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ABSTRACT 

While bending strains result from any web being wound at a radius of curvature into 

a roll, these bending strains are largest for the thicker homogeneous webs and laminates. 

Many webs are viscoelastic on some time scale and bending stresses will lead to creep. 

When the web material is unwound and cut into discrete samples, a residual curvature 

will remain. This curvature, called curl, is the inability for the web to lie flat at no 

tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent 

web process. The goal of this research is to develop numerical and experimental tools by 

which process engineers can explore and mitigate machine direction curl in homogenous 

webs. Two numerical methods that allow the prediction of curl in a web are developed, a 

winding software based on bending recovery theory and the implementation of dynamic 

simulations of winding. One experimental method directly measures the curl online by 

taking advantage of the anticlastic bending resulting from the curl. All methods applied to 

a common isotropic LDPE web correlate well with each other and present an opportunity 

for process engineers to mitigate curl and its negative consequences at low time cost. 

INTRODUCTION 

The mission of winding models was to (1) predict the elastic residual stresses in rolls 

that resulted from winding [1,2] and (2) use these stresses to predict and mitigate damage 

of the web in the roll. Webs are often considered viscoelastic because these residual 

stresses can either decrease or increase markedly in the time and environment that wound 

rolls remain in storage [3,4]. Web damage resulting from winding and storage has been 

identified qualitatively by categorizing the damage into various types of wound roll 

defects. Smith [5] developed such an anthology of web defects. Each defect is described 

followed by known causes and remedies.  

Curl is defined as the inability of a web to lie flat when laid upon a flat surface. 

There is more than one type of web curl (Fig. 1). An example of machine direction (MD) 

curl is shown alongside the corresponding wound roll (Fig. 1(a)). This type of curl is the 
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focus of this publication. The cut sample of web in Figure 1(a) resided within the wound 

roll at a given radius. As a result of winding, residual stresses developed and the web was 

subjected to a combination of MD membrane and bending stresses. Since most webs are 

viscoelastic on some time scale, creep phenomena are expected as a result of these 

stresses. Creep will occur faster in time at the outside of a layer, where the combined 

bending and membrane stress is largest, than at the inside of the layer, where the 

combined MD stresses will be smallest. This difference in length change is the source of 

the observed MD curl.  

MD curl is often visible as cross machine direction (CMD) curl when unwinding. 

The web tension in the unwind zone will draw the MD curl flat but because of anticlastic 

bending [6] and Poisson’s ratio of the web material the web will curl in the CMD 

direction as shown in Figure 1(b). This CMD curl can deter web quality if the magnitude 

is sufficient to cause contact and potential scratching with elements in the web process 

line such as the air support drying bars shown in Figure 1(b). A more complex form of 

curl that has both MD and CMD components is shown in Figure 1(c). This form of curl is 

not attacked in this publication but demonstrates a case where MD and CMD residual 

stresses in the lower surface of the web are greater than those in the upper surface.  

Web laminates can also exhibit MD curl, with multiple sources of the defect. Usually 

laminates are strain-matched at the laminator to prevent or reduce MD curl. Laminated 

webs are often thick and the bending stresses that result from storage at a particular 

radius in a wound roll can make these viscoelastic webs susceptible to MD curl as a result 

of roll storage. 

 

Figure 1 – (a) an example of MD curl, (b) CMD curl and (c) complex curl. 

(a) (b) 

(c) 
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The patent literature provides some references to sources and mitigation of MD curl. 

Mitigation often involves reversed winding where the inside of a layer at the unwind 

becomes the outside of that layer at the rewind. Reverse winding is often done in 

conjunction with elevated storage temperatures in between reversed windings. [7-9].  

From a scientific perspective, when a flat viscoelastic film is forced to conform to a 

fixed radius of curvature for a period of time, the radius of curvature increases 

instantaneously to a finite value upon release and further recovers with time. Given 

enough time the web would completely recover and return to the flat state. This kind of 

experiment shows that the curl is a reversible phenomenon due to time-dependent effects 

in the viscoelastic material. 

Greener [10] developed and verified experimentally a theoretical expression to 

predict the curl. His long-term storage analysis then showed that the aging effect in 

polymer materials may significantly influence core-set curl in polymeric film, unless the 

storage time is relatively short compared with the age or life of the web [11]. Kidane [12] 

presented a 2D elastic curl model that was based on laminate theory in 2009.  

In order to solve and benchmark curl problems, measurement of the curl is 

necessary. Swanson developed a curl measurement instrument called the Kappa Gauge 

[13]. This curl gage supports beams of webs such that the deformation due to gravity is 

minimized. The instrument also allows measurement of curl in an up or down 

configuration. Averaging the results for both configurations further reduces the error due 

to gravity. The Kappa Gage has output units of curvature (1/m) which is the inverse of 

the radius of curvature. This is a destructive measurement method; web coupons must be 

cut such that that the curl curvature can be measured. 

