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ABSTRACT 

For convenience, webs are stored in wound rolls. The available web length in a 

wound roll is one mark of roll quality and a concern for many who process and convert 

webs. Elastic winding models have proven very precise at estimating the number of 

layers, the web length wound into a roll, and the residual stresses in the roll at the time of 

winding. Wound rolls can spend long periods of time in storage, where controlling the 

environment is cost-prohibitive. As many webs are viscoelastic on some time scale, the 

residual stresses due to winding will result in creep during storage. The changes in web 

length due to creep result in web process errors and quality loss, including registration 

errors and camber webs for example. This publication will focus on the development of a 

viscoelastic winding model to predict these changes in web length due to creep in a 

wound roll. The viscoelastic model predicts the tangential stress relaxation and radial 

creep due to winding residual stresses from a fully viscoelastic orthotropic material 

behavior. A spunned-meltblown-spunned (SMS) web and a low-density polyethylene 

(LDPE) web are taken as examples of viscoelastic webs. Their viscoelastic properties are 

systematically characterized using creep experiments. The results of the model show 

good agreement with winding and storage experiments for both webs. Finally, webs often 

do not creep uniformly across their width. An example of this non-uniform creep will be 

explored.  

INTRODUCTION 

The precise diagnosis of defects in webs helps mitigate product and economic loss. 

Common sources of economic or quality loss in web processes are registration errors and 

length defects. Registration errors are the misalignment of discrete coatings on a web. 

They can occur when discrete coatings must be positioned accurately with respect to 

previous coatings. This is readily apparent when graphics or electronics are deposited at 

precise intervals prior to winding and roll storage. In a subsequent web process, the web 

is unwound and the total web length has changed nonuniformly down the web length. 

WEB LENGTH CREEP IN WOUND ROLLS 

By 

C. Mollamahmutoglu1, A. Gajjalla2, R. Markum2, A. Azoug2  

and J. K. Good2 
1Yildiz Technical University, TURKEY  

2Oklahoma State University, USA 



2 

Thus, the interval between graphics or electronics is no longer constant and results in 

registration conversion error. 

Length defects are characterized as varied forms of web length variation across the 

width. A web can have a baggy center as a result of having longer web length at the 

widthwise center [1]. Likewise, a web can have baggy edges due to the edges being 

longer than the center. Web camber results from a linear variation in length over the web 

width. These length defects cause process defects. A web that is not planar is difficult to 

coat uniformly. If the web tension is increased to achieve planarity, then the tension is not 

constant across the web width, which will result in a nonuniform coating thickness. Webs 

are formed in roll-to-roll machines that should be able to achieve very good length 

uniformity over the web width. The leading cause of length nonuniformity of webs is the 

nonuniformity of web thickness that is much more difficult to control in the formation 

process. The thickness nonuniformity combined with viscoelastic behavior and 

requirements that webs be wound and stored produces baggy center, baggy edge, baggy 

lane and web camber length defects [1]. 

The origin of both registration errors and length defects is a change in length in the 

web, most often due to viscoelastic phenomena in wound rolls (Figure 1). All webs are 

viscoelastic on some time scale and creep can be expected during the roll-to-roll process 

or while the wound roll is in storage. The creep phenomenon is the increase in strain 

resulting from a constant applied loading. In the case of webs, web tension and residual 

stresses in the wound roll subject the web to a significant load over long times, which 

leads to an increase in length in the direction of the loading. The phenomenon of stress 

relaxation is the decrease of the stress at constant strain. Although tangential and radial 

creep and stress relaxation phenomena are coupled, stress relaxation happens mainly in 

the tangential direction in a roll wound under tension (Figure 1). 

 

Figure 1 – Interaction of Radial Creep and Tangential Relaxation in a Roll 

Roll-to-roll manufacturing processes are time-dependent, although the process time 

is generally much shorter than the storage time. Web processes are often speed-limited, 

examples include discrete printings and coatings which require time to dry before contact 

with rollers. Coatings are formulated with solvents that can range from water to 

hydrocarbons, whose drying times vary widely. In addition, products made in roll-to-roll 

manufacturing processes often require the web to be unwound and rewound several times 

before the web is converted to a deliverable product. The web is stored in wound rolls 
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between steps of the process. For example, a product can require the deposition of one or 

more coatings involving solvents with various drying times, dictating a unique web 

velocity. This requires the web to be unwound and rewound multiple times while the web 

awaits unwinding in the next process. Creep in webs mainly occur over storage periods, 

which are significantly longer than the process periods. In addition, the storage 

temperature and humidity are not controlled because of the cost of controlling the 

environment in large warehouses. Both temperature and humidity may contribute to 

accelerate or decelerate the creep phenomenon.  

Finally, in narrow webs with little thickness variation, this deformation occurs 

uniformly across the web width. However, heterogeneities in the web and in applied load 

will lead to heterogeneous inelastic deformations. An efficient model needs to consider 

this heterogeneity and cannot be limited to a simple 1D representation of the problem. 

These deformation-related defects provide the stimulus for the development of 

deformation-based winding models that allow exploration of uniform and nonuniform 

creep resulting in web defects. Elastic winding models are now at a mature stage of 

development [2]. The one-dimensional (1D) winding models originally developed 

allowed the exploration of radial pressure and tangential stresses as functions of wound 

roll radius. As these models evolved, they became more accurate and useful for 

predicting stress-related defects [3,4]. Deformations within wound rolls were first 

approached with the objective of discerning how they affected the stresses [5-7]. Interest 

then developed with regard to how viscoelastic web material behavior affected the 

residual stresses due to winding [8-11]. Eventually, researchers addressed manufacturing 

imperfections in the webs. The non-uniformity of the web in thickness and length when 

entering a winding roll caused spatial variation in the winding residual stresses. This 

spawned the development of a series of two dimensional (2D) models that allowed radial 

pressure, as well as tangential, axial, and shear stresses to be explored as a function of 

radius and widthwise location in the wound roll [12-17].  

The model developed here will be a 2D axisymmetric winding model which 

allocates winding tension as a function of the variation of the wound roll radius across the 

roll width combined with viscoelastic material behavior during storage. 

