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ABSTRACT

Many recent works have shown that adversarial examples which fool classifiers
can be found by minimally perturbing a normal input. Recent theoretical results,
starting with Gilmer et al. (2018b), show that if the inputs are drawn from a con-
centrated metric probability space, then adversarial examples with small pertur-
bation are inevitable. A concentrated space has the property that any subset with
Q(1) (e.g., 1/100) measure, according to the imposed distribution, has small dis-
tance to almost all (e.g., 99/100) of the points in the space. It is not clear, however,
whether these theoretical results apply to actual distributions in practice such as
images. This paper presents a method for empirically measuring and bounding
the concentration of a concrete dataset that is proven to converge to the actual
concentration. We use it to empirically estimate the intrinsic robustness to £
perturbations of several image classification benchmarks.

1 INTRODUCTION

Despite achieving exceptionally high accuracy on natural inputs, state-of-the-art machine learning
models have been shown to be vulnerable to adversarial agents who add small perturbation to fool
the classifier using so-called adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015).
This phenomenon has motivated numerous studies (Papernot et al., 2016; Madry et al., 2017; Biggio
& Roli, 2018; Gilmer et al., 2018a) to propose heuristic defenses that aim to robustify existing clas-
sifiers. However, most of defense mechanisms have been quickly broken by adaptive attacks (Carlini
& Wagner, 2017; Athalye et al., 2018). To end this arms race, a recent line of research (Wong &
Kolter, 2018; Raghunathan et al., 2018; Wong et al., 2018) proposes training methods that are certi-
fied to be robust for given inputs against some specific norm-bounded adversarial perturbations and
empirically verified their effectiveness for toy datasets. These methods are not able to certify global
robustness properties, however, but can only certify robustness for given inputs.

The above-mentioned difficulties motivate a fundamental information-theoretic question: what are
the inherent limitations of developing robust classifiers? Recent theoretical works (Gilmer et al.,
2018b; Fawzi et al., 2018; Mahloujifar et al., 2018; Shafahi et al., 2018) have shown that under
certain assumptions regarding the data distribution and the perturbation metric, adversarial examples
are inevitable. As a result, for a broad set of theoretically natural metric probability spaces of inputs,
there is no classifier for the data distribution that achieves adversarial robustness. For example,
Gilmer et al. (2018b) assumed that the input data are sampled uniformly from n-spheres and proved
a model-independent theoretical bound connecting the risk to the average Euclidean distance to
the “caps” (i.e., round regions on sphere). Mahloujifar et al. (2018) generalized this result to any
concentrated metric probability space of inputs and showed that, e.g., if the inputs come from any
Normal Lévy family (Lévy, 1951), any classifier with sub-exponentially large test error will be
vulnerable to small (i.e., sublinear in the typical norm of the inputs) perturbations.

*Equal contribution.
The same work is also presented in the ICLR 2019 Safe Machine Learning workshop.
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Although such theoretical findings seem discouraging to the goal of developing robust classifiers,
all these impossibility results depend on assumptions about data distributions that might not hold for
cases of interest. Our work aims for a general method for testing properties of concrete datasets.

Contribution. Our work shrinks the gap between the theoretical analyses of robustness of clas-
sification of theoretical data distributions and the intrinsic robustness for classification of actual
datasets. Indeed, quantitative estimates of the intrinsic robustness of benchmark image datasets
such as MNIST and CIFAR-10 can provide us with a better understanding of the threat of adversar-
ial examples for natural image distributions and may suggest promising directions for practitioners
to further improve classifier robustness. Our main technical contribution lies in developing a general
method to evaluate the concentration of a given input distribution y based on a set of data samples.
We prove that by simultaneously increasing the sample size m and some complexity parameter 7',
the concentration of the empirical measure converges to the actual concentration of v (Section 4).
Using this method, we perform experiments to demonstrate the existence of robust error regions for
benchmark datasets under ¢, perturbations (Section 5). For instance, we show the existence of a
set/region (as a candidate set for the error region of the classifier) with risk (i.e., measure) 5.94%
and adversarial risk (i.e., expanded measure) 18.13% with respect to £, perturbations of magnitude
e = 8/255 on CIFAR-10. The existing robust classifier fail to achieve these rates. This suggests that
the concentration of measure is not the only reason behind the vulnerability of existing classifiers
to adversarial perturbations. Thus, there seems to be room for improving the robustness of image
classifiers (even with non-zero classification error), at least for the datasets studied in this work.