 

Figure 2 – The Swanson Kappa Gage 

DEVELOPMENT 

Bending Recovery Theory 

The Greener model [10] predicts the values of bending recovery (BR). The MD curl 

that results from a winding process is similar to the bending recovery effect described by 

Greener. The bending recovery is the portion of an imposed bending deformation that is 

recovered with time by viscoelastic relaxation. Greener defined the bending recovery BR 

as: 

 𝐵𝑅 =
𝑅

𝜌
 {1} 

where R is the radius at which the web layer was wound into the roll and ρ is the radius 

of curvature of a web coupon free of web stress or tension cut from that same web layer 

immediately after unwinding. Many factors may influence the curl, including the radius 

the web layer was wound into the roll, the thickness of the web, the viscoelastic 

properties of the web, the length of storage time, the environmental conditions, the 

winding stresses, etc. If the web is flat after unwinding, then per expression {1} the BR 
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would be 0. If the BR is equal to unity, the web is totally viscoelastic and there is no 

elastic recovery. 

Greener developed a phenomenological model for the bending recovery in equation {2}, 

based on a simple extension of the classic bending theory for a linear viscoelastic 

material. 

 𝐵𝑅 = [1 −
𝐸𝑡(𝑡𝑟)+𝐸𝑐(𝑡𝑟)

2𝐸0
] {2} 

where 𝑡𝑟 is the storage time, 𝐸0 is the initial instantaneous modulus, that is the 

instantaneous modulus at time 0 when the web was deformed from the flat state to a 

radius R, Et(t) is the relaxation modulus in tension, and Ec(t) the relaxation modulus in 

compression. The modulus E0 should be measured in conditions where there is no 

viscoelastic stress relaxation. This may include testing below the glass transition 

temperature or at high strain rate. Greener measured E0 via uniaxial tensile tests at a 

strain rate of 100%/min at 21°C. The relaxation processes in the tensile and compressive 

zones of bending stress can be dissimilar, which makes the problem more complex [14]. 

For some polymers the compressive stresses relax substantially slower than the tensile 

stresses. In that case, 𝐸𝑡 and 𝐸𝑐 would take different values. 

The bending recovery can be related to time and viscoelastic properties rather than the 

tension or the radius of the web layer. Measurement of the compressive relaxation 

modulus is difficult in thin webs, and two extreme situations will be considered. 

When the compressive stresses relax substantially slower than tensile stresses, and 

thus 𝐸𝑐(𝑡𝑟) = 𝐸0:   

 𝐵𝑅1 =
1

2
[1 −

𝐸𝑡(𝑡𝑟)

𝐸0
] {3} 

When the stress relaxation of the stresses is independent of the sign of the stress, 

then 𝐸𝑐(𝑡𝑟) = 𝐸𝑡(𝑡𝑟): 

 𝐵𝑅2 = 1 −
𝐸𝑡(𝑡𝑟)

𝐸0
 {4} 

The simplest curl calculations for webs wound into rolls would result from ignoring the 

effects of winding membrane residual stresses entirely. The curl radius of a web after a 

period of time 𝑡𝑟 in storage in a wound roll would be calculated using either expression 

{3} or {4} and knowledge of the radius R at which the layer was wound into the roll. 

Extension of a Winding Code for Curl Analysis 

The developed code for predicting curl allows the use of any of the bending 

recoveries expressed by equations {2-4}. This code assumes that a viscoelastic web 

without any initial curl was wound into a roll and stored for a time period, perhaps at 

elevated temperature. The user desires to know what curl would be present after 

unwinding and relieving any web tension. A flow chart of the code is shown in Figure 3.  

In the code developed herein, the winding model has an embedded assumption that 

the winding occurs so quickly that the process is entirely elastic. The larger storage time, 

however, provides ample time for stress relaxation and creep due to the viscoelastic 

properties of the web. Depending on how the routine blocks are written, the mechanical 

viscoelastic behavior of the web is equivalently represented by relaxation or creep 

functions. The viscoelastic code, which follows that of Qualls [3,4], requires orthotropic 

creep function J(t).  
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Measurements of Jr(t) were conducted in stack tests in which the stack was only 

subject to compression stress (i.e. radial pressure in the wound roll). The stack would 

cease to be a continuum if attempts were made to subject it to tension normal to the web 

layers, because of layer separation. Thus, characterization of Jr(t) only in compression is 

reasonable. Measurements of J(t) were only conducted in tension. These tests were 

conducted by subjecting strips of web cut with their long axis in the MD to constant MD 

stress using dead weights. Qualls assumed the creep functions that couple radial stress to 

circumferential creep Jr(t) and circumferential stress to radial creep Jr(t) were 

negligible.  

