGD (Wang
& Joshi, 2018), where they consider each node has access to
the whole dataset for mini-batch sampling. We first describe
the setup in which we conduct the experiment.

5.1. Experimental setup

We conduct different types of experiments on clusters with
4 and 8 GPUs (Tesla V100 and GeForce GTX 1080 Ti), to
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Figure 2. Training error and test accuracy for CIFAR10 and CIFAR100 on ResNet using syncSGD and RI-SGD with p € {0.0,0.1,0.25}
and 7 = 50 for both datasets. Note that RI-SGD(;x = 0) is PR-SGD. Top row is for CIFAR10 dataset, and bottom row is for CIFAR100

dataset.

test the performance of the algorithm. We use CIFAR10
and CIFAR100?, as well as ImageNet® datasets, and choose
ResNet (He et al., 2016) as the base model for training. We
use Tensorflow (Abadi et al., 2016) to develop RI-SGD and
Sync-SGD in the distributed environment. In each experi-
ment, the batch size for original Sync-SGD is 128 (unless
otherwise stated), and we will do the training on 45K and
80K iterations for CIFAR10 and CIFAR100 datasets, re-
spectively. For ImageNet dataset, we do the training on both
4 and 8 GPUs, with batch size of the Sync-SGD set to 128
and 256, and for 1.1M and 550K iterations, respectively.
We present the results of experiments on CIFAR datasets on
the next section, and you can find the results on ImageNet
dataset on Appendix A. All the experiments are based on
heterogeneous mini-batch samples introduced in Section D.
Hence, the redundancy value for each worker node is picked
from a normal distribution with the mean of the reported
redundancy value in the experiments (except for u = 0 or
no redundancy).

5.2. Experimental results

For RI-SGD we have two hyperparameters we can tune,
the redundancy p and number of local updates 7. One
exploration is to see the effect of redundancy alone without
any averaging step in the middle of training. This scenario
has been explained in Appendix A, and the results indicate

2 Available at
~kriz/cifar.html

3 Available at https://www.kaggle.com/c/
imagenet-object-localization-challenge

https://www.cs.toronto.edu/

that redundancy can, indeed, improve the convergence rate
with much less time compared to SyncSGD. After that, we
should find the optimum number for local updates, 7. This
number introduces a trade-off in training, in which as it
goes up, the accuracy goes down, however the number of
communication rounds and hence the time for execution
reduces. Based on this experiment’s results in Appendix A,
it seems that in CIFAR datasets, this number should be
around 7 = 50 to have the optimal trade-off.

Now, in the main experiment, we will set 7 = 50 for
both datasets. We change the redundancy with values
w € {0.0,0.1,0.25,0.5} in order to see its effects on
the convergence. In our experiment we replicate data
chunks cyclically, however, in general we can follow
any replication strategy as long as the redundancy bud-
get is satisfied for all workers. For instance, in our
setup because we have 4 GPUS, in u = 0.25, the
nodes have {Dl, Dg}, {DQ, Dg}, {Dg, D4}, {D4, Dl} re-
spectively. For p = 0.1, the redundant part is obtained
as random sub-sampling, e.g., the first node has D; and a
random subset of D5 to ensure that ¢ = 0.1. As it is shown
in Figure 2, by increasing redundancy rate we get quite
close to the baseline SyncSGD in terms of convergence, in
an accelerated rate. We beat SyncSGD, not only in training,
but also in test accuracy. We reach almost the same accu-
racy level way sooner. Note that singificant improvements
in speed of training and testing occur even though RI-SGD
has higher computation cost, due to significantly lower time
spent in communication.
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Figure 3. Training CIFAR10 using ResNet44 with 7 = 50 for both
cases. Comparing the case, where each node has access to the
entire dataset versus RI-SGD with full redundancy. Redundancy
can lead to a better performance by introducing diversity in training
data input. Note that in this experiment, both runs have the batch
size of 512.

In the next experiment, we show that redundancy can be
beneficial in introducing gradient diversity (Yin et al., 2018)
in training. To that end, we compare RI-SGD with two
different extreme cases of distributed local SGD. These two
extreme cases are when each node has a full access to the
dataset and samples mini-batches from the entire dataset
(e.g. cooperative SGD (Wang & Joshi, 2018)) or each node
has only access to its chunk of the data for mini-batch sam-
pling (e.g. PR-SGD (Yu et al., 2018)). For the first one, we
compare it with RI-SGD with full redundancy, where each
node not only has access to its portion of data, but also can
get mini-batches from every other node’s data chunk. Note
that the main difference between the two schemes is the
nature of the sampling; in RI-SGD, each node’s data chunk
contributes to the mini-batch equally, while in cooperative
SGD we randomly sample mini-batches from the entire
dataset. In this systematic redundancy infusion regime of
RI-SGD using non-i.i.d. sampling, the chances of having
overlap in input data for different nodes are less than the
former case. In Figure 3, it is shown that RI-SGD with
full redundancy can outperform the simple model averaging
with every node having access to all data. To compare RI-
SGD with PR-SGD, which is basically RI-SGD with y = 0,
we choose mini-batch size to be 512 and then compare it
with RI-SGD(p = 0.25), with the same mini-batch size. As
it is depicted in Figure 4, redundancy can help to escape sat-
uration by introducing gradient diversity, hence, can achieve
a better performance.

—=— RI-SGD(u =0.25)
—=— PR-SGD

Error

20000 s0000 40000

Iterations

Test Accuracy

—=— RI-SGD(u = 0.25)
—=— PR-SGD

Iterations

Figure 4. Training CIFAR10 using ResNet44 with 7 = 50 for both
cases. Comparing PR-SGD with RI-SGD(p = 0.25). Redundancy
can lead to a better performance by introducing diversity using
redundancy in training data input and escape the saturation in
training. Note that in this experiment, both runs have the batch
size of 512.

6. Conclusion

In this paper, we advocate the use of data redundancy in
periodic model averaging techniques for distributed SGD.
Through a theoretical convergence proof, we show that re-
dundancy reduces residual error as compared with conven-
tional algorithms where there is no redundancy. Through
experimental results, we show that the redundancy, is well
worth the implied higher computation cost. The residual
error reduction leads to lower communication overheads
and therefore faster convergence. Furthermore, we also
demonstrate empirically that our redundancy infused ap-
proach has higher diversity, leading to superior algorithms
as compared to the previous ones where nodes can sample
from the complete data.

This work leaves some interesting directions as future work.
First, it would be interesting to investigate the significance
of redundancy in federated optimization to reduce sensitivity
of SGD to the variance in data. Furthermore, understanding
more effective replication schemes, e.g. sketching methods,
when data in different workers has some low-rank structure
is worthy of investigation.
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