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Abstract—The classic Vickrey-Clarke-Groves (VCG) mech-
anism ensures incentive compatibility, i.e., that truth-telling of
all agents is a dominant strategy, for a static one-shot game.
However, in a dynamic environment that unfolds over time, the
agents’ intertemporal payoffs depend on the expected future
controls and payments, and a direct extension of the VCG
mechanism is not sufficient to guarantee incentive compati-
bility. In fact, it does not appear to be feasible to construct
mechanisms that ensure the dominance of dynamic truth-telling
for agents comprised of general stochastic dynamic systems.
The contribution of this paper is to show that such a dynamic
stochastic extension does exist for the special case of Linear-
Quadratic-Gaussian (LQG) agents with a careful construction
of a sequence of layered payments over time.

We propose a layered version of a modified VCG mechanism
for payments that decouples the intertemporal effect of current
bids on future payoffs, and prove that truth-telling of dynamic
states forms a dominant strategy if system parameters are
known and agents are rational.

An important example of a problem needing such optimal
dynamic coordination of stochastic agents arises in power
systems where an Independent System Operator (ISO) has
to ensure balance of generation and consumption at all time
instants, while ensuring social optimality (maximization of
the sum of the utilities of all agents). Addressing strategic
behavior is critical as the price-taking assumption on market
participants may not hold in an electricity market. Agents, can
lie or otherwise game the bidding system. The challenge is to
determine a bidding scheme between all agents and the ISO
that maximizes social welfare, while taking into account the
stochastic dynamic models of agents, since renewable energy
resources such as solar/wind are stochastic and dynamic in
nature, as are consumptions by loads which are influenced
by factors such as local temperatures and thermal inertias of
facilities.

I. INTRODUCTION

Mechanism design is the sub-field of game theory that
considers how to implement socially optimal solutions to
problems involving multiple self-interested agents, each with
a private utility function. A typical approach in mechanism
design is to provide financial incentives such as payments
to promote truth-telling of utility function parameters from
agents. Consider for example the Independent System Oper-
ator (ISO) problem of electric power systems in which the
ISO aims to maximize social welfare and maintain balance
of generation and consumption while each generator/load has
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a private utility function. The classic Vickery-Clarke-Groves
(VCG) mechanism [1] has played a central role in classic
mechanism design since it ensures incentive compatibility,
i.e., truth-telling of utility functions of all agents forms a
dominant strategy, and social efficiency, i.e., the sum of
utilities of all agents is maximized. Indeed, the outcome
generated by the VCG mechanism is stronger than a Nash
equilibrium in the sense that it is strategy-proof, meaning
that truth-telling of utility functions is optimal irrespective
of what others are bidding. In fact, Green, Laffont and
Holmstrom [2] show that VCG mechanisms are the only

mechanisms that are both efficient and strategy-proof if
payoffs are quasi-linear.
While the VCG mechanism is applicable to a static

one-shot game, it does not work for stochastic dynamic
games. In a dynamic environment that unfolds over time,
the agents’ intertemporal payoffs depend on the expected
future controls and payments, and a direct extension of the
VCG mechanism is not sufficient to guarantee incentive
compatibility. A fundamental difference between dynamic
and static mechanism design is that in the former, an agent
can bid an untruthful utility function conditional on his
past bids (which need not be truthful) and past allocations
(from which he can make an inference about other agents’
utility functions). Here we should note that for dynamic
deterministic systems, by collecting the VCG payments as
a lump sum of all the payments over the entire time horizon
at the beginning, incentive compatibility is still assured.
However, for a dynamic stochastic system, the states are
private random variables and there is no incentive for agents
to bid their states truthfully if VCG payments are collected in
the same way as for dynamic deterministic systems. In fact,
it does not appear to be feasible to construct mechanisms
that ensure the dominance of dynamic truth-telling for agents
comprised of general stochastic dynamic systems.
Nevertheless, for the special case of Linear-Quadratic-

Gaussian (LQG) agents, where agents have linear state equa-
tions, quadratic utility functions and additive white Gaussian
noise, we show in this paper that a dynamic stochastic
extension of the VCG mechanism does exist, based on a
careful construction of a sequence of layered payments over
time. For a set of LQG agents, we propose a modified
layered version of the VCG mechanism for payments that
decouples the intertemporal effect of current bids on future
payoffs, and prove that truth-telling of dynamic states forms a
dominant strategy if system parameters are known and agents
are rational. “Rational” means that an agent will adopt a
dominant strategy if it is the unique one, and it will act on
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the basis that it and others will do so at future times.
An important example of a problem needing such optimal

dynamic coordination of stochastic agents arises in the ISO
problem of power systems. In general, agents may have
different approaches to responding to the prices set by the
ISO. If each agent acts as a price taker, i.e., it honestly
discloses its energy consumption at the announced prices,
a competitive equilibrium would be reached among agents.
However, when each agent becomes a price anticipator, and
it is critical for the ISO to design a market mechanism that
is strategy-proof (i.e., incentive compatible). The challenge
for the ISO is to determine a bidding scheme between all
agents (producers and consumers) and the ISO that maxi-
mizes social welfare, while taking into account the stochastic
dynamic models of agents, since renewable energy resources
such as solar/wind are stochastic and dynamic in nature, as
are consumptions by loads which are influenced by factors
such as local temperatures and thermal inertias of facilities.
Currently, the ISO solicits bids from generators and Load
Serving Entities (LSEs) and operates two markets: a day-
ahead market and a real-time market. The day-ahead market
lets market participants commit to buy or sell wholesale
electricity one day before the operating day, to satisfy
energy demand bids and to ensure adequate scheduling of
resources to meet the next day’s anticipated load. The real-
time market lets market participants buy and sell wholesale
electricity during the course of the operating day to balance
the differences between day-ahead commitments and the
actual real-time demand and production [3]. Our layered
VCG mechanism fits perfectly in the real-time market, as
we will see in the sequel.
The rest of the paper is organized as follows. In Section II,

a survey of related works is presented. This is followed by a
complete description of the classic VCG framework for the
static and dynamic deterministic problem in Section III. A
layered VCG payment scheme is introduced for the dynamic
stochastic problem in Section IV. Section V concludes the
paper.