Neither Qualls, nor any other developers of viscoelastic wound roll codes, 

considered how the sign of stress could affect the creep functions. The output of winding 

codes demonstrates the circumferential stresses are typically high near the core and the 

outside of the wound roll but in the interior of the roll these stresses can near zero or 

become negative. The degree to which they can become negative depends on the level of 

winding tension, the relative values of the elastic modulus in the circumferential direction 

E and the state-dependent radial modulus Er (Er=K2(P(r)+K1) where K1 and K2 are 

Pfeiffer’s constants [15] and P(r) is the radial pressure dependent on radius), the core 

stiffness and the core and final wound roll radius. If J(t) depends on the sign of the 

stress, this could be a shortcoming of current viscoelastic wound roll codes depending on 

how different Jt(t) and Jc(t)are.  

Finally, Greener’s curl analysis [11] requires the input of relaxation functions, both 

in compression and tension. Based on the viscoelastic characterization performed by the 

user, conversion of creep functions to relaxation functions or vice versa can be required 

to satisfy the needs of the different analysis codes. This conversion is the focus of the 

first block in the code after reading the input (Fig. 3). The conversion procedure from 

Baumgaertel and Winter [16] was implemented. 

A decision block then reviews whether the relaxation functions in tension and 

compression are equal.  

- If they are equal, then the membrane stresses calculated by the winding code and 

the viscoelastic boundary value code are not required and the decision block 

bypasses those codes and proceeds to computations of bending recovery directly 

using expression {4}.  

- If the relaxation modulus in tension and compression differ now the membrane 

stresses combined with the bending stresses will determine what portion of the 

thickness of the web will be subject to a tensile stress and what portion will be 

subject to a compressive stress. Now the winding and viscoelastic boundary 

value codes must be executed to obtain the membrane stresses through time and 

the bending recovery is determined using expression {2}. 

The validation example will assume the relaxation modulus in tension is equal to that in 

compression. To calculate the curl radius, equation {4} will be used: 

 ( )
( )2

0

1
t r

R R
R

BR E t

E

 = =
 

− 
 

 {5} 

where 𝜌(𝑟) is the recovered radius of curvature for a web stored at a radius R for a time 

period tr in a wound roll.  
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Figure 3 – Flow Chart of Curl Analysis Code 

Validation: A low-density polyethylene (LDPE) web 10.2 cm (4 in) wide and 0.508 

mm (0.02 in) thick was used to verify the curl analysis model. The instantaneous modulus 

E0 of LDPE is the inverse of the instantaneous compliance J0, E0 = 1/𝐽0=153 MPa, which 

was measured at a strain rate of 10%/min. Creep tests were performed using different 

dead weights (44.5, 66.7, 89 N) to exert different stress levels on web samples. The 

instantaneous strain, corresponding to the stress multiplied by the instantaneous modulus, 

was subtracted from the total measured strain leaving the creep strain through time. The 

creep strains were normalized by dividing by the applied stress levels. These normalized 

creep strains condensed to essentially one curve, from which it can be inferred that the 

LDPE film tested is a linear viscoelastic material. The creep function was then obtained 

by fitting a 2-term Prony series to the normalized creep data: 

 𝐽(𝑡) = 𝐽0 + ∑ 𝐽𝑖 (1 − exp(−𝑡
𝜏𝑖

⁄ ))2
𝑖=1  {6} 

where Ji are compliances and i are the retardation times. The LDPE elastic and 

viscoelastic properties are provided in Table 1. 

 

Input for Curl Analysis 

Winding Accretive Model 

Viscoelastic Boundary 

Value Model 

Radius of Curl Calculation (BR)

  

Results 

Is Ec(t)=Et(t)? yes 

no 

Viscoelastic Characterization 

Conversion 
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𝐽0(1/KPa) 𝐽1(1/KPa) 𝜏1(s) 𝐽2(1/KPa) 𝜏2(s) 

6.53E-06 2.90E-06 1913 1.16E-06 100,566 

Table 1 – Creep Function for LDPE film at 21°C 

Using expressions {4} and {5} requires knowledge of the relaxation function, which will 

be expressed as a Prony series for convenience: 

 𝐸(𝑡) = 𝐸0 − ∑ 𝐸𝑖 (1 − exp (−𝑡
𝜆𝑖

⁄ ))𝑛
𝑖=1  {7} 

where Ei are the relaxation moduli and i are the relaxation times. The creep and 

relaxation functions are related by the convolution: 

  ∫ 𝐸(𝑡)𝐽(𝑡 − 𝜁)𝑑𝜁 = 𝑡
𝑡

0
 {8} 

Analytically converting a creep function to the relaxation function is cumbersome. The 

conversion method [15] allows to convert discrete spectra efficiently. Applying that 

method, the relaxation times 𝜆𝑖 will be the roots equation {9}.  