MODEL DEVELOPMENT 

The analysis is divided into two phases: the winding phase (elastic) and the storage 

phase (viscoelastic). Experience has shown elastic winding models that account for the 

state-dependency of the radial modulus provide accurate results just after winding for a 

range of materials (newsprint, LDPE, polyester, tissue, nonwovens) [2,10,10]. Although 

all webs exhibit viscoelastic behavior on some time scale, this time scale is larger than 

the winding time scale. Thus, in the first phase of analysis, the time of winding is 

considered insignificant compared to the storage time and winding is reasonably modeled 

as elastic. The output of the first phase is the elastic residual stress due to winding. This 

elastic residual stress becomes the initial stress in the second phase. The second phase 

analyzes the viscoelastic creep that occurs during storage.  
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Figure 2 – Four node quadrilateral element 

Phase One: Elastic Winding Mechanics 

A 2D axisymmetric finite element elastic winding model is posed. 2D formulations 

are superior to previous 1D formulations as problems involving web thickness and length 

variation can be attacked. Even when web thickness or length does not vary appreciably, 

2D formulations allow the web material properties and winding conditions to dictate 

whether plane stress, plane strain or intermediate conditions exist without requiring 

further assumption. A four-node axisymmetric quadrilateral element is considered as 

shown in Figure 2. An incoming layer to the winder is modeled with these axisymmetric 

quadrilaterals in Cross Machine Direction (CMD) as shown in Figure 3. 

 

Figure 3– Web layer modelling with Quad elements in CMD 

The general stiffness and force elemental matrices for axisymmetric winding models 

have been developed in previous publications [15,16]. The element stiffness matrix and 

force vector are written as: 

 e e eK u F=  {1} 
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1 1

det[ ]T
e eK B M B J rd d 

− −

=    {2} 

 
1 1

1 1

( ) det[ ]T
e o eF B J rd d  

− −

=    {3} 

 The displacement vector ue is an 8 x 1 matrix with 2 degrees of freedom for each of 

the four nodes of the quadrilateral element. The strain-displacement matrix B relates the 

four axisymmetric strains  
T

r z rz     to the nodal deformations ue. (We point out 

to the reader that the notation employed is equivalent but not identical to the Voigt 

notation.)  The Jacobian J
 
is used to transform derivatives from the Cartesian coordinates 

 ,r z  to the natural coordinates  ,  . The stiffness tensor Me is the inverse of the 

compliance tensor Ce, which relates the elemental strains e to stresses e. For an 

orthotropic material, 
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where Ei is the Young modulus, Gi the shear modulus, and i the Poisson’s ratio in the 

direction i.  Importantly, the radial Young modulus Er has been found to be state-

dependent on the radial stress, i.e. Er = Er(r). A common form for Er, provided by 

Pfeiffer [18], was adopted here: 

 ( )2
2 1 1( )  and - 1rK

r r rE K K P K e
 = − + = = −  {5} 

where K1 and K2 are constants that are obtained by curve fitting pressure versus strain 

data acquired during web stack compression tests. In a wound roll the radial modulus Er 

of each element/layer is unique and will increase as layers are added to the roll during 

winding. Winding is inherently an accretive layer-wise process which made the 

employment of stepwise linearization natural. The addition of each layer is a solution 

step. During each solution of a step, the unique radial moduli of the elements are kept 

constant.  

The force vector development is based on a pre-stress concept presented in equation 

{3}. In {3}, (0)e is the initial stress for an element e in the MD or  direction due to web 

tensile stress which results from tension in the web incoming to the winder. Selecting an 

appropriate (0)e vector for an element in order to simulate the effect of thickness 

variation is discussed in [16,17] in detail. Expression {6} is a statement of the mechanical 

equilibrium of the outer lap. The left-hand side is the total web line force written in terms 

of the average web line stress Tw due to tension multiplied by the total cross-sectional 

area of the web. Here Aj is the area of the sector j (Figure 3). The right-hand side is the 

total web line force written in terms of the tangential strains due to the roll outer lap 

radius profile in the CMD or z direction. Here Eθj is the tangential modulus for sector j 

and the functions fj are defined in Figure 2. The strain (integrand) produces a 

corresponding stress for sector j. A key point was expressing the tangential strain 
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utilizing the relaxation radius rr concept introduced by Cole and Hakiel [12], that denotes 

the radius the layer of web would have if it were completely relaxed, meaning tension 

free. This approach allows the incorporation of the effect of roll outer lap radius variation 

in the z direction on the pre-stress for each sector.  
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The relaxation radius is determined by optimization from expression {6}. Inserting the 

relaxation radius rr into equation {7}, the appropriate pre-stress vector (0)e=(0)j for each 

finite element in a new outer layer can be developed which accounts for the effect of CMD 

thickness non-uniformity. 
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 {7} 

The superscript ‘j’ in the above equation refers to the thj  sector along the CMD 

direction noted in Figure 3. The obtained pre-stress from expression {7} is inserted into 

equation {3} to determine the elemental force vectors. The elemental force vectors Fe is 

assembled into a system force vector F and the current element stiffness matrices Ke is 

assembled into the system stiffness matrix K.  

The system stiffness matrix is first defined with the element stiffness terms 

representing the core and the first layer of web wound onto the core. The set of equations 

Ku=F is then solved for the increment in radial deformation u that resulted from the 

addition of the first layer.  

Subsequently, for each layer i added to the outer surface, the system of equations 

Ku=F is solved for the increments in deformation for all layers in the wound roll. The 

incremental strains and stresses are then computed for each layer and summed with 

previous increments to determine the total residual strains and stresses in a wound roll 

containing i web layers. Finally, the material properties are updated as a function of the 

total stress. And the process continues to add the layer i+1 to the outside of the wound 

roll until a user designated final wound roll radius is achieved. At that point, the total 

elastic stress and strain due to the winding process are known and will be used as initial 

conditions for the viscoelastic analysis in the second phase. 

