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Abstract—Inspired by the random sequential adsorption (RSA)
process, we propose a new pilot assignment scheme for a dis-
tributed massive multiple-input-multiple-output (MIMO) system
with desirable structural properties. In particular, this scheme
ensures a minimum distance among co-pilot users to limit the
effect of pilot contamination. Leveraging the rich literature of
the RSA process, we analyze the statistics of the resulting co-
pilot user point process when the system has only one pilot.
Later, we extend the approach to obtain co-pilot user density for
the scenario with multiple pilots. One of our key results is an
accurate characterization of the probability of pilot assignment
to a typical user in the network. Further, in order to provide a
holistic overview of the performance of the proposed scheme, we
compare the average user spectral efficiency (SE) of the proposed
scheme with a baseline random pilot assignment scheme with no
minimum distance guarantees. Our results demonstrate that the
optimal distance threshold that maximizes the user SE for the
proposed scheme decreases as the user density increases.

Index Terms—Random sequential adsorption, distributed mas-
sive MIMO, pilot assignment.

I. INTRODUCTION

The concept of distributed implementation of multiple-
input-multiple-output (MIMO) technique has been actively
explored for more than a decade. Recent push towards network
densification has also made its practical implementation viable.
In a distributed MIMO network, a number of geographically
separated remote radio heads (RRHs) simultaneously serve
users in the network and are connected to a central base
band unit (BBU) that performs the complex task of signal
processing. In a dense network, the access points (or RRHs)
can be leveraged for distributed implementation resulting in
higher spectral efficiency (SE) through marcro-diversity and
elimination of frequent handovers as users move from one
access point to another. Apart from network densifiction,
massive MIMO (mMIMO) is being considered as one of the
major enablers of upcoming 5G wireless networks. Hence, it is
natural to study the performance of a wireless network where a
large number of RRHs with multiple antennas simultaneously
serve multiple users. Not surprisingly, such studies have been
conducted over the years under different pseudonyms such
as network MIMO, coordinated multi-point [1], cloud radio
access network (RAN) [2], fog-mMIMO [3], and cell-free
mMIMO [4], [5]. Successful implementation of any MIMO
technique requires accurate channel state information (CSI)
at the transmitter (or receiver). Similar to cellular mMIMO
networks, the CSI acquisition in distributed mMIMO systems
needs to be done through uplink pilot transmission due to
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its scalability. However, under the assumptions of indepen-
dent Rayleigh fading and sub-optimal linear precoders, pilot
contamination becomes the only capacity limiting factor of
both cellular and cell-free mMIMO (a form of distributed
mMIMO) networks [5]-[7]. Hence, judicious pilot assignment
is essential to reduce the effect of pilot contamination.

From the perspective of distributed mMIMO, different ap-
proaches to allocate pilots can be categorized into centralized
and distributed schemes. In [5], a distributed random pilot
allocation and a centralized greedy pilot allocation scheme
is presented. In [3] and [8], a distributed random access
type pilot assignment scheme is proposed, where a user is
not served if its CSI cannot be estimated reliably. In [9],
a centralized pilot sequence design is proposed where the
users in the neighborhood of an RRH use orthogonal pilot
sequences. A centralized structured pilot allocation scheme
leveraging k-means clustering algorithm is presented in [10].
In [11], a dynamic pilot allocation approach is presented
where two users are assigned the same pilot sequence if the
signal to interference and noise ratios (SINRs) of both the
users are above a certain threshold. Most of these works
rely on the common underlying principle that the same pilot
can be assigned to the users that have sufficient geographical
separation. This principle also motivates the pilot assignment
scheme of this work. Our contributions are summarized next.

We present a random pilot assignment algorithm with a
minimum distance constraint between co-pilot users to reduce
the effect of pilot contamination. Our main contribution lies
in the modeling and subsequent analysis of the resulting point
process of co-pilot users by random sequential adsorption
(RSA) process, which has been traditionally used across dif-
ferent scientific disciplines such as condensed matter physics,
surface chemistry, and cellular biology, to name a few, to study
the adsorption of large-particles such as colloids, proteins, and
bacteria on a surface. To be specific, we accurately characterize
the density of co-pilot users for a given total user density and a
minimum distance threshold. This result is used to analyze the
probability of pilot assignment to a typical user in the network.
Further, we compare the performance of the proposed pilot
assignment algorithm with respect to a baseline random pilot
allocation scheme in terms of the average user SE. Our results
highlight that for the proposed scheme, the optimal distance to
maximize the user SE decreases as the user density increases.