 (∏ (𝑠𝜆𝑖 + 1)𝑚
𝑖=1 )(∏ (𝑠𝜏𝑖 + 1)𝑚

𝑖=1 ) = 

 (∑ 𝐽𝑖 ∏ (𝑠𝜆𝑗 + 1)𝑚
𝑗≠𝑖

𝑚
𝑖=0 )(∑ 𝐸𝑖 ∏ (𝑠𝜏𝑗 + 1)𝑚

𝑗≠𝑖
𝑚
𝑖=0 ) {9} 

The relaxation modulus terms Ei are expressed in equation {10}: 

 𝐸𝑖 = 𝐸0

∏ (
𝜏𝑖
𝜆𝑗

−1)𝑚
𝑗=1

∏ (
𝜏𝑖
𝜏𝑗

−1)𝑚
𝑗≠𝑖

 {10} 

The relaxation moduli and times for this LDPE film per equation {7} are shown in Table 

2: 

 

𝐸0(MPa) 𝐸1(MPa) 𝜆1(s) 𝐸2(MPa) 𝜆2(s) 

153.09 47.17 1,325 11.45 89,630 

Table 2 – Relaxation Modulus for LDPE film at 21°C 

The winding curl tests were conducted as follows: 

1. The LDPE web was conditioned by reversed winding to remove as much curl 

due to previous storage as possible. The web was unwound from a roll and the 

outside of the outer layer would become the inside of the layer that was wound 

on to a downstream winder. In between reversed windings, the roll was stored at 

65°C for 5 hours. Sample coupons of the inner and outermost layers were 

harvested, followed by measurements of MD curl using the Kappa Gage. When 

both MD curls were less than 2 units on the Kappa Gage (or a curl radius less 

than 0.5 m), the web was assumed to be essentially flat and ready for further 

testing. 
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2. The web was rewound at the designated winding tension and stored at room 

temperature (21°C) for 1 or 3 day(s). 

3. The curl of a sample coupon harvested from the outer layer was measured on the 

Kappa Gage.  

4. The roll was then unwound so that a web coupon adjacent to the core could be 

harvested. The curl of the innermost layer was measured. 

5. This procedure was repeated for various winding tensions. 

 

All the input parameters for the winding and storage simulations are provided in the 

Appendix. However, since we assume Et(tr)=Ec(tr), these simulations will have no impact 

on the curl obtained with the model. It is however informative to understand how the 

wound roll pressures and tangential stresses are changing through time. In this case, the 

winding tension was 40 N, which exerts a 775 KPa membrane stress on the web. In 

Figure 4, both the membrane stress and the combined membrane and bending stress on 

the inner and outer surface of the web can be reviewed. The majority of the stress the web 

witnesses is tensile through the thickness and the use of the tensile relaxation function in 

Table 2 is reasonable. The model curl in Kappa units was determined using the inverse of 

the curl radius in equation {5} (Fig. 5). 

 The comparison of the experimental and modeling results for the MD curl are 

presented in Table 3. The results from the model, which can be calculated directly from 

equation {5} in this case, agree with the measured test values quite well. The absolute 

error is less than the benchmark of 2 used to establish whether the web conditioned for 

these tests was essentially flat prior to winding and storage. To improve the agreement 

between equation {5} and tests further would first require better methods for 

preconditioning the web to ensure the entire web length was curl free prior to tests. 

 

Figure 4 – The pressure and tangential stress due to winding and storage of the LDPE 

web at a winding tension of 40 N, corresponding to case 1 in Table 3. 
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Figure 5 – The MD Curl due to winding and storage of the LDPE web in Table 3. 

Test T 

(N) 

Temp 

(°C) 

Core 

Radius 

(cm) 

Outer 

Radius 

(cm) 

Innermost Layer 

(Kappa 1/m) 

Outermost 

(Kappa 1/m) 

Measured Model |error| Measured Model |error| 

1  

40 

 

 

21 

4.45 12.1 6.5 7.7 1.2 2.5 2.9 0.4 

2 4.45 11.4 9.0 7.7 1.3 3.5 3.1 0.4 

3 4.45 11.0 8.5 7.7 0.8 2.5 3.2 0.7 

4 80 4.45 10.9 8.5 7.7 0.8 2.5 3.2 0.7 

5 22 4.45 10.9 9.0 7.7 1.3 2.5 3.2 0.7 

Table 3 – Comparison between Lab Tests and Model Results for LDPE (21°C) 

Curl Analysis using Dynamic Simulation Codes 

Another method for simulating MD curl due to viscoelastic creep is through dynamic 

simulations. Abaqus/CAE1is a deformation-based finite element code and uses the 

relaxation function to model the viscoelastic behavior of materials. Abaqus allows the 

user to input isotropic viscoelastic parameters in built-in constitutive models. However, 

Qualls [3,4] demonstrated the viscoelastic behavior of web in wound rolls was better 

modeled as orthotropic. Non-isotropic viscoelastic behavior can only be implemented 

through user-written subroutines that update the behavior after each time step in the 

dynamic simulation. These subroutines (UMAT for standard and VUMAT for explicit 

solutions) are required even for simulation of elastic winding due to the state-dependent 

radial modulus Er(P) previously discussed. Since we will only wind one layer, the 

material can be considered isotropic without affecting the solution. It also greatly 

simplifies the simulations. For more complex winding simulations, a dedicated 

anisotropic UMAT should be developed.  