Phase Two: Viscoelastic Creep in the Wound Roll 

Linear viscoelastic constitutive law. The web material will be modeled with a 

linear viscoelastic constitutive law. Linear viscoelastic materials obey the Boltzmann 

superposition principle, which states that the response of a material to a given load is 

independent of the response of the material to any load already applied [19]. For linear 

viscoelastic webs, it is assumed that the Boltzmann superposition principle holds in a 

modified manner per the pressure-dependence of the radial modulus. This assumption is 

supported by the fact that the radial strains remain small compared to the tangential 

strains. In case of an initial stress or strain field due to winding (Phase One), this leads to: 

 
0

( ) ( , ( )) (0) ( , ( ))
t

t M t P t M t P d


    



= + −


  {8}  
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or equivalently:  

 
0

( ) ( , ( )) (0) ( , ( ))
t

t C t P t C t P d


    



= + −


  {9} 

where σ(t) and ε(t) are the time-dependent Cauchy stress and small displacement strain 

tensors, respectively, P(t) is the radial pressure at time t (i.e. P(t) = - σr(t)), M(t,P(t)) is 

the fourth-order stiffness tensor and C(t,P(t)) is the fourth-order compliance tensor of the 

orthotropic viscoelastic material. Following the notation convention introduced in Phase 

One, the second-order stress σ(t) and strain ε(t) tensors can be expressed as: 

 ( )  
T

r z rz     =  {10} 

 ( )  
T

r z rz     =  {11} 

σ(0) and ε(0) are the initial stress and strain tensors, respectively, which exist prior to any 

viscous event taking place. The viscoelastic compliance tensor C(t,P(t)) and the 

viscoelastic stiffness tensor M(t,P(t)) can then be expressed as 

 𝐶(𝑡, 𝑃) =

[
 
 
 
𝐽𝑟(𝑡, 𝑃) 𝐽𝑧𝑟(𝑡, 𝑃) 0 𝐽𝜃𝑟(𝑡, 𝑃)

𝐽𝑟𝑧(𝑡, 𝑃) 𝐽𝑧(𝑡) 0 𝐽𝜃𝑧(𝑡)

0 0 𝐽𝑟𝑧(𝑡) 0

𝐽𝑟𝜃(𝑡, 𝑃) 𝐽𝑧𝜃(𝑡) 0 𝐽𝜃(𝑡) ]
 
 
 

 {12} 

  𝑀(𝑡, 𝑃) = [

𝐸𝑟(𝑡, 𝑃) 𝐸𝑧𝑟(𝑡, 𝑃) 0 𝐸𝜃𝑟(𝑡, 𝑃)

𝐸𝑟𝑧(𝑡, 𝑃) 𝐸𝑧(𝑡) 0 𝐸𝜃𝑧(𝑡)
0 0 𝐸𝑟𝑧(𝑡) 0

𝐸𝑟𝜃(𝑡, 𝑃) 𝐸𝑧𝜃(𝑡) 0 𝐸𝜃(𝑡)

]  {13} 

where the functions J are the compliances in the different directions, often called creep 

functions, and the functions E are the moduli in the different directions, often called 

relaxation functions.  

As observed, the tensors C and M are also a function of the current pressure P at time 

t due to state-dependency. Consequently, the components of C and M in the radial 

direction are functions of P in the most general case (equations {12} and {13}). The 

nature of the components of the compliance tensor and their approximations will be 

discussed later. 

Solution of the boundary value problem. Here, a solution methodology will be 

established for the displacement-based problem as stated in equation {8}. Per mechanical 

equilibrium, at any instant of time the virtual work form of the equilibrium equation in 

the absence of external loads can be given as: 

 0T

V

dV  =  {14} 

where V is the volume. Assuming the solution is known at time t-Δt, seeking solution at 

time t via virtual work corresponds to:  
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 ( ) ( ( ) ) ( ) ( ) 0T T
t t

V V

t t t dV t dV      −  +  =  =   {15} 

Here δε(t-Δt) vanishes because the solution is known at time t-Δt. For σ(t), equation 

{8} can be approximated via an explicit forward difference scheme in time: 

 ( )10
11 1

n kn n kn
kn kM M  

− −

=− − +   {16} 

where:  

( )n n t =  , 

( ) ( )( ) ( )( )( )1

1 1 , 1
n k

kM M n k t P k t
− −

− = − −  −  , 

( )1 0, 1,2, ,  and 0k k k k n    − = − =    = . 

Using an isoparametric formulation (strain displacement matrix B in {2} and {3}) 

developed in the winding section, substituting {16} into {15} and invoking the virtual 

work principle leads to discrete equations for an element: 

 n n
e e eK u F =  {17} 

where 𝐾𝑒
̅̅ ̅ , 𝐹𝑛

𝑒 and ∆𝑢𝑛
𝑒 are the viscoelastic stiffness matrix, force vector and 

incremental displacements for element e, at time step n, and: 

 ( )  
1 1

1
1

1 1

T
e n

e
B M Bdet J rd dK  −

− −

=  
 {18} 

  
1

0 ( 1)
1 1

1

1 1

1 1

n T
e

n
n n k k
n k

k

F B det J rd dM M   
−

− −

=− −
− −=

 
+  

 
−     {19} 

 n n
e eB u =   {20} 

Conversion between stiffness and compliance tensors. This solution is written in 

terms of the stiffness tensor M. Because the stiffness tensor and the compliance tensor are 

two representations of the same material properties, they are not independent from each 

other. C and M are related through the convolution relation {21}. 

 ( ) ( )0
, ,

t
M t P C t P d tI − =  {21} 

where I is the fourth-order unit tensor and t is time. This relation implies that the material 

can be characterized either via relaxation tests directly measuring the relaxation functions 

E or via creep tests directly measuring the creep functions J. Because the model aims 

principally at modeling creep phenomena, the webs were characterized via creep tests, 

determining the compliance tensor. However, equilibrium equations are generally written 

in a displacement-based framework corresponding to equation {8}, meaning in terms of 

the stiffness tensor (equations {18} and {19}). 
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As pointed out by equation {21} and contrary to the elastic case, the stiffness tensor 

is not the inverse of the compliance tensor. An efficient discretization of the conversion 

developed by Baumgaertel [20] will be employed here to compute the stiffness tensor 

from the compliance tensor. 