II. SYSTEM MODEL
Network model: We limit our attention to the downlink
(DL) of a distributed mMIMO system. The locations of the
RRHs form a Poisson point process (PPP) ®, of density
Ar. Similarly, the user point process ¥, is also modeled as



an independent PPP of density A,. Each RRH is equipped
with N antennas and each user with a single antenna. The
RRHs are connected to a BBU and collectively serve users
in the network. The distance between a user at u; € ¥,, and
an RRH at r,, € ®, is denoted by d,,;. In line with the
mMIMO literature, where the number of antennas is an order
of magnitude more than the number of users, we consider that
the antenna density VA, > \,. Further, invoking stationarity
of this setup, we analyze the system performance for the
typical user u,, which is located at the origin o.

Channel estimation: Let gmi = v/ Bmihmi be the channel
gain between the m-th RRH and the k-th user, where [,
captures the large-scale channel gain and h,,; ~ CA(0,Iy)
captures the small-scale channel fluctuations. We consider that
the large-scale channel gain (,,; is only due to the distance
dependent path loss, i.e. B = [(d,n1) ", where [(+) is a non-
decreasing path loss function. While the mathematical analysis
presented in this paper is agnostic to the choice of [(-), we will
need to choose a specific [(-) for the numerical results, which
is presented in Section V.

In order to obtain the channel estimates, each user uses
a pilot from a set of P orthogonal pilot sequences P =
[P1,P2,---,pp)t, where p; denotes the i-th sequence. The
length of each pilot is 7, symbol durations, which is less
than the coherence interval. Further, the transmit signal-to-
noise ratio (SNR) of each symbol in a pilot is p,. Since we
assume that the P sequences are orthogonal to each other,
P < 71, and pfp; = 7pp,1(i = j), where 1(-) denotes the
indicator function. Due to finite number of pilots, the pilot set
needs to be reused across the network. Let the pilot used by
the k-th user be p(k). During the pilot transmission phase, the
received signal matrix at the m-th RRH is

rrL = Z gmkp
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where W, is an additive white Gaussian noise matrix and its
elements follow CA'(0,1). At the m-th RRH, the least-square
estimate of the channel of the users using the [-th sequence is

Ymi = YmbP] =Tppp P Emk+ Wmpj, (€CV*)
uy€dy,

where ®,; is the set of locations of users that use
the [-th sequence. Assuming u, € ®,;, the minimum-
mean-squared-error (MMSE) estimate of the channel of
the typical user at the m-th RRH is given as g, =
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In this case, the error vector €,k = Zmk — Emk 1S uncorrelated
to the estimated vector. Now the estimate and the error vectors
are distributed as follows [4]:

gmo ~CN (07 ’YmoIN) y 8mo ~ CN (07 (Bmo - Vmo) IN) y
2
where Ymo = 71 =N ToPpl ’;;’pp 5. From the expression of

Ymo, it is clear that tfle quahty of channel estimates depend
on the locations of the co-pilot users in ®,;.

DL user SINR: Using the channel estimates, each RRH
precodes the data for all the users in the network. In this work,
we consider conjugate beamforming precoding scheme. Since
the m-th RRH cannot distinguish among the channels of the
users that use the [-th pilot, it uses the normalized direction
of y,,; for beamforming, i.e. the precoding vector used to
transmit data to the users that use [-th pilot is given as

ng/ V ||gmo

Now the data transmitted by the m-th RRH is given as
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where 7, is the transmission power used by the m-th RRH
for the k-th user. For each RRH, we assume the following
power constraint: E[||x,,|/?] < pg. The symbol received at o
(that uses the [-th pilot) is given as
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where @/, = ®,; \ u,, the second term in the summation
corresponds to the desired term, the third term corresponds to
multi-user interference due to non-copilot users, and the fourth
term is the source of interference due to pilot contamination.

ITI. SYSTEM PERFORMANCE ANALYSIS
A. DL power control and SINR of an arbitrary user

Since our objective is to propose a scheme to reduce pilot
contamination, we focus on the operational regime where pilot
contamination dominates rest of the interference terms. In the
following lemma, we present the SINR expression of a typical
user under the assumption that the RRHs are equipped with
N — 00 antennas.