 There are many sets of parameters that can define the viscoelastic behavior of a 

material in Abaqus. The user can provide shear test data (stress relaxation, creep, or 

sinusoidal oscillations), or the user can directly enter the shear moduli and time constants 

of a representative Prony series for the relaxation or creep function. In this study, the 

shear relaxation moduli and time constants, as well as the bulk modulus were the selected 

                                                           
1 Dassault Systems, Abaqus Simulia, Rising Sun Mills, 166 Valley St., Providence, RI 
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form of input. As shear tests are not easily conducted on thin webs, we performed tensile 

stress relaxation tests (Table 2) and converted the tensile relaxation function to a shear 

relaxation function. Assuming the measured relaxation function (Table 2) represents the 

isotropic behavior of the web, and the Poisson’s ratio  is time-independent, the shear 

relaxation modulus can be derived from equation {7}: 

 𝐺(𝑡) =
𝐸(𝑡)

2(1+𝜈)
=

𝐸0

2(1+𝜈)
− ∑

𝐸𝑖

2(1+𝜈)
(1 − 𝑒

(−
𝑡

𝜏𝑖
)
)𝑛

𝑖=1  {11} 

The shear relaxation modulus would have the following Prony series form: 

 𝐺(𝑡) = 𝐺0 − ∑ 𝐺𝑖 (1 − 𝑒
(−

𝑡

𝜏𝑖
)
)𝑛

𝑖=1  {12} 

The time-dependent terms Gi are then normalized by the instantaneous shear modulus G0: 

 𝑔𝑖 =
𝐺𝑖

𝐺0
=

𝐸𝑖
2(1+𝜈)

𝐸0
2(1+𝜈)

=
𝐸𝑖

𝐸0
 {13} 

The normalized bulk modulus K(t) = E(t)/[3(1-2)] Prony terms are similarly determined  

and become numerically equivalent to the normalized shear relaxation modulus terms: 

 𝑘𝑖 =
𝐾𝑖

𝐾0
=

𝐸𝑖
3(1−2𝜈)

𝐸0
3(1−2𝜈)

=
𝐸𝑖

𝐸0
 {14} 

The simulation parameters for the viscoelastic behavior of the LDPE are shown in Table 

4. 

Linear, Isotropic, Prony Series Definition 

i gi ki i (s) 

1 0.308 0.308 1,325 

2 0.075 0.075 89,630 

Table 4 – Viscoelastic parameters for the LDPE web, input in the simulation.  

 

Figure 6 – Dynamic Simulation Steps. (cw = clockwise, ccw = counterclockwise)  

The simulation wound the same LDPE film described in the validation section of the 

winding code (10.2 cm wide and 0.0508 cm thick). The core was defined as an analytical 

rigid surface with a 1.27 cm radius. The web was modeled with CPS4R solid elements 

and the Abaqus Standard solution procedure was used. The isotropic elastic part of the 

behavior of the web was characterized by a Young’s modulus of 153 MPa and a 

Poisson’s ratio of 0.3. The isotropic viscoelastic part was characterized by the parameters 

  

Step 1 – Pretension, 

core constrained  

5.5 MPa 5.5 MPa 

Step 2 – Winding 

core turns 1 rev ccw   

5.5 MPa 

Step 3 – Storage  

  5.5 MPa 

Step 4 – Unwinding 

core turns 1 rev cw  
Steps 5&6 – Release 

MD curl forms  
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in Table 4. The simulation is organized in six phases: pretension, winding, storage, 

unwinding, release, final curl (Figure 6 and Table 5). The duration of each step of this 

dynamic simulation critically controls the influence of the dynamic behavior on the 

simulation results. 

As the web is released in Step 5, dynamic effects lead to large movements of the 

web. During step 6, the web reaches a static equilibrium in a stress-free curled state, i.e. 

the final state. The curl radius is assessed in the last 3 seconds of the simulation using the 

deformed coordinates of the web. Figure 7 shows the final deformed state of the web that 

was stored for 1 day, unwound, and released. The deformed coordinates of each node 

were probed along the MD direction. Three consecutive nodes were used to define an arc 

and compute the arc radius. Inverting the radius of the arc yields the curvature of the 

center node. The bending recovery corresponds to the curvature divided by the radius of 

the core. 