II. RELATED WORKS

In recent years, several papers have been written with
the aim of exploring issues arising in dynamic mechanism
design. In order to achieve ex post incentive compatibility,
Bergemann and Valimaki [4] propose a generalization of
the VCG mechanism based on the marginal contribution of
each agent and show that ex post participation constraints
are satisfied under some conditions. Athey and Segal [5]
consider a similar model and focus on budget balance of
the mechanism. Pavan et al. [6] derives first-order conditions
under which incentive compatibility is guaranteed by gener-
alizing Mirrlees’s [7] envelope formula of static mechanisms.
Cavallo et al. [8] considers a dynamic Markovian model and
derives a sequence of Groves-like payments which achieves
Markov perfect equilibrium. Bapna and Weber [9] solves a
sequential allocation problem by formulating it as a multi-
armed bandit problem. Parkes and Singh [10] and Friedman
and Parkes [11] consider an environment with randomly

arriving and departing agents and propose a “delayed” VCG
mechanism to guarantee interim incentive compatibility. Be-
sanko et al. [12] and Battaglini et al. [13] characterize the
optimal infinite-horizon mechanism for an agent modeled as
a Markov process, with Besanko considering a linear AR(1)
process over a continuum of states, and Battaglini focusing
on a two-state Markov chain. Farhadi et al. [14] propose a
dynamic mechanism that is incentive compatible, individual
rational, ex-ante budget balance and social efficient based
on the set of inference signals. However, their notion of
incentive compatibility is in a weaker Nash sense, i.e., given
other agents report truthfully, agent i’s best reaction is to
report truthfully. Our dynamic VCG mechanism on the other
hand, guarantees incentive compatibility in weakly dominant
strategies, i.e., irrespective of what other agents are bidding,
agent i’s best strategy is to report truthfully. Bergemann and
Pavan [15] have an excellent survey on recent research in
dynamic mechanism design and a more recent survey paper
by Bergemann and Valimaki [16] further discusses dynamic
mechanism design problem with risk-averse agents and the
relationship between dynamic mechanism and optimal con-
tracts.
To our knowledge, there does not appear to be any result

that ensures dominance of dynamic truth-telling for agents
comprised of LQG systems.

III. THE STATIC AND DYNAMIC DETERMINISTIC VCG
Let us begin by considering the simpler static deterministic

case. Suppose there are N agents, with each agent having
a utility function Fi(ui), where ui is the amount of energy
produced/consumed by agent i. Fi(ui) depends only on its
own consumption/generation ui. However, for convenience
of notation, we will occasionally abuse notation and write
Fi(u) with the implicit understanding that it only depends
on the i-th component ui of u.
Let u := (u1, ..., uN )T , u�i :=

(u1, ..., ui�1, ui+1, ..., uN )T , and let F := (F1, . . . , Fn).
In the VCG mechanism, each agent is asked to bid its

utility function F̂i. The agent can lie, so F̂i may not be
equal to Fi. (As for F , we denote F̂ := (F̂1, . . . F̂n)). After
obtaining the bids, the ISO calculates u⇤(F̂ ) as the optimal
solution to the following problem:

max
u

X

i

F̂i(ui)

subject to
X

i

ui = 0.

The last equality ensures balance between generation
and consumption. Each agent is then assigned to pro-
duce/consume u⇤

i (F̂ ), and is obliged to do so, accruing a util-
ity Fi

⇣
u⇤
i

⇣
F̂
⌘⌘

. Following the rules that it has announced
a priori before receiving the bids, the ISO then collects a
payment pi(F̂ ) from agent i, defined as follows:

pi(F̂ ) :=
X

j 6=i

F̂j(u
(i))�

X

j 6=i

F̂j(u
⇤),
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where u(i) is defined as the optimal solution to the following
problem:

max
u�i

X

j 6=i

F̂j(uj)

subject to X

j 6=i

uj = 0.

We can see that pi is the cost to the rest of the agents due
to agent i’s presence, which leads agents to internalize the
social externality.
In fact, the VCG mechanism is a special case of the Groves

mechanism [17], where payment pi is defined as:

pi(F̂ ) = hi(F̂�i)�
X

j 6=i

F̂j(u
⇤(F̂ )).

where hi is any arbitrary function and F̂�i :=
(F̂1, .., F̂i�1, F̂i+1, ..., F̂N ). Truth-telling is a dominant strat-
egy in the Groves mechanism [17]. That is, regardless of
other agents’ strategies, an agent cannot do better than
truthfully declaring its utility function.

Theorem 1. [17] Truth-telling (F̂i ⌘ Fi) is the dominant

strategy equilibrium in Groves mechanism.

Proof. Suppose agent i announces the true utility function
Fi. Let F̄ := (F̂1, ...F