Simplification of the compliance tensor. A simplified compliance tensor C with 

respect to the creep functions is proposed. The radial Jr and tangential Jθ creep terms are 

defined as Prony series, following [9]: 

 𝐽𝑟(𝑡) =
1

𝐸𝑟
+ ∑

𝐽𝑟,𝑖
∗

𝑃
(1 − 𝐸𝑥𝑝 [−

𝑡

𝜆𝑟,𝑖
])

𝑚𝑟
𝑖=1  {22} 

 𝐽𝜃(𝑡) =
1

𝐸𝜃
+ ∑ 𝐽𝜃,𝑖 (1 − 𝐸𝑥𝑝 [−

𝑡

𝜆𝜃,𝑖
])

𝑚𝜃
𝑖=1  {23} 

where Jx,i is the creep function and 𝜆𝑥,𝑖 the retardation time of the branch I in the 

direction x. In addition, the transient part of the creep function is defined as  𝐽𝑟,𝑡𝑟𝑎𝑛𝑠(𝑡) =

 −∑
𝐽𝑟,𝑖
∗

𝑃
𝐸𝑥𝑝 [−

𝑡

𝜆𝑟,𝑖
]

𝑚𝑟
𝑖=1  and 𝐽𝜃,𝑡𝑟𝑎𝑛𝑠(𝑡) =  −∑ 𝐽𝜃,𝑖𝐸𝑥𝑝 [−

𝑡

𝜆𝜃,𝑖
]

𝑚𝑟
𝑖=1 . 

Axisymmetric models also require the characterization of the axial creep function 

(Jz). Axisymmetric winding simulations [15] reveal that the behavior along the z direction 

has insignificant effects on the radial (σr) and tangential (σθ) stress distribution but has a 

rather profound effect on shear (σrz) and axial (σz) stresses. To measure the creep 

compliance in the z direction (Jz), the same characterization method used for Jθ can be 

employed and a Prony series can be fit. For the web materials used herein the in-plane 

elastic properties were essentially equal in the tangential and axial directions (Eθ≈ Ez) and 

in this study the creep behavior in the plane of the web will be assumed to be isotropic 

(Jz=Jθ). This assumption is reasonable for cast films and films that are drawn equivalently 

in the MD and CMD during orientation. The creep function Jz will in general be different 

from J for orthotropic films and will require separate characterization. 

The shear behavior is assumed elastic, and the shear compliance Jrz was set to 1/Grz 

where Grz is the elastic shear modulus. There has been no documented attempt for the 

measurement of this value in viscoelastic regime for web materials. In another study, the 

authors found that Grz is pressure-dependent and for winding problems can be taken equal 

to 2Er [22]. 

In this formulation, the coupled creep function terms are neglected by setting the off 

diagonal terms to zero (i.e. Jrθ = Jθr = Jrz = Jzr = 0). This assumption has been deemed 

valid because parametric studies of axisymmetric winding models [7,15] show that the 

Poisson coupling terms in the elastic winding solution (r and r) have a negligible 

impact on the residual winding stresses in rolls [9]. There have been no attempts to 

experimentally measure the coupled creep function terms for layers of web in stacks. 

Some experiments report that the elastic Poisson's ratio (rθ) is state-dependent and small 

[21]. In the winding literature, the general assumption is that the out-of-plane Poisson's 

ratios (rθ, rz) are small [9] and possibly state-dependent whereas the in-plane Poisson’s 

ratio (zθ) is constant and ranges from 0.3 to 0.4. Consequently, in this study, the coupled 

creep function terms (Jrθ and Jθr) will be assumed to be negligible in comparison to the 

uncoupled terms (Jr and Jθ). This assumption effectively decouples the viscoelastic 

behavior in the different directions.  
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In summary, a simplified decoupled viscoelastic compliance tensor has been 

obtained: 

 

0 0 0

0 0 0
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

 
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 =
 
 
 

 {24} 

Expressions of the stress and strain tensors. This formulation also decouples the 

nonlinear (pressure-dependent) and linear terms. A solution is proposed for the general 

nonlinear creep behavior in the radial direction whether the transient part is state-

dependent or not and without relying on the conversion of radial creep functions. The 

method is based on the observation that the viscoelastic behavior of the web in the wound 

rolls results from two fundamental mechanisms: the first is the tangential relaxation of 

the layer under tensile stresses in the circumferential direction and the second is the creep 

of the layer under radial pressure, as seen in Figure 3. These two processes are combined 

in a unique way, which employs direct usage of radial creep function Jr.  

The radial creep results in radial strain. At a given time t, the total radial creep strain 

can be calculated from the transient portion of the radial creep function: 

 𝜀𝑟,𝑐𝑟𝑒𝑒𝑝(𝑡) = 𝐽𝑟,𝑡𝑟𝑎𝑛𝑠(𝑡)𝜎𝑟(0) + ∫ 𝐽𝑟,𝑡𝑟𝑎𝑛𝑠(𝑡 − 𝜏)
𝜕𝜎𝑟

𝜕𝜏
𝑑𝜏

𝑡

0
 {25} 

This creep causes a radial deformation which can be calculated via the strain 

displacement relation: 

 𝜀𝑟,𝑐𝑟𝑒𝑒𝑝(𝑡) =  
𝑑𝑢𝑟,𝑐𝑟𝑒𝑒𝑝

𝑑𝑟
 → 𝑢𝑟,𝑐𝑟𝑒𝑒𝑝(𝑡) = ∫ 𝜀𝑟′,𝑐𝑟𝑒𝑒𝑝(𝑡)𝑑𝑟′

𝑟

𝑟𝑐
 {26} 

where r is the radius at which the layer is located and rc is the outer radius of the core of 

the roll.  

This radial strain can be incorporated as a tangential strain in addition to the actual 

tangential strain:  

 
𝑢𝑟,𝑐𝑟𝑒𝑒𝑝

𝑟
= 𝜀𝜃̅(𝑡) {27} 

The tangential stress becomes: 

 𝜎𝜃(𝑡) = (𝜀𝜃(0) + 𝜀𝜃̅(𝑡))𝐸𝜃(𝑡) + ∫ 𝐸𝜃(𝑡 − 𝜏)
𝜕𝜀𝜃

𝜕𝜏
𝑑𝜏

𝑡

0
 {28} 

Thus, the viscoelastic effects on the tangential stress are combined. The tangential stress 

and strain result from tension in the web as it enters the wound roll and are significantly 

larger than the stress imposed in other directions. Consequently, the effect of the 

tangential stress dominates the mechanical response of a wound roll. 