 

Step Name Time  Step Description 

1 Pretension 1 (s) 5.5 MPa tension applied to the right surface of web 

2 Winding 1.25 (s) 1 lap of web wound on the core 

3 Storage 1 or 3 days 2 different storage times set up 

4 Unwinding 1.25 (s) Opposite rotation of the winding process 

5 Release  0.1 (s) Winding tension was released very quickly 

6 Final State 100 (s) Allow dynamic effects to decay and make estimate curl 

prior to creep decay 

Table 5 – Step Description of Curl Simulation 

 

Figure 7 –Web geometry after 1day of storage, unwinding, and tension release 

The results are presented in Figures 8 and 9 for one and three days of storage. The 

dynamic simulations report a significant bending recovery, which implies a significant 

curl in the web after 1 and 3 days of storage. Since the largest time constant is 89,630 s 

(1.04 days), this considerable curl was expected. Also shown are the bending recovery 

predicted by the bending recovery theory using BR1 (equation {3}) and BR2 (equation 

{4}). The prediction from BR2 (equation {4}) agrees best with the dynamic simulation 

results (Figs 8 and 9). As the constitutive model does not differentiate between tension 
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and compression and is fully isotropic, BR2, where 𝐸𝑐(𝑡𝑟) = 𝐸𝑡(𝑡𝑟),  logically 

corresponds to the behavior of the simulated web. 

The bending recovery did not evolve appreciably during 2 more days of storage. The 

largest time constant in the relaxation function being 89,630 seconds or 1.05 days, a large 

part of the time-dependent behavior is already relaxed after one day. Because larger time 

constants are not considered in this constitutive model, additional creep or changes in 

bending recovery would not be predicted by the simulations or the theory.  

In conclusion, we showed that simulations of curl within a wound roll are possible 

using commercial dynamic simulation codes like Abaqus. The code can also predict the 

decrease in curl with time after unwinding depending on the time constants in the Prony 

series of the relaxation function. Simulation of cases where 𝐸𝑐(𝑡𝑟) ≠ 𝐸𝑡(𝑡𝑟) would be 

possible as the properties of the finite elements can be partitioned through the thickness. 

The simulation would be computing the combined membrane and bending stresses, 

which can cause the neutral axis to shift resulting in the partition of the compressive and 

tensile stresses varying. 

  
Figure 8 – Bending recovery theory versus dynamic simulation results, 1 day of storage. 

 

Figure 9 – Bending recovery theory versus dynamic simulation results, 3 days of storage.  
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ONLINE MEASUREMENT OF MD CURL 

Theory of anticlastic bending 

From Euler beam theory, the bending moment M that would be required to make a 

web of thickness h=0.508 mm, width w=10.2 cm, modulus E=153 MPa and Poisson 

ratio = to conform to a cylindrical roller of radius r=4.45 cm would be: 

 M =
𝐸𝐼

r
= 3.82 N − mm {15} 

The parameters chosen here are identical to those of the web used previously in the 

validation of the theory and in the simulations. The radius of the core is identical as well. 

If this moment was applied to MD edges of a web coupon as a distributed moment 

(Mx=M/w), a shape more complex than that of a cylinder would be witnessed, a saddle 

shape (Figure 10). The coupon has a radius of curvature r in the MD but a curvature in 

the CMD is also witnessed. This is due to the web plate being a three-dimensional 

structure. The edge moments induced tensile bending strains on the outside surface of the 

web and compressive strains on the inside surface. The Poisson effect coupled these MD 

strains to CMD strains (MD=-CMD). This results in negative CMD strains on the outer 

surface of the web and positive CMD on the inner surface. The deformed shape of the 

web is well-known as an anticlastic surface [6]. 
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Figure 10 – The LDPE deforming to an anticlastic surface. 

The web can be forced to conform to a cylindrical surface only if there is a second 

bending moment, 𝑀𝑦 = 𝑀𝑥, applied on the CMD edges. The equation of the surface 

deformation w seen in Figure 10 is: 

 𝑤 = −
𝑀𝑥

2𝐷(1−𝜐2)
𝑥2 +

𝜐𝑀𝑥

2𝐷(1−𝜐2)
𝑦2 {16} 

where D is the plate bending stiffness (Eh3/(12(1- 2))) and x and y are MD and CMD 

coordinates whose origin are central to the web coupon in Figure 10. If the Poisson’s 

ratio vanished, there would be no variation in deformation in the CMD and the web 
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would take the deformed shape of a cylinder of radius r. Although the Poisson’s ratio is 

generally not zero, anticlastic deformations are not witnessed when a web is wound into a 

roll. This is due to the out-of-plane forces that the web experiences while winding. Web 

tension acts to create a contact pressure P beneath the outer layer and all layers beneath 

witness even higher pressures [1,2] that cause the web to conform to a cylindrical core 

and remain cylindrical during winding. The CMD strains due to anticlastic behavior 

remain in the web but, due to viscoelastic relaxation, they diminish through time. When 

coupons are harvested from a roll for curl measurement, the cylindrical shape in Figure 

1(a) is witnessed. 