As for related work, we are only aware of one work that tries to heuristically estimate these prop-
erties. To extend their theoretical impossibility result to the practical distributions, Gilmer et al.
(2018b) studied MNIST dataset to find a region that is somewhat robust in terms of expected {5 dis-
tance of other images from the region. In their setting, they showed the existence of a set of measure
0.01 with average /2 distance 6.59 to all points. In comparison, our work is the first to provide a
general methodology to empirically estimate the concentration of measure with provable guarantees.
Moreover, we work with ., and worst case bounded perturbations for modeling adversarial risk,
which is the most popular setting employed in attacks.

2 DEFINITIONS AND NOTATIONS

Lower-case boldface letters such as x are used to denote vectors, and [n] is used to represent
{1,2,...,n}. For any set A, let Pow(.A), | A| and 1 4(-) be the power set, cardinality and indicator
function of A, respectively. For any & € R, the /oo-norm of x is defined as ||| = max;c |24].
Let (X, (1) be a probability space and d : X x X — R be some distance metric defined on X'. Define
the empirical measure with respect to a set S sampled from 1 as fis(A) = 3 s Ta(x)/|S],VA C
X. Let Ball(z,e) = {&’ € X : d(’,x) < €} be the ball around & with radius e. For any sub-
set A C X, define the e-expansion A, = {x € X': Iz’ € Ball(z,¢) N A}. The collection of the
e-expansions for members of any G C Pow(X’) is defined and denoted as G, = {A. : A € G}.

Moreover, we work with the following definitions regarding the adversarial risk of a classifier, the
intrinsic robustness with respect to some family of classifiers and a specific collection of subsets
characterized by complement of union of hyperrectangles.

Definition 2.1 (Adversarial Risk and Intrinsic Robustness). Let (X, i) be the probability space of
instances and [* be the underlying ground-truth. Given a classifier f, the adversarial risk of f in
metric d with strength € is defined as

AdvRiskc(f, f*) = Pr [3a’ € Ball(z,¢) s.t. f(x') # f*(z')].

T~

For € = 0, which allows no perturbation, the notion of adversarial risk coincides with traditional
risk." In addition, let F be some family of classifiers, then the intrinsic robustness is defined as the

! This definition is used some works including Gilmer et al. (2018b); Bubeck et al. (2018); Mahloujifar
et al. (2018). Other related definitions are equivalent when we assume small perturbations preserve the ground
truth. See Diochnos et al. (2018) for a taxonomy of different definitions.
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maximum adversarial robustness® that can be achieved within F, namely
Rob (F, f*)=1- }nfr {AdvRisk.(f, f*)}.
c

In this work, we specify F as the family of imperfect classifiers that have risk at least « € (0, 1).

Definition 2.2 (Complement of union of hyperrectangles). For any positive integer T, the collection
of subsets specified by complement of union of 7' n-dimensional hyperrectangles is defined as

CRE = {R" \ U Rect(u®,r®): vt € [T], (w®,r®) € R" x Rgo},

where Rect(u,r) = {x € X :Vj € [n],|x; —u;| < r;/2} denotes the hyperrectangle centered at
u with r representing the edge size vector. When n is free of context, we simply write CRt = CRI}.

3 CONCENTRATION OF MEASURE

In this paper, we focus on quantifying the effect of concentration of measure on a classification
task. Previous work shows a connection between concentration of measure and maximum possible
robustness of a an imperfect classifier (Gilmer et al. (2018b); Fawzi et al. (2018); Mahloujifar et al.
(2018); Shafahi et al. (2018)). The concentration of measure on a metric probability space is defined
by a concentration function as follows.