Explicit forward difference scheme. An explicit forward difference scheme can be 

developed for equation {25}: 

𝜀𝑟,𝑐𝑟𝑒𝑒𝑝
𝑛 = 𝜎𝑟

𝑛−1 ∑ 𝐽𝑟,𝑖
𝑚𝑟
𝑖=1 − 𝜎𝑟

0 ∑ 𝐽𝑟,𝑖𝐸𝑥𝑝 [−
𝑛∆𝑡

𝜆𝑟,𝑖
] − ∑ 𝐽𝑟,𝑖𝐻𝑟,𝑖

𝑛 +
𝑚𝑟
𝑖=1

𝑚𝑟
𝑖=1

Δ𝜎𝑟
𝑛 ∑ 𝐽𝑟,𝑖

𝑚𝑟
𝑖=1   {29} 
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where 

𝜎𝑟
𝑛 = 𝜎𝑟

𝑛−1 + ∆𝜎𝑟
𝑛 with 𝜎𝑟

0 = 𝜎𝑟(0) 

𝐻𝑟,𝑖
𝑛 = (𝐻𝑟,𝑖

𝑛−1 + Δ𝜎𝑟
𝑛−1)𝐸𝑥𝑝[−∆𝑡/𝜆𝑟,𝑖] with 𝐻𝑟,𝑖

0 = 0 

𝐻𝑟,𝑖
𝑛 is the hereditary portion and the exponential formulation is particularly 

convenient because there is no need to store the entire solution history [9]. The integral in 

equation {26} is approximated by a finite sum via the rectangular numerical integration 

method: 

 𝑢𝑟,𝑐𝑟𝑒𝑒𝑝
𝑛 = ∫ 𝜀𝑟′,𝑐𝑟𝑒𝑒𝑝

𝑛𝑑𝑟′
𝑟

𝑟𝑐
≅ ℎ ∑ 𝜀𝑟𝑗,𝑐𝑟𝑒𝑒𝑝

𝑛
𝑗  {30} 

where rj denotes radial positions of equally spaced sectors (with sector thickness h) along 

the radial direction from the core outer radius (rc) to a radius of interest r in the roll. The 

natural layer-wise structure of the wound roll is utilized in the calculation of {30}. Hence 

h is the average model layer thickness and 𝜀𝑟𝑗,𝑐𝑟𝑒𝑒𝑝
𝑛 is the radial creep calculated at 

layer j. Consequently, j runs from 1 to k when calculating the total radial deformation for 

the kth layer. The corresponding tangential strain can be determined from equation {27} 

and used in a discrete form of equation {28}:  

𝜎𝜃
𝑛 = (𝜀𝜃

𝑛−1+𝜀𝜃̅
𝑛)𝐸𝜃,∞ − (𝜀𝜃

0 + 𝜀𝜃̅
𝑛)∑ 𝐸𝜃,𝑖𝐸𝑥𝑝 [−

𝑛∆𝑡

𝜏𝜃,𝑖
] − ∑ 𝐸𝜃,𝑖𝐺𝜃.𝑖

𝑛 +
𝑚𝜃
𝑖=1

𝑚𝜃
𝑖=1

𝐸𝜃,0Δ𝜀𝜃
𝑛  {31} 

where: 

𝜀𝜃
𝑛 = 𝜀𝜃

𝑛−1 + ∆𝜀𝜃
𝑛 with 𝜀𝜃

0 = 0 

𝐺𝜃,𝑖
𝑛 = (𝐺𝜃,𝑖

𝑛−1 + Δ𝜀𝜃
𝑛−1)𝐸𝑥𝑝[−∆𝑡/𝜏𝜃,𝑖] with 𝐺𝜃,𝑖

0 = 0 

 𝐸∞ = 𝐸0 + ∑ 𝐸𝑖
𝑚
𝑖=1  

𝐺𝜃,𝑖
𝑛 is the hereditary component carrying the history of the deformation during the 

tangential relaxation. A similar expression for the axial (z) direction can be developed: 

 𝜎𝑧
𝑛 = (𝜀𝑧

𝑛−1)𝐸𝑧,∞ − (𝜀𝑧
0)∑ 𝐸𝑧,𝑖𝐸𝑥𝑝 [−

𝑛∆𝑡

𝜏𝑧,𝑖
] − ∑ 𝐸𝑧,𝑖𝐺𝑧.𝑖

𝑛 + 𝐸𝑧,0Δ𝜀𝑧
𝑛𝑚𝑧

𝑖=1
𝑚𝑧
𝑖=1  {32} 

A finite element model can be developed with the time-dependent stress 

components, as the virtual work at time n can be given as: 

 ( ) 0
T

n n

V

dV   =  {33} 

This leads to the finite element stiffness equation for a typical element e: 

 𝐾𝑒
̅̅ ̅∆𝑢𝑛

𝑒 = 𝐹𝑛
𝑒 {34} 

 ( )  
1 1

0

1

1 1

T
ne

e

B M Bdet J rd dK  −

− −

=    {35} 
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 ( )  
1 1

1 1

n T

e

nF B det J dA rd 
− −

= −   {36} 

Here, 
0

1nM −  is the reduced stiffness tensor corresponding to the inverse of the 

reduced compliance matrix 𝐶̅ in {25} at time t=0: 

 

1

0 1
1

1

0 0 0

0 0 0
(0, )

0 0 2 0

0 00

n
r

zn
n r n

r

E

E
M M

E

E



−

−
−

−

 
 
 

= =  
 
 
 

  {37} 

The tensor An is the residual stress tensor for step n and is given as: 

 ( ) ( )

1

1 0
, , , ,1 1

,

1

1 0
, , , ,1 1

,

[ ]

[ ]

z z

n
r

m mn n
z z z z i z i z ii i

z in

n
rz

n n m mn n
i i ii i

i

n t
E E Exp E G

A

n t
E E Exp E G 

       




 




   


−

−
 = =

−

−
 = =

 
 

 
− − −  

 =
 
 

    
+ − + − −     

    