If a roll of curled web material is unwound into a web line, the web tension would 

elastically pull out the MD curl of the web, however due to anticlastic bending a CMD 

curl will be induced. If this CMD curl could be measured and related to the MD curl in 

the wound roll then the MD curl could be assessed continuously during unwinding. This 

method is preferable to cutting specimens out since the curl is expected to change 

throughout a wound roll that has been in storage. Furthermore, if the CMD curl could be 

assessed with non-contact measurement then curl testing could be accomplished non-

destructively. If the web assumed an MD curl of radius 𝑅𝑀𝐷 while in storage and if the 

MD curl was drawn flat by tension when unwinding, theoretically the out-of-plane 

deformation in the CMD would be: 

 𝑤 =
𝜐𝑀𝑥

2𝐷(1−𝜐2)
=

𝜐

2 𝑅𝑀𝐷(1−𝜐2)
𝑦2 {17} 

The 2nd derivative of w is related to the CMD curl radius 𝑅𝐶𝑀𝐷: 

 
𝜕2𝑤

𝜕𝑦2 =
𝜐

𝑅𝑀𝐷(1−𝜐2)
=

1

𝑅𝐶𝑀𝐷
 {18} 

Thus, if the CMD radius of curvature in the free span 𝑅𝐶𝑀𝐷 can be measured, the MD 

radius of curl 𝑅𝑀𝐷 can be inferred: 

 𝑅𝑀𝐷 ≈ 𝑅𝐶𝑀𝐷
𝜐

1−𝜐2 {19} 

Web tension will not remove all the out-of-plane deformation w in the MD in the free 

span. This deformation will be affected by web constraints at rollers, web elasticity, web 

tension, and span length. Thus equation {19} is only an estimate of the MD curl.  

Several LDPE specimens, 0.508 mm thick, 10.2 cm wide and 45 cm long, were prepared. 

These specimens were wound and then stored at 65°C for 2 hours to remove the initial 

curl. The MD and CMD curvature was measured with a Kappa Gage (Table 6). 

 

Specimen 1 2 3 4 5 

MD Curl Kappa 2.50 2.00 1.25 4.25 1.0 

CMD Curl Kappa 3.00 1.00 3.75 5.25 1.0 

Table 6 – Initial MD and CMD Curl of Specimen 

This proves that both MD and the CMD curl can exist in a stress-free state. Some CMD 

curl can exist independently from the MD curl and be unrelated to anticlastic bending. 

Initial CMD unrelated to anticlastic bending could affect the accuracy of an online 

measurement system based on the correspondence between MD and CMD curl. 
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Characterizing the Relationship between MD and CMD Curl 

The out-of-plane web displacement was measured online using a Keyence2 LK031 

laser displacement sensors. The sensors are mounted 30 mm (1.2 in) away from the 

undeformed web plane (Figure 11). The measuring range is ± 5 mm (+0.2 in). One sensor 

is targeted at the CMD center of the web while the other two are targeted symmetrically 

at 3.8 cm (1.5 in) away. The length of vertical test span is 45 cm (18 in). The CMD curl 

radius was inferred from the measured displacement. The relationship between MD and 

CMD curl was characterized with the following procedure: 

(1) 5 LDPE specimens of 5 m (16.4 ft) in length were prepared. Their MD curl 

levels was measured off-line in a stress-free state using the Kappa Gage. 

(2) Each specimen was then transported under tension through the test span, shown 

in Figure 10. 

(3) These samples were short and the winding and unwinding were manually 

assisted in order to attain the target web tension as quickly as possible (13.3N, 

26.7N, 40.0N). 

(4) The 3 averaged signals for out-of-plane deformation measured at the 3 CMD 

locations (-3.8, 0.0, 3.8 cm) were averaged for the length of the web and used to 

define an arc from which the CMD curl radius was inferred. 

(5) Every test was repeated at least 3 times on a web specimen. Finally, a 

relationship between initial MD curls (no tension) and CMD curl (online under 

tension) is obtained. 

 

Figure 11 – On-line measurement of CMD Curl 

                                                           
2 Keyence Corporation of America, 500 Park Blvd., Suite 200, Itasca, IL 60143, USA 

Keyence 

sensors 
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Figure 12 – Relationship between MD Curl and Measured CMD Curl 

The experimental results (Fig. 12) demonstrate a linear relationship between MD and 

CMD curl, as the theory predicted (equation {19}). The data further demonstrates a 

dependency of the MD-CMD curl linear relationship on web tension whereas equation 

{19} depended only on Poisson’s ratio. For this web and test span, a regression curve can 

be developed to infer the MD curl in a stress-free web state from the measured CMD curl 

in the web under tension. The linear regression is: 

 𝑀𝐷𝑐𝑢𝑟𝑙 = [−0.0390 𝑇 + 2.3787]𝐶𝑀𝐷𝑐𝑢𝑟𝑙 +  [0.0022 𝑇 − 0.2420]       {20} 

where the MD and CMD curls are in meters and T is the web tension in Newtons. This 

regression curve is compared with experimental data for the 3 tension levels (Figure 12). 