Definition 3.1. (Concentration Function) Consider a metric probability space (X, u,d). Suppose
e > 0and a € (0,1) are given parameters, then the concentration function of the probability
measure 1 with respect to €, v is defined as h(p, o, €) = infecx {p(E): u(€) > a} 3

Generalizing the result of Gilmer et al. (2018b) about instances drawn from spheres, Mahloujifar
et al. (2018) showed that, in general, if the metric probability space of instances are concentrated,
then any classifier with 1% risk incurs large adversarial risk for small amount of perturbations.

Theorem 3.2 (Mahloujifar et al. (2018)). Let (X, u) be the probability space of instances and f*
be the underlying ground-truth. For any classifier f, we have

AdvRisk (f, f*) > h(u, Risk(f, f*),€).

In order for this theorem to be useful, we need to know the concentration function. The behavior of
this function is studied extensively for certain theoretical metric probability spaces Ledoux (2001);
Milman & Schechtman (1986). However, it is not known how to measure the concentration function
for arbitrary metric probability spaces. In this work, we provide a framework to (algorithmically)
bound the concentration function from i.i.d. samples from a distribution. Namely, we want to solve
the following optimization task using our i.i.d. samples:

minimize (&) suchthat u(€) > a. ()

£Ccx

In this work, we aim to estimate the minimum possible adversarial risk, which captures the intrinsic
robustness for classification in terms of the underlying distribution y, conditioned on the fact that the
original risk is at least a. Note that solving this optimization problem only shows the possibility of
existence of an error region £ with certain (small) expansion. This means that there could potentially
exist a classifier with risk at least o and adversarial risk equal to the solution of the optimization
problem of (1). Actually finding such an optimally robust classifier (with error «) using a learning
algorithm might be a much more difficult task or even infeasible and is not the goal of our work.

4 METHOD FOR MEASURING CONCENTRATION

In this section, we present a method to measure concentration of measure on a metric probability
space using i.i.d. samples. To measure concentration, there are two main challenges:

>The term robustness is used with different meanings in previous work (e.g., in Diochnos et al. (2018),
it refers to the average distances to the error region). However all such uses of the term refer to a desirable
resisting property of the classifier against adversarial perturbations, which is the case here as well.

3Note that, the standard notion of concentration function (e.g., see Talagrand (1995)) is related to a special
case of Definition 4.1 by fixing o = 1/2.
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1. Measuring concentration appears to require knowledge of the density function of the dis-
tribution, but we only have a data set sampled from the distribution.

2. Even with the density function, we have to find the best possible subset among all the
subsets of the space, which seems infeasible.

We show how to overcome these challenges to find the actual concentration in the limit by first
empirically simulating the distribution and then narrowing down our search space to a specific col-
lection of subsets that are chosen in a careful way. Our results show that for such (carefully chosen)
family of sets, the expansion can be bounded using polynomially many samples, while the conver-
gence to the actual concentration (without the limits on the sets) happens in the limit 7" — oo where
T is the parameter related to the complexity of the collection.

Below, we introduce two useful definitions before stating our two main theorems that show how
to overcome these challenges. The following definition captures the concentration function for a
specific collection of subsets:

Definition 4.1. (Concentration Function for a Collection of Subsets) Consider a metric probability
space (X, u,d). Let € > 0 and o € (0,1) be given parameters, then the concentration function of
the probability measure |y with respect to €, o and a collection of subsets G C Pow(X) is defined as
h(p, o, e,G) = infeecg {p(&e): p(€) > a} . We write h(u, o, €) when G = Pow(X).

We also need to define the notion of complexity penalty for a collection of subsets. The complexity
penalty for a collection of subsets capture the rate of the uniform convergence for the subsets in
that collection. One can get such uniform convergence rates using VC dimension or Rademacher
complexity of the collection.