 {38} 

process # Description 

1 input geometrical and material data 

2 
use winding algorithm to obtain initial stresses σrz

0 σr
0 and strains εθ

0 

, εz
0
   

3 convert tangential and axial creep functions to relaxation functions 

4 
set initial conditions time step n=1, Er

0=K2(-σr
0+K1), 

Hr,i
0=Gθ,i

0=Gz,i
0=0 

5 start time step n 

5.1 
form stiffness matrix for all elements per equation {35}, using the 

material matrix {37}) at t=0  

5.2 
calculate radial creep for all elements per equation {29}:  

since Δσr
n is not known currently, use extrapolated value from two 

previous steps Δσr
n ≈ 2Δσr

n-1 -Δσr
n-2 

5.3 calculate components Aθ
n and Az

n per {38} 

5.4 form force vector for all elements per {36} 

5.5 
assemble and solve system of equations {34},  

obtain incremental displacements Δun,  

calculate incremental strains Δεn and stresses Δσn = Mn-1
0Δεn 

5.6 calculate current stresses σn= An + Δσn 
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5.7 
Has the target time t been achieved? (nΔt≥t)  

if NO then set n=n+1 calculate Hr,i
n, Gθ,i

n, Gz,i
n and 

Er
n-1=K2(-σr

n-1+K1) go to process 5 else go to process 6 

6 print results (stresses and strains for time t) 

Table 1 – Flow Chart for Phase II Solution 

The core section that the roll is wound upon is considered to be elastic and 

contributes to the system elastically only via the elastic stiffness tensor. The steps of the 

algorithm for the viscoelastic model are given in Table 1. 

This concludes the development of the second phase of the analysis. This 

development allows the determination of the stresses, strains and length changes due to 

creep during storage as a result of the residual stresses and strains created by winding,  

CHARACTERIZATION OF WEB MATERIALS 

As examples of viscoelastic webs, we studied a low-density polyethylene web1 

(LDPE) and a spunbond-meltblown-spunbond2 (SMS) nonwoven. These webs creep 

readily at room temperature and were good candidates to explore length changes due to 

creep in roll storage. In order to simulate the behavior of these webs in storage, we first 

need to fully characterize their viscoelastic properties.  

Geometry of the Web and Instantaneous Properties 

The web thickness was measured at minimal pressure by creating stacks of web, 

measuring the stack height and dividing by the number of web layers. The MD modulus 

was inferred from manual load-deformation tests on specimens 25.4 cm long and 2.54 cm 

wide, where the strain rate was limited by data recording at 10%/min. The radial modulus 

is measured through a compression stack test at a relatively high strain rate. The 

Pfeiffer’s coefficients [18] are fitted on the resulting stress-strain curve. The Poisson’s 

ratios are estimated according to the discussion above. The elastic properties of the core 

are also measured as the first layers of the model will be core layers (Figure 2). 

 

 SMS LDPE 

Web thickness 0.119 mm (0.0047 in) 0.508 mm (0.02 in) 

Web width 19.1 cm (7.5 in) 10.2 cm (4 in) 

MD modulus 106 MPa (15425 psi) 144 MPa (21000 psi) 

rz, r 0 0 

z 0.3 0.3 

Radial modulus 
K1 758 Pa (0.11 psi) 0 Pa (0.0 psi) 

K2 12.985 246.5 

Core modulus 3.45 GPa (500 ksi) 207 GPa (30 Mpsi) 

Core Poisson ratio 0.3 0.3 

Table 2 – Elastic and geometric web properties 

Tangential Viscoelastic Properties 

                                                 
1 Blueridge Films, 10921 Lamore Drive, Disputanta, VA 23842 
2 Kimberly-Clark Corporation, 351 Phelps Drive Irving, Texas 75038, USA 
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Figure 4 – Characterization Apparatus for MD Creep 

The MD creep of the webs was characterized in the apparatus shown in Figure 4. 

Several SMS and LDPE web specimens of length 2.1 m (85 in) were subjected to 

constant loads using dead weights (10, 15, and 20 lb). The samples were stress free 

except for that induced by their own weight until testing began. The clamps and weights 

were then lowered and calipers3 with digital output were used to record the displacements 

of the samples through time. The recorded displacements were divided by the unstressed 

specimen length to obtain the strain. This strain had both instantaneous elastic and 

transient viscoelastic components. The instantaneous strain was estimated as the stress 

divided by the MD modulus (Table 2). The instantaneous strains were then subtracted 

from the measured strains to obtain the transient strains. The transient strains were 

normalized by dividing by the applied stress levels and are shown in Figure 5 for the 

SMS. Finally, the normalized strains corresponding to the various stress levels were 

average and a Prony series expression (equation {39}) similar to the transient portion of 

{23} was fit to the curve. The coefficients of the obtained Prony series for the creep 

function are presented in Table 3. 

 𝐽𝜃,𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝐽𝜃,0 + 𝐽𝜃,1𝑒
(−𝑡

𝜆𝜃,1
⁄ )

+ 𝐽𝜃,2𝑒
(−𝑡

𝜆𝜃,2
⁄ )

+ 𝐽𝜃,3𝑒
(−𝑡

𝜆𝜃,3
⁄ )

+ 𝐽𝜃,4𝑒
(−𝑡

𝜆𝜃,4
⁄ )

 {39} 

where 𝐽𝜃,0 = −(𝐽𝜃,1 + 𝐽𝜃,2 + 𝐽𝜃,3 + 𝐽𝜃,4). 

                                                 
3 AccuRemote, 1301 Calle Avanzado, San Clemente, CA 92673, USA 

Dead weights 

Digital 

Calipers 
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Figure 5 – Normalized MD Creep of SMS at 21oC (70oF) 

 SMS LDPE 

J,0 (m/m/KPa) 4.5E-05 5.11E-06 

J,1 (m/m/KPa) -2.0E-05 -2.71E-06 

J,2 (m/m/KPa) -5E-06 -9.09E-08 

J,3 (m/m/KPa) -5E-06 -6.76E-07 

J,4 (m/m/KPa) -1.5E-05 -1.64E-06 

,1 (s) 100 1,000 

,2 (s) 10,000 10,000 

,3 (s) 100,000 100,000 

,4 (s) 1,000,000 1,000,000 

Table 3 – MD creep Prony transient terms for SMS and LDPE webs at room temperature  

Radial Viscoelastic Properties 

 

Figure 6 – Characterization Apparatus for Radial Creep 
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The radial creep of the webs was characterized in the apparatus shown in Figure 6. 