Lemma 1. Conditioned on ®, and ®,, the asymptotic SINR
of a typical user is given as

(Cr,.co, \/TmoTmo)
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Proof: The estimated symbol at the typical user can
be obtained as ¢, = 7, / \/ . Now, usmg the law of large
gnlognlo grnognzo
b T—)VO,T%Oand
W — 0. Hence, the limiting SINR coverges to (2). M

In this work, we consider a distributed power control
scheme [10] where the transmission power used by the the
m-th RRH for the typical user at o is given as
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such that 3° g mk = 1/P. We assume that the RRHs
allocate equal power 1/P to serve each set of co-pilot users.
Note that since the proposed pilot assignment scheme (that
we discuss in the following section) solely depends on the
user locations, it can be used in conjunction with other power
allocation schemes such as max-min power control [5]. Now,
we define the following metrics for the performance analysis:

1. Pilot assignment probability of a typical user: Let {Z, =
1} be the event that the user at o is assigned a pilot. Then the
aforementioned probability is given as

M, =P[Z, = 1] = E[1(Z, = 1)], 3)

where the expectation is taken over ®,. and ®,,. In Section IV,
we present our proposed approach to characterize the above
quantity. This quantity can be used to get an estimate of the
number of pilots necessary to satisfy target pilot assignment
probability for a given user density.

2. Average user spectral efficiency: It is defined as

SE, =E [Z, log, (1 + SINR,)]
=E [logy(1 + SINR,)|Z, = 1] P[Z, =1],  (4)

where the expectation is taken over ®,., @,,.

IV. ESTIMATION OF PILOT ASSIGNMENT PROBABILITY
A. The pilot assignment algorithm

Our goal is to select the sets of co-pilot users among all the
users in the network such that a minimum distance R;,, is
maintained between two co-pilot users. This can be achieved
by dependent selection of the users from the original user
point process ¥, as outlined in Algorithm 1. The algorithm
assigns a random mark ¢, which is uniformly distributed in
[0, 1], to each point uy, € U,,. Let Bg,, (ux) be defined as the
contention domain of the point at uy. For pilot assignment,
the algorithm considers each user in increasing order of their
marks, i.e. the lowest mark is considered first. From the
available set of pilots, a pilot is randomly assigned to a user
at x, where the set of available pilots are those which have
not been assigned to the users in Bg,, (ux). Note that to
implement this algorithm, the BBU requires only the location
information of the users, which does not require any additional
signaling overhead as this information is typically present at
a centralized node in the network such as the BBU.

B. Analysis of the pilot assignment probability

Let &, be the set of users that are assigned a pilot by
Algorithm 1, ie. @, = Uff:l(bup. Let ¢, be the mark
associated with the typical user. Now, the user at o is assigned
a pilot if Ng, (B, (0)) < P — 1, where Ng,(Bg,,(0))
denotes the number of points in the contention domain of o.
This is ensured by the following two events:

1) &;: there are at most P —1 points in Bg,,, (o) N¥,, that

have marks less than ¢,,

2) &,: there are more than P — 1 points in Bg,, (0) N ¥,

that have marks less than ¢,. However, some of these
points are not assigned a pilot as their contention domain

Input: User locations ¥,,, the set of pilots P, inhibition radius
Rinh
Result: Pilot assignment table T
Initialization: 7 = ), a random mark ¢; ~ U(0, 1) for each
Let \ifu be the set of users in the increasing order of marks;
for User u € ¥, do
Set: P’ = P;
while User u is not assigned a pilot do
if P/ == () then
‘ No pilot can be assigned: 7 = T U 0;

Break
else

Select a pilot sequence pj randomly from the set
P’

end

if No other users in Br,,, (u) are using py then
Assign the pilot: 7 =T U ps;
Break;

else

Remove py from list of potential pilots:

P =P\ pr;

end

end
end
Algorithm 1: Proposed algorithm for pilot assignment in a

distributed mMIMO systems.

has more than P points with marks smaller than their
respective marks.