Definition 4.2 (Complexity Penalty). Let G C Pow(X) be a collection of subsets of X. A function
¢: N x R — [0,1] is a complexity penalty for G iff for any probability measure p supported on X
and any § € [0, 1], we have

Pr [3€ €@ st |u(&)— is(E)] > 0] < d(m,0).

S—pm™

The following theorem shows how to overcome the challenge of measuring concentration from finite
samples when the concentration is defined with respect to specific families of subsets. Namely, it
shows that the empirical concentration is close to the true concentration if the underlying collection
of subsets is not too complex.

Theorem 4.3 (Generalization of Concentration). Ler (X, i1, d) be a metric probability space and
G C Pow(X). For any §,a, € € [0, 1], we have

SET [h(,ufv Q= 57 €, g) iy S h(ﬂSa Q, €, g) S h(ﬂ’a o+ 5; €, g) + 5] Z 1- 2(¢(m> 5) + ¢E(m7 5))
o
where ¢ and ¢. are complexity penalties for G and G, respectively.

See Appendix A for the proof. The above theorem shows that if we narrow down our search to a
collection of subsets G such that both G and G, have small complexity penalty, then we can use the
empirical distribution to measure concentration of measure for that specific collection.

Note that the generalization bound of Theorem 4.3 depends on complexity penalties for both G
and G.. Therefore, in order for this theorem to be useful, the collection G should be chosen in a
careful way. For example, if G has bounded VC dimension, then G, might still have very large VC
dimension. Alternatively, G might denote the collection of subsets that are decidable by a neural
network of certain size. In that case, even though there are well known complexity penalties for
such collections (See Neyshabur et al. (2017)), the complexity of their expansions is unknown. In
fact, relating the complexity penalty for expansion of a collection to that of the original collection
is tightly related to generalization bounds in the adversarial settings, which has also been been the
subject of recent works Attias et al. (2018); Montasser et al. (2019); Yin et al. (2018).

Theorem 4.3 showed how to estimate the concentration function with respect to a specific collection
of sets. Our Theorem 4.4 below states that if we gradually increase the complexity of the collection,
and the number of samples together, the empirical estimate of concentration converges to actual
concentration, as long as several conditions hold. This convergence theorem and its proof techniques
are inspired by the work of Scott & Nowak (2006) on learning minimum volume sets.
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Theorem 4.4. Let {QT}T N be a family of subset collections defined over a space X. Also let
{¢T}T N and {qﬁZ}T N be two families of complexity penalty functions such that ¢* and ¢I

are complexity penalties for GT and GT respectively, for some ¢ € [0,1]. Let {m(T )} ren and
{0(T)} pen be a two series such that m(T) € N and §(T') € [0,1]. Consider a series of datasets
{S1} pen, where St consists of m(T') i.i.d. samples from a measure i supported on X. Also let

a € [0,1] be such that h is locally continuous w.r.t the second parameter at point (u, o, €, Pow(X)).
If all the following hold,

4. hmT%oo h(,U/7 Q, €, gT) = h(/'l’7 Q, 6)
then with probability 1, we have limr_, oo h(fis,, €, Gr) = h(p, a, €).

See Appendix A for the proof. In the above theorem, the first two conditions are about the
growth rate for the complexity of the collections. Namely, we need the complexity penalties
¢T(m(T),8(T)) and ¢T (m(T), d(T)) to rapidly approach 0 as T' — oo, which means the complex-
ity of GT and GI' should grow at a slow rate. The third condition requires that our generalization
error goes to zero as we increase 7. Finally, the forth condition requires that our approximation
error goes to 0 as we increase 7.