Stacks of SMS and LDPE web were compressed using air cylinders whose unique 

pressures were controlled by the regulators shown. The pressure within the air cylinder 

induced a compressive force on the platen that compressed the stack at a constant 

pressure through time. Calipers with digital output were used to measure the 

displacement of the web stacks which were recorded through time3. The total strain was 

obtained by dividing by the uncompressed stack height. The instantaneous strain was 

calculated by providing the known stack pressure P and values of K1 and K2 to expression 

{5} and solving for r. The transient radial strains were obtained by subtracting the 

instantaneous elastic strains from the total measured strains. The transient viscoelastic 

strains were normalized by dividing by the applied pressure. Normalized radial creep data 

for the SMS web is presented in Figure 7. The creep function of 𝐽𝑟,𝑡𝑟𝑎𝑛𝑠(𝑡), similar to 

expression {39}, was fit to the average creep data and the Prony series coefficients are 

provided in Table 4 for SMS and LDPE webs.  

 

Figure 7 – Radial Creep of SMS at 21oC (70oF) 

 SMS LDPE 

Jr,0 (m/m/KPa) 0.00346 2.64E-06 

J r,1 (m/m/KPa) -0.00248 -1.29E-06 

J r,2 (m/m/KPa) -0.00026 -1.35E-06 

J r,3 (m/m/KPa) -0.00072  

 r,1 (s) 100 s 696 s 

 r,2 (s) 10,000 s 72,810 s 

 r,3 (s) 100,000 s  

Table 4 – Radial creep Prony transient terms for SMS and LDPE webs at room 

temperature 

RESULTS 

The webs studied had no known thickness variation across the width and thus a 2D 

axisymmetric winding model is not needed for these simulations. Therefore, the 2D 
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model will be constrained to one sector with constant web thickness, essentially a 1D 

simplification. The material parameters in Tables 2-4 were input for each specific web. 

The model is setup to wind the web on a core to a finish radius input by the user. The 

winding model input parameters are provided in Table 5. 

 

 SMS LDPE 

Core inner radius 8.57 cm (3.375 in) 3.81 cm (1.5 in) 

Core outer radius (rc) 9.84 cm (3.875 in) 4.44 cm (1.75 in) 

Roll outer radius (rout) 10.7 cm (4.21 in) 10.4 cm (4.11 in) 

Winding Tension Stress 587 KPa (85.1 psi) 1.38 MPa (200 psi) 

Roll Storage Time 4 days 7 days 

Table 5 – Winding Input Parameters 

There is considerable winding residual stress decrease in these rolls due to 

viscoelasticity. For the SMS web, substantial decreases in radial pressure and tangential 

stress are seen after 4 days of storage (Figure 9). A similar behavior is witnessed for the 

LDPE web for 7 days of storage (Figure 10). The tangential viscoelastic strains for both 

the SMS and LDPE webs are shown to begin from near zero at the core and increase 

monotonically with increasing wound roll radius (Figure 11). These strains are small near 

the core since the core material is assumed to be elastic and exhibits a large modulus 

compared to that of the web (Table 2). In these examples, the web layers near the core are 

behaving much like a material subjected to simple stress relaxation. The tangential strain 

within the web is constrained by a large core stiffness while the tangential stress near the 

core decreases (Figures 9 and 10). The web layers close to the outer radius of the roll are 

subject to a large tangential stress and no radial pressure. Consequently, a relatively high 

tangential creep strain is measured for these layers. 

 

Figure 9 – Residual stresses in SMS after winding and after 4 days storage 
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Figure 10 – Residual stresses in LDPE after winding and after 7 days storage at 21oC. 

The total change in web length due to creep can be predicted from the tangential 

viscoelastic strains using the following expression: 

 2out

c

r
vtr

L r dr  =   {40} 

where vt is the viscoelastic tangential strain (Figure 11).  

 

 

Figure 11 – Tangential viscoelastic strains in SMS and LDPE after storage 
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allowed to relax at no tension for several days in a hallway (Figure 8). Marks were made 

across the SMS and LDPE web width at a length interval of 45.7 m and 54.9 m, 

respectively. The webs were carefully coiled on a core by hand with little tension.  

The SMS coiled web was then unwound and rewound in a web line equipped with a 

photodiode4 and a Laser Doppler Velocimeter5 (Figure 8) at a tensile stress of 587 KPa 

(85.1 psi), corresponding to a web tension of 13.3 N (3 lb). When the first mark passed 

the photodiode, a counter was triggered and began counting pulses. These pulses were 

proportional to the deformed length output by the Laser Doppler Velocimeter. When the 

second mark passed the photodiode, the counter was triggered off and the total deformed 

length of the rewound web was known. The winding of 45.7 m of web was completed 

quickly and it was assumed the web deformed length was due to elastic behavior. The roll 

was then stored for 4 days at room temperature (21oC). The roll was then unwound on the 

web line and again the deformed length between the two marks was measured. The 

difference in the deformed length of web wound off of the roll minus the deformed length 

wound in was assumed to be a measure of the increased web length due to creep during 

the 4-day storage period. This test was repeated three times with new web samples.  

The LDPE web was to be wound at a tensile stress of 1.38 MPa (200 psi), 

corresponding to a web tension of 71.1 N (16 lb), This required the use of a second web 

line able to develop that tension. The photodiode/LDV measurement system was not 

available on that web line. Nonetheless, the three LDPE rolls were wound and stored for 

7 days at room temperature. The webs were then quickly unwound in the hallway and the 

distance between the two marks was measured with a steel rule. The difference between 

the measured lengths before and after storage in a wound roll were assumed to be the web 

length increase due to viscoelastic creep. 

The test results are shown in Table 6. On average, SMS web length increased by 

12.6 cm during the 4-day storage period and the LDPE web length increased by 4.3 cm 

during the 7-day storage period. In both cases, the standard error is below 2.5% of the 

mean, which was deemed acceptable.  