The agreement with the experimental data is good. However, the regression curve 

developed herein is applicable to a unique test span and web material. Such a regression 

curve could also be developed using a dynamic simulation.  

COMPARISON OF ONLINE MEASUREMENT AND WINDER SOFTWARE 

CURL ANALYSIS  

In the previously performed validation tests, the MD curl was only measured at the 

innermost and outermost layers using the Kappa Gage. The standard adopted for wound 

roll preparation for curl testing was that the initial Kappa measurement should be less 

than 2 after reversed windings with intermediate storage. The online measurement 

method was used to explore this initial MD curl, previously considered negligible.  An 

identical LDPE was used. The core radius was 4.45 cm and the outer radius of the wound 

rolls was 8.9 cm. 
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Figure 13 – Online MD Curl after Removing Initial Curl 

 

Figure 14 – Online MD Curl after 1Day Storage (Kappa Unit) 

After several reversed windings with intermediate storage, the online measurement 

in Figure 13 shows the majority of the wound roll has initial curl less than 2 Kappa units. 

The roll was then stored one day at room temperature (21oC) and the online measurement 

was conducted again. The MD curl radius as inferred from online measurement as a 

function of radial storage location in the wound roll is shown in Kappa units in Figure 14. 

The radius of MD curl inferred from online measurement and the storage location in the 

wound roll for the layer(s) that contributed to those measurements is shown for the same 

roll in Figure 15. Charts of bending recovery versus radial storage location could be 

developed using this data. 
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Figure 15 – Online MD Curl after 1Day Storage 

Earlier in the validation effort for the MD curl software, specimens of web were cut 

from the innermost and outermost layer to directly measure the MD curl using the Kappa 

Gauge. Those results compared very well with the online measurements in Table 7. 

 

 
Kappa Gage MD Curl 

Measurement 

Online MD Curl 

Measurement 

Innermost Layer 8.0 Kappa 7.7 Kappa 

Outermost layer 3.5 Kappa 3.8 Kappa 

Table 7 – Comparison of Kappa Gage and Online MD Curl Measurement 

 

Figure 16 – Comparison between Online Measurement and winding software results. 

A comparison between the online measurement and the winding software results is 

shown in Figure 16. For the outermost layer and innermost layer, the results compare 

well. The error is greater for the interior of the wound roll. While it is possible that 

dissimilar relaxation 𝐸𝑐(𝑡𝑟) ≠ 𝐸𝑡(𝑡𝑟) may cause this error in the interior region, the 
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compressive relaxation modulus was not characterized, and this error due to this 

simplification cannot be estimated. Friction will affect slippage and the location of the 

neutral axis and hence the portions of the web that experience tension and compressive 

stress. This could further amplify the effects of dissimilar relaxation. 

CONCLUSIONS 

Methods were explored to predict MD curl in wound rolls due to web viscoelasticity. 

The developed methods included a winding software, dynamic simulations, and an online 

direct measurement. The analysis methods and the online measurement method all 

demonstrated the ability to predict and/or measure the MD curl defect. The curl in an 

anisotropic web and the effect of dissimilarities between tensile and compressive 

relaxation functions remain the subject of future work. The predictive methods could 

potentially be used to limit storage times and temperatures in order to mitigate MD curl. 

The online measurement method is useful for quantifying MD curl in webs stored in 

wound rolls for indefinite periods of time or for cases where reversed windings and 

intermediate storage is being used to eliminate MD curl. 
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APPENDIX 

Web thickness 0.0508 cm 

Width 10.16 cm 

CMD Modulus 153.06 MPa 

MD Modulus 153.06 MPa 

Table A1 – LDPE properties for winding software (21°C) 

 

Core OD 8.89 cm 

Core ID 7.62 cm 

Material Modulus 6.8E5 MPa 

Calculated Core Stiffness  1.1E5 MPa 

Poisson’s Ratio of Core 0.3 

Wound Roll OD (cm) 24.1(test1), 22.9(test2), 22.1(test3), 

21.8(tests4,5) 

Winding Tension (KPa) 775(tests1,2,3), 1550(test4), 430(test5) 

K1 (KPa) 6.9E-05 

K2 246.5 

Table A2 – Input parameters winding software 

 

MD Creep Terms 

J1 -2.9E-06 m/m/KPa 

J2 -1.16E-06 m/m/KPa 

1 1913 s 

2 100,566 s 

Radial Creep Terms 

J1 -1.29E-06 m/m/KPa 

J2 -1.35E-06 m/m/KPa 

1 696 s 

2 72,810 s 

Table A3 – Viscoelastic input for winding software (21°C) 

 