4.1 SPECIAL CASE OF /o,

In this section we show how to instantiate Theorem 4.4 for the case of ¢,,. Namely, we want to
find a subset £ € R"™ such that £ has measure at least o and the e-expansion of £ under /., has
the minimum measure. To achieve this goal, we approximate the distribution y with an empirical
distribution fi5. We also limit our search to a special collection CRr (though our goal is to find the
minimum concentration around arbitrary subsets). Namely, what we find is still an upper bound on
the concentration function, and it is an upper bound that we know it converges the actual amount in
the limit. Our problem thus becomes the following optimization task:

minimize [(s(&) suchthat is(€) > a.

linimiz fis(Ee) fis(€) = )
The following theorem provides the key to our empirical method by providing a convergence guar-
antee. It states that if we increase the number of rectangles and the number of samples together in a
careful way, the solution to the problem using restricted sets converges to the true concentration.

Theorem 4.5. Consider a metric probability space (R", j1,{s,). Let {St}pcy be a family of
datasets such that for all T € N, St contains at least T* i.i.d. samples from . For any ¢, € [0, 1],
if h is locally continuous w.r.t the second parameter at point (., «v, €), then we probability 1 we get

lim h(fis,, o, €,CRr) = h(u, a,¢).
T—o0
See Appendix A for the proof.

5 EXPERIMENTS

In this section, we provide a heuristic method to find the best possible error region that covers at least
« fraction of the samples and its expansion covers the least number of points. More specifically, we
first introduce our algorithm and then evaluate our approach on several benchmark image datasets:
MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky & Hinton, 2009), FASHION-MNIST (Xiao
et al., 2017) and SVHN (Netzer et al., 2011).
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Algorithm 1: Binary Search for Robust Error Region

Input : a set of images S; perturbation strength € (in ¢,-norm); error threshold a;; number of
hyperrectangles 7'; number of nearest neighbours k; precision for binary search dp;,.
ri(x) < compute the ¢1-norm distance to the k-th nearest neighbour for each « € S;
Ssort  sort all the images in S by 74 () in an ascending order;
Glower < 0.0, Qupper <— 1.0;
while Qupper — Qlower > 5bin do
q < (q10wer + Qupper)/2§
perform kmeans clustering algorithm (7" clusters, ¢; metric) on the top-g images of Sgor;
{u®}T_, < record the centroids of the resulted 7" clusters;
fort=1,2,...,Tdo
‘ ’Rect(u(t)7 r(t)) <+ cover t-th cluster with the minimum-sized rectangle centered at u(*);
end
&, — X \UL Rect(u®,r®);  // Rect(u,r) denotes the e-expansion of Rect(u,r)
if [SN&;|/|S| > o then
| Giower < ¢, AdvRisky + |{z € S 1 @ ¢ UL Rect(u®, r®)}|/|S[;
else
‘ Qupper — q;
end

end
q < argmin, {AdvRisk, };
Output: (g, AdvRiskg, £;)

5.1 METHODOLOGY

Theorem 4.5 guarantees that the empirical concentration function h(fis, o, e, CRy) converges to-
wards the concentration of measure h(u, «, €) asymptotically. Thus, to measure the concentration of
4, it remains to solve the optimization problem (2). Although the collection of subsets is specified
using simple topology, solving (2) exactly is still difficult, as the problem itself is combinatorial in
nature. Borrowing techniques from clustering, we propose an empirical method, as shown in Algo-
rithm 1, to search for desirable error region within CR7. We remark that any error region £ could be
used to construct a classifer f¢,i.e. fe(x) = f*(x), if ¢ ¢ &; fe(x) # f*(x), if x € £. However,
finding such a classifier using a learning algorithm might be a very difficult task. Here we find the
optimally robust error region, not the corresponding classifier. A desirable error region should have
small adversarial risk?, compared with all subsets within CRp that have measure at least .

The high-level intuition of our method is that images from different classes are likely to be con-
centrated in separable regions, since it is generally believed that small perturbations preserve the
ground-truth class at the sampled images. Therefore, if we cluster all the images into different
clusters, a desired region with low adversarial risk should exclude any image from the dense clus-
ters, otherwise the expansion of such region will quickly cover the whole cluster. In other words,
a desirable subset within CRp should be e-away (in ¢, norm) from all the dense image clusters,
which motivates our method to cover the dense image clusters using hyperrectangles and treat the
complement of them as error set.