While obtaining the probability of &; is straightforward,
characterizing & is highly non-trivial even for P = 1. To
characterize the probability of pilot assignment for a typical
user, consider a finite observation window Bg, (o) C R2?,
where R; > Rim. Let N, = ¥, (Bg,(0)) be the total
number of users and Ny = &, (Bg,(0)) be the number of
users that are assigned a pilot sequence. Note that for a given
N,, Ny is a random variable as it depends on the realization of
U, in Bg, (o) as well as random marks associated with these
points. As per the events described above, the probability of
pilot assignment to a typical user is given as P[Z, = 1] =

P [N, < P]+En, [E[Ns|N,N, '|N, > P|P[N, > P]
~P [N, < P] + E[N,E[N, '|N, > PIP[N, > P].  (5)

Note that in the above expression, we have provided an im-
plicit way of characterizing &, i.e. for a given N, E[N;|N,]
is the average number of users that are assigned a pilot. Then
the probability that any user out of N, is assigned a pilot is
E[Ng|N,]/N,. The final expression requires averaging over
N,. The last step in (5) is an approximation as instead of
En, [E[Ns|Nu]|N, > P], we determine E[N;] by replacing
N, = FR?)\U, which is its expected value. Since N, is
Poisson distributed with mean A\, 7 R2,
AmR2 — 2P~ Poi(A,mR2, n)

n=0

E [N !N, > P] = , (6)
[N ) 1— P Poi(\,mR2,n)

. _ 2 () R2 n
where Poi(A\,7RZ,n) = e /\”Rs%. However, the

estimation of E[N,] for a given ), is not trivial even for
P = 1. Note that for P = 1, the above formulation has
been used to model CSMA-CA network. However, due to
the intractability of £, Matérn hardcore process of type-II



Fig. 1: Realizations of co-pilot user locations using Algorithm 1. Parameters: Rinn = 200, A\, = 2 X 106 (left), Ay = 10—3 (center, right). Left and
center figures represent realizations of co-pilot users for P = 1. Right figure represents a realization of co-pilot users for P = 2.

(MHPP-II) has been used for approximate characterization for
®,, [12]. Hence, one may be inclined to extend the MHPP-II
process for P > 2. However, one of the limitations of MHPP-
IT process is that it underestimates the number of points in
®,, [13]. Hence, the extension of MHPP-II model for P > 2
will not result in an accurate estimation. Next, we discuss
the exact point process that characterizes ®, and evaluate
the corresponding E [N,] for a given A,. We first present the
analysis for the special case of P = 1. Later, we extend the
approach to the general case of P > 2.

C. Pilot assignment probability for P = 1

The point process that overcomes the aforementioned lim-
itation of MHPP-II is the simple sequential inhibition (SSI)
process [13] or the RSA process [14]. Hence, for P = 1,
®, is an RSA point process. Traditionally, RSA process
has been used across different disciplines such as condensed
matter physics, surface chemistry, cellular biology to study the
adsorption of different substances such as colloids, proteins,
bacteria on a surface [14]. Next, we present a brief overview
of RSA process before analyzing pilot assignment probability.

1) Random sequential adsorption process: An RSA pro-
cess is defined as a stochastic space-time process, where
n-dimensional hard spheres sequentially arrive at random
locations in R"™ such that any arriving sphere cannot overlap
with already existing sphere. More formally, for 2D case, let
U be a homogeneous space-time point process on R? x R*.
The circles with radii Rin,/2 are arriving at a rate of Ay per
unit area per unit time. Let W(¢) be the point process on R?
when W is observed at an arbitrary time ¢. Observe that the
density of W(t) is A\gyt. At time ¢, an arriving point at x € R?
is retained if there are no other points within Bp, , (x). Let
©(t|¥) be the set of the retained points at time ¢. Clearly,
o(t1|P) C p(t2]P) for t; < to. Moreover, there exists a time
¢ € RT such that p(t;|¥) = o(t;|V) for t;,t; > ¢, i.e. no
more points can be added to the system. This is known as
the jamming limit. Observe that the random marks assigned
by Algorithm 1 can be thought of as the arrival times of the
points in ¥,,. The points that arrive early (have smaller marks)
are more likely to get an assignment.

Let ®(t) be the point process of the retained points at time
t and p(t) be the corresponding density. In order to obtain
the density of retained point process for a given density of
original point process, we need to observe the system at a

specific time. For example, if we want to obtain the density
of retained points for an original point density of 2Ay, then
we need to observe the system at ¢ = 2. Fig. 1 illustrates the
realizations of co-pilot users for different A\, and P. In the
left figure, the system does not reach the jamming limit due
to lower density of the original user point process W¥,. On
the other hand, the center figure (almost) reaches the jamming
limit and there cannot be more co-pilot users in the system.
Notice the regular, almost grid-type, realization of points. The
right figure illustrates the jamming state for P = 2. In the
following lemma, we present the density of ®(t).