 

Figure 8 – Experimental Setup for SMS winding creep tests 
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Web 
Winding 

tension 

(KPa) 

Storage 

time 

(days) 

Storage 

temperature 

(oC) 

Web 

Length 

(m) 

Increased web length (cm) 

Test 

1 

(cm) 

Test 

2 

(cm) 

Test 

3 

(cm) 

Test 

average 

(cm) 

Standard 

Error 

(cm) 

SMS 587 4 21 45.7 13.2 12.3 12.2 12.6 0.31 

LDPE 1380 7 21 54.9 4.3 4.3 4.4 4.3 0.05 

Table 6 – Increased web length due to viscoelasticity 

Finally, the winding experimental results can be compared to the model, as presented 

in Table 7. 

 

Web 
Winding 

tension 

(KPa) 

Storage 

time 

(days) 

Storage 

temperature 

(oC) 

Web 

Length 

(m) 

Increased web length (cm) 

Test 

average 
Model %Error 

SMS 587 4 21 45.7 12.6 10.8 14.3 

LDPE 1380 7 21 54.9 4.3 3.7 14.0 

Table 7 – Comparison of experiments and model web length increase during to storage. 

The predictions of the model compared very well with the corresponding 

experiments, showing an error of about 14% for both the SMS and the LDPE web (Table 

7). Considering the large differences between these webs in terms of winding tension, 

storage time, material behavior, and viscoelastic time scales, this result is remarkable.  

To put these viscoelastic deformations in context, consider what web length increase 

would have occurred in these materials had they not been wound into rolls but subject to 

the same winding stress. Often the residual stresses due to winding are considered a bane 

in terms of wound roll defects. We estimate the creep due to the winding stress in the 

CMD direction using the creep function in Table 3. The results are presented in Table 8. 

Comparing Tables 7 and 8 shows the creep strain in the wound roll are 10 to 12% what 

they would have been if the web was stored as strips under tension. This speaks to the 

benefit of winding webs into rolls, in addition to the obvious gain in space. 

 

Web 
Web 

tension 

(KPa) 

Storage 

time 

(days) 

Storage 

temperature 

(oC) 

Web 

Length 

(m) 
Increased web length (cm) 

SMS 587 4 21 45.7 91.8 

LDPE 1380 7 21 54.9 31.9 

Table 8 – Length increase of web subjected to constant MD stress 

CASE STUDY: INDUCING CAMBER INTO AN LDPE WEB 

To demonstrate the benefit of the time-dependent winding model presented here, the 

origin of the web camber defect is proven. Web camber has been shown to induce lateral 

CMD tracking errors in webs. Several studies have shown the web will continually track 

toward the longer web edge [23-25]. The 2D version of the winding model demonstrates 

the source of web camber.  
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Consider a case where the LDPE web, 10.2 cm wide and nominally 0.508 mm thick 

(Table 1), has a thickness variation over the width, which persists in the MD. The web 

thickness will be assumed to vary linearly from 0.513 mm at CMD location -5.1 cm (left 

edge) to 0.503 mm at CMD location 5.1 cm (right edge). A 54.9 m length of the LDPE 

web will be wound onto the core defined in Table 6. The average winding tensile stress 

will remain 1380 KPa. The profile of the deformed outer radius is shown in Figure 12 as 

a function of wound roll radius. Because of the thickness variation, the winding roll now 

takes the shape of a truncated cone. Near the core, the wound roll is nearly of cylindrical 

shape but as additional layers with their thickness variation are wound on, the roll is 1.09 

mm larger at the left edge than at the right edge. The core of the wound roll has one 

unique angular velocity . Thus, greater linear MD velocity (V=r) is expected at the 

left edge of the roll than the right edge and coincidentally greater MD  stress will be 

expected on the left versus right edge of the web when it is wound onto the roll (Figure 

13). 
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Figure 12 – Radius variation versus web width as a function of wound roll radius. 

The tangential stress is 1352 KPa at the widthwise center of the web (CMD location 

0 cm) at the outside of the wound roll (radius=10.4 cm) just after winding. The tangential 

stresses become largest at the left edge and smallest at the right edge of the outer layer. 

Also shown are the tangential stresses after 7 days of storage at room temperature (21oC), 

which are appreciably less than the stresses just after winding. 



22 

400

800

1200

1600

2000

5
6

7
8

9
10

-3
-2

-1
0

1
2

3

 (
K

P
a
)

W
ound Roll Radius (cm)

CM
D L

oca
tio

n (c
m

)

 

Figure 13 – LDPE tangential stresses for a web wound with variable thickness 
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Figure 14 – LDPE radial pressures for a web wound with variable thickness 

The radial pressures throughout the wound roll are shown in Figure 14 immediately 

after winding and after 7 days of storage. The spatial variation due to the thickness 

variation is appreciable. The radial pressure and tangential stress both contribute to the 

tangential strains.  

The source of web camber is the MD viscoelastic strains seen in Figure 15. The 

average of these strains over the web width is very close to the strain for the constant 

thickness LDPE  (Figure 11). Subtracting the average strains from the viscoelastic strains 

(Figure 15) leads to the bending strain b. The bending strain is related to a stress-free 

web camber  where =y/b and y is the CMD location of the bending strain.  
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Figure 15 – Viscoelastic MD strain after 7 days of storage 

 

Figure 16 – Camber Radius of Unstressed Web 

Thus, the unstressed camber radius can be predicted as a function of the radial 

position of the web layer in the wound roll (Figure 16). Dealing with lateral deformation 

and registration of webs in free spans is made more difficult with webs of variable 

camber being unwound into a web process machine. Webs will never be perfectly 

uniform in thickness but winding algorithms such as those presented herein can be used 

to predict what web thickness variation can be accepted based upon the viscoelastic 

characterization of the web and what camber radius is acceptable within the web. 
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CONCLUSION 

A deformation-based winding model has been developed, where the winding process 

is assumed entirely elastic and the storage in a wound roll viscoelastic. The model allows 

registration errors and other length defects due to viscoelastic relaxation of the web to be 

explored. Such a model is useful for studying winding parameters, storage conditions and 

web thickness variation that is acceptable with regard to registration error or camber in 

roll-to-roll processes. As an example, the model demonstrates how thickness variation in 

the width of the web results in web camber. 
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