More specifically, our algorithm starts by sorting all the training images in an ascending order based
on the ¢;-norm distance to the k-th nearest neighbour with k£ = 50, and then obtains 7" hyperrect-
angular image clusters by performing k-means clustering (Hartigan & Wong, 1979) on the top-q
densest images, where the metric is chosen as ¢; and the maximum iterations is set as 30. Finally,
we perform a binary search over ¢ € [0, 1], where we set dpin = 0.005 as the stopping criteria, to
obtain the best robust subset (lowest adversarial risk) in CR7 with empirical measure at least «.

*The adversarial risk of an error region £ simply refers to the adversarial risk of fe.
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Figure 1: (a) Plots of risk and adversarial risk w.r.t. the resulted error region using our method as ¢
varies (CIFAR-10, e = 8/255, T' = 30); (b) Plots of adversarial risk w.r.t. the resulted error region
using our method (best ¢) as T" varies on MNIST (e = 0.3) and CIFAR-10 (e = 8/255).

Table 1: Summary of the main results for different experimental settings using our method

Empirical Risk (%)

Empirical AdvRisk (%)

Dataset o € T Bestq — - — -
training testing training testing

0.1 5 0662 1.2240.11 1.23+0.12 3.65+0.29 3.64+0.30
02 10 0660 1.12+0.13 1.11+0.10 576+0.38 5.89+0.44
MNIST 0.0l 03 10 0629 1.124+0.12 1.154+0.13 7.344+0.38  7.2440.38
04 10 0598 1.15+0.09 1.21+0.09 9.89+0.57  9.92+0.60
2/255 10 0.680 5.32+021 5724025 7.29+0.20 8.13+0.26
4/255 20 0.688 5.59+0.25 6.05+040 11.43+0.24 13.66+0.33
CIFAR-10  0.05 g/955 40 0.734 5554021 594+034 13.694+0.19 18.1340.30
16/255 75  0.719 5.16+0.25 528+0.23 19.77+0.22 28.83 +0.46
FASHION 01 10 0758 5.64+0.78 592+0.85 10.30+0.72 11.56+0.84
MNIST 005 02 10 0726 579+1.00 6.00+1.02 13.44+0.60 14.82+0.71
03 10 0.668 590+094 6.13+0.93 17.46+0.53 18.87+0.66
0.0l 10 0812 521+019 883+030 6.08+0.20 10.17+0.29
SVHN 0.05 002 10 0.773 5314+0.12 8.86+0.20 7.76+0.12 12.4640.15
003 10 0750 5.15+0.13 855+0.22 883+0.13 13.82+0.25

5.2 RESULTS

We choose «a to reflect the best accuracy achieved by state-of-the-art classifiers, using o« = 0.01
and € € {0.1,0.2,0.3,0.4} for MNIST and selecting appropriate values to represent the best typical
results on the other data sets (see Table 1). Given the number of hyperrectangles 7', we obtain
the resulting error region using Algorithm 1 on the training dataset, and tune 7T for the minimum
adversarial risk on the testing dataset.

Figure 1 shows the training and testing curves regarding risk and adversarial risk for two specific
experimental settings®. In particular, Figure 1(a) suggests that as we increase the initial covered per-
centage ¢, both risk and adversarial risk of the corresponding error region decrease. This supports
our use of binary search on g in Algorithm 1. On the other hand, as can be seen from Figure 1(b),
overfitting with respect to adversarial risk becomes significant as we increases the value 7. Accord-
ing to the adversarial risk curve for testing data, the optimal value of 7' is selected as T' = 10 for
MNIST (e = 0.3) and T = 40 for CIFAR-10 (e = 8/255).