Lemma 2. The density p(t) of the point process ®(t) is
obtained by solving the following differential equation [15]
with the initial condition p(0) = 0:

dp(t A
/A — lt + C’
¢(rp(t)) K
2
where Kk = % is the area covered by a circle, kp(t) is the
fraction of the area that is covered by the retained circles at
time t, ¢p(kp(t)) is the probability that a circle arriving at an

arbitrary location in R? is retained at time t, and C' is the
integration constant. The retention probability is given as [15,

Eq. 19] ¢(rp(t)) =
2 2Rim
1 —4nR2, p(t) + 40) / dnrAs(r)dr
0

2
p(t)?
3
3
where S5t = %w (V3m — Y R%,, As(r) is the area of
intersection of two circles of radius Rin, whose centres are
separated by distance 7.

(7

+

2}%:'mh
/ 2rr A3 (r)dr — S53 4+ O(p(t)*),  (8)
0

Proof: For the detailed proof of this lemma, please refer
to [15]. Due to space limitations, we just present the proof
sketch here. Note that xp(t) is the fraction of area covered by
the retained circles at time ¢. Now, the rate of change of the
fraction of the covered area with respect to time depends on
the number of arrivals Ay d¢ per unit area and the probability of
an arrival being retained, which is given by ¢ (kp(t)). Hence,

PO _ rus (ott) ©

The expression for ¢ (kp(t)) is derived in [15]. Solution of
the differential equation (9) gives us the density of ®(¢). W



Since the function (8) is difficult to work with, a fitting
function is analytically presented in [15] as ¢rrr(p(t)) =

(1 + byz(t) + boz(t)? + bsz(t))(1 — z(2)?), (10)

where z(t) = p(t)/p(oc0) and p(oo)x = 0.5474 is the fraction
of the area that is covered at the jamming limit as ¢ — co. The
coefficients b1, by and b3 are obtained by matching the order
of p(t) in equations (8) and (10). Now the expression for p(t)
is obtained by solving the differential equation (7). While the
closed form solution of the equation is difficult, the problem
can be efficiently solved using standard numerical softwares.
Now, with the help of Lemma 2, we present pilot assignment
probability to a user for P = 1.

Lemma 3. When the system has one pilot, i.e. P = 1, the
probability that typical user is assigned a pilot is given as
M, =PI, =1 =

(1= e ™) (p()TR)E [Ny Ny = 1] — 7™ h,

where p(1) is determined
E [N1;1|Nu > 1] using (6).

using Lemma 2 and

Proof: Since the density of user process U, is A\, users
per unit area, as per the RSA process definition, we can
construct an equivalent space-time process where the arrivals
occur at A\, users per unit area per unit time. Now, to obtain the
density of ®,,, we observe this space-time system at time ¢ = 1
time unit. Hence, the density of ®,, is p(1). Final expression
is obtained by replacing E[N,] = mR2p(1) in (5). ]

D. Pilot assignment probability for P > 2

For the general case of P > 2, consider that
D1, Pyo, ..., P,p contain the locations of the users that
are assigned the pilots p1,p2,...,pp, respectively, by Al-
gorithm 1. Since Algorithm 1 has no preference regarding the
pilots, the densities of ®,1, ®y2,...,P,p are the same. Let
A, be this density. In order to determine g, modifications
in Lemma 2 are necessary. To be specific, for (8), the knowl-
edge of virial coefficients for a mixture of non-interacting hard
spheres, and subsequently derivation of S3? is necessary [15].
Since the above steps appear extremely difficult for this case,
we provide an approximate yet accurate way to estimate the
pilot assignment probability for P > 2.

Input: User locations ¥,,, the set of pilots P, inhibition radius
Rim;
Result: Pilot assignment table 7
Initialization: W), = U,,, T = {J;
for Each pilot pr, € P do
for Each user u € ¥, do
if No other users in Br,,, (1) are using py, then
Assign the pilot: 7 =T U ps;
Remove u from list of users: ¥;, = ¥y, \ u;
end
end
end
Algorithm 2: The regenerative algorithm for pilot assign-

ment.

First, we present the regenerative pilot assignment algorithm
(Algorithm 2) that is essential for our approximate analysis.