>Similar results are obtained under other experimental settings, which are shown in Appendix B.
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Table 2: Comparisons between our method and existing robust classifier under different settings

Dataset € Method Empirical Risk  Empirical AdvRisk
MNIST 0.3 Madry et al. (2017) 1.20% 10.7%
' Ours (« = 0.012, 7 =10) 1.35% £ 0.08% 8.28% + 0.22%
Madry et al. (2017) 12.70% 52.96%

CIFAR-10  8/255 (i (0 = 0.127.T = 40)  14.22% + 0.46%  29.21% =+ 0.35%

Table 1 summarizes the optimal parameters, the empirical risk and adversarial risk of the corre-
sponding error region on both training and testing datasets for each experimental setting. Since
k-means algorithm does not guarantee global optimum, we repeat our method for 10 multiple runs
with random restart in terms of the best parameters, then report both the mean and the standard de-
viation. Our experiments provide examples of rather robust error regions for real image datsets. For
instance, in Table 1 we have a case where the measure of the resulted error region increases from
5.94% to 18.13% after expansion with ¢ = 8/255 in {, metric on CIFAR-10 dataset. This means
that there could potentially exist a classifier with 5.94% risk and 18.13% adversarial risk. However,
the existing adversarially robust classifiers cannot achieve these rates.

Table 2 compares the measured bounds using our method with result for an adversarially-trained
classifier using PGD-attack (Madry et al., 2017) on MNIST and CIFAR-10 under ¢, perturbations.
We use empirical risk and adversarial risk for Madry et al. (2017) to denote the standard test error
and PGD-attack success rate of the reported robust model. Taking CIFAR-10 (¢ = 8/255) as an
example, we obtain an error region with adversarial risk around 29.21% using our method, where
the risk threshold is set as @ = 0.127 in order to match the test error of Madry et al. (2017).
Compared with the empirical adversarial risk 52.96% attained using adversarial training, we show
that only 29.21% could be explained according to the concentration of measure phenomenon, while
the remaining 23.75% are due to other reasons, which requires further investigation.

All the aforementioned observations suggest that the concentration of measure phenomenon is not
the sole reason behind vulnerability of the existing classifiers to adversarial examples, at least for
datasets that we studied in this work. In other words, the impossibility results of (Gilmer et al.,
2018b; Fawzi et al., 2018; Mabhloujifar et al., 2018; Shafahi et al., 2018), should not make the com-
munity hopeless in finding more robust image classifiers.
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A PROOFS OF MAIN THEOREM
In this section, we prove Theorems 4.3, 4.4 and 4.5. We first prove Theorem 4.3.

Proof of Theorem 4.3. Define g(p,c,€,G) = argmingcg {u(E): u(€) > a}, and let £ =

g(p, a0+ 0,¢,G) and &= g(iis,a,€,G). (Note that these sets achieving the minimum might not
exist, in which case we select a set for which the expansion is arbitrarily close to the infimum and
every step of the proof will extend to this variant).

By the definition of the complexity penalty we have

Pr [[u(®) - jis(@)

S—pm

> 6] < g(m. 6)

which implies

Pr [u(&) < a8 < ¢(m,0).

S—pm
Therefore, by the definition of & we have

Pr [p(&) < h(p,a —6,¢,G)] < ¢p(m,d). (3)

S(-/J“m'

On the other hand, based on the definition of ¢. we have

Pr [|né) - s(&)

S<—pm

> 6] < 6c(m, ). )

Combining Equation 3 and Equation 4, and by a union bound we get

S}_)ﬁm[ﬂs(gé) < h(ﬂ‘a = 67 €, g) - 5] < ¢(m> 6) + ¢6(m7 5)

which by the definition of & implies that
Sf;rﬂ”[h(ﬂs, Q, €, g) < h,(ﬂ, o= 57 €, g) - 6] < ¢(m7 5) + ¢E(m7 5) &)

Now we bound the probability for the other side of our inequality. By the definition of the notion of
complexity penalty we have

Pr [|u(&) = fs(E)] = 6] < ¢(m,d)

S—pm
which implies
r [s(€) < a] < ¢(m,0).

S(*,LL"L
Therefore, by the definition of h we have,

Pr [is(E) < hljis,a,,G)] < $(m, d). ©)

S(—/A”l

On the other hand, based on the definition of ¢. we have

(€)= fis(Ee) = 6] < p(m, §) + de(m, 9). )

Pr
S—pm
Combining Equations 6 and 7, by union bound we get

GPr () < hjis,a,6.9) = 0] < 6(m.0) + d.(m.0)

which by the definition of £ implies
Pr [h’(:u? o+ 6a €, g) S h(ﬂS7 Q, €, g) - 6] S ¢(m7 6) + ¢€(m, 6) (8)

S(-/J«""
Now combining Equations 5 and 8, by union bound we have

Pr [h(g,a—¥8,6,G)—6 < h(fis,a,€6,G) < h(p,a+6d,6,G)+0] > 1—2(p(m, ) + ¢pe(m, d)).

S—pm

O
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Next, we prove Theorem 4.4 using ideas similar to ideas used in Scott & Nowak (2006).

Proof of Theorem 4.4. We use the following lemma to prove the theorem.

Lemma A.1 (Borel-Cantelli Lemma). Let { E1} oy be a series of events such that

oo
> Pr[Br] < oo
T=1
Then with probability 1, only finite number of events will occur.

Define Er to be the event that

h(ﬂa o — 5(T)7 €, gT) - 5(T) > h(ﬂST y O 6) or h(,u, o+ 6(T)7 €, gT) + 5(T) < h(ﬂST7 Q, €, g)
Based on Theorem 4.3 we have Pr[E7] < 2 (¢T (m(T),8(T)) + ¢ (m(T),5(T))). Therefore, by
Conditions 1 and 2 we have

> Pr[Er] <2 (Z o" (m(T),8(T)) + ¢¢ (m(T)75(T))> < 0.
T=1 T=1

Now by Lemma A.1, we know there exist with measure 1 some j € N, such that for all 7" > j,
h(p, a = 8(T),6,G") = 8(T) < hlfisy, a,6,G") < h(p,a+3(T),e,G7) +8(T).
The above implies that
Jim A, a—6(T), e, GT)—6(T) < Jim h(fs, e, Gh) < Jim (g a+8(T),€ G")+4(T).
Therefore, by Condition 3 and local continuity of /& we have
Jim (s, a,6,67) = lim_ h(ua,6,G7).
Now based on Condition 4 we have

lim h(is,, o, €, GT) = h(u, a,¢€).
T—o0

Finally, we prove Theorem 4.5 using Theorem 4.4.

Proof of Theorem 4.5. This theorem follows from our general Theorem 4.4. We show that the
choice of parameters here satisfies all four conditions of Theorem 4.4. If we let G7T to be the col-
lection of subsets specified by complement of union of 7" hyperrectangles. Then G will be the
collection of of subsets specified by complement of union of 7" hyperrectangles that are bigger than
€ in each coordinate. Therefore we have QGT C GT. We know that the VC dimension of G7 is
dr = O(nTlog(T)) (See Eisenstat & Angluin (2007)). Therefore, by VC inequality we have

Pr sup |M(5) _ /:LS((C:)| > 6| < 8enTlog(T) log(m)fm52/128.
Sepum | gegT

Therefore &7 (m,§) = 8enTlos(T) log(m)—m5?/128 g 4 complexity penalty for both GT and G7'.
Hence, if we define §(T) = 1/T and m(T) > T*, then the first three conditions of Theorem
4.4 are satisfied. The fourth condition is also satisfied by the universal approximation property of
histograms (See Wang (1998)).
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B OTHER EXPERIMENTAL RESULTS
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Figure 2: Risk and adversarial risk of the corresponding region as ¢ varies under different settings.
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Figure 3: Adversarial risk of the resulted error region with best ¢ obtained using our method as
T varies under different settings: (a) MNIST (¢ = 0.1, & = 0.01) and CIFAR-10 (¢ = 2/255,
a = 0.05); (b) MNIST (¢ = 0.2, « = 0.01) and CIFAR-10 (¢ = 4/255, a = 0.05)
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