Different from Algorithm 1, in Algorithm 2, the pilots are
assigned to users sequentially, i.e. the second pilot sequence
is considered after the jamming limit of the first pilot has been
reached, the third pilot sequence is considered after jamming
limit of the second pilot sequence is reached, and so on. Recall
that at the jamming limit, no additional co-pilot user can be
added to the system. In order to proceed with our analysis, we
make the following assumption:

Assumption 1. The total number of pilot reuses required in
Br, (0) to obtain a target pilot assignment probability is the
same for both Algorithms I and 2. In other words, the density
of users that are assigned a pilot is the same for both the
algorithms.

Let <i>u1, (i>u2, ..., ®,p contain the locations of the users
that are assigned pilots p1,p2,..., Pp, respectively, by Al-
gorithm 2. Let Az ,A; ....,A; , be the densities of
‘i)u1, <i>u2, ey i)u p, respectively. We approximate these den-
sities for Algorithm 2 sequentially using Lemma 2. First, the
density A\g = of the users that are assigned the pilot p; is
directly obtained from Lemma 2 where the initial density of
the process is A,. Now, to obtain the density Ag  ~ of the
users that are assigned the pilot p,, we approximate the initial
density of users as A, — Az . Also note that the points in
v, \ <i>u1 do not form a PPP. However, for simplicity we
approximate U, \ ®,1 as a PPP. Similarly, to obtain A
we approximate U, \ {&)ul U <f>u2} as a PPP of density
Au—Ag,  —Ap,, and use Lemma 2. The same approximation
is made to get the rest of the densities. In the next section, we
will demonstrate that these approximations do not compromise
the accuracy of our results. As per the assumption, the average
density of users that are assigned a pilot for both the algorithms
are approximately the same. Hence, we write

P
Z As., = Pho,,. (11)
=1

In the next lemma, we present the pilot assignment probability
for the general case of P > 1.

Lemma 4. For a system with P > 1 pilots, the pilot assign-
ment probability for a typical user is given as P[Z, = 1] =

P[N, > P](PXe, mR)E[N,|N, > P] — P[N, < P),

uo

where \g,, is determined from (11) and Lemma 2, N, is
Poisson distributed with mean \,mwRZ, and E[N,'|N, > P]
using (6).

Proof: The proof follows on the similar lines as that of
Lemma 3. u
V. RESULTS

In this section, through Monte Carlo simulations, we vali-
date the theoretical analysis on pilot assignment probability
and assess the performance benefits of RSA-inspired pilot
allocation compared to random pilot allocation. For the simu-
lations, we consider a network of radius 4000 m. In order to
avoid edge effects, points within 3000 m are considered. We
use the following non-line-of-sight path loss function:

1(d) =161.04 — 7.1log;o (W) + 7.5log4(h)



—[24.37 — 3.7(h/hap)*] log o (hap)
+ [43.42 — 3.11og;( (hap)][logo(d) — 3]
+2010g,(f.) — (3.2[log o (11.75har)?] — 4.97),

where W = 20, hap = 40, har = 1.5, h =5, f. = 0.45 GHz.

In Fig. 2, the co-pilot user density as a function of number
of pilots is presented. As expected, the co-pilot user density
decreases with increasing number of pilots. In Fig. 3, we
present the pilot assignment probability as a function of
the number of pilots. This results is useful in determining
the number of pilots that is required to achieve a certain
assignment probability. Finally, in Fig. 4, we present the
average user SE as a function of R;,,. To generate this result,
we set the uplink pilot SNR p, = 80 dB, length of pilot
sequence 7, = P = 16. We observe that with increasing A,
the optimal R;,, that maximizes user SE becomes smaller.
Further, there exists a range of Ri,, that provides higher user
SE compared to random pilot assignment scheme. However,
this range shrinks as A, increases.
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Fig. 2: The co-pilot user density as a function of P. Markers and solid lines
represent simulations and theoretical results, respectively.
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Fig. 3: Probability of pilot assignment as a function P. Markers and solid
lines represent simulations and theoretical results, respectively.

VI. CONCLUSION

In this work, we propose a pilot assignment algorithm to
mitigate the effect of pilot contamination for a distributed
mMIMO system. Our algorithm is inspired by RSA process,
which has been used to study the adsorptions of hard particles
on a surface across different scientific fields. Using the well
developed analytical tools for the RSA process, we present
an accurate analytical expression for average pilot assignment
probability for a typical user in the network. Further, we also
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Fig. 4. Average user SE as a function of Rinn.

analyze the average user SE of the proposed scheme and
compare it with a baseline random pilot assignment scheme.
One promising extension of this work is the SINR analysis
using tools from stochastic geometry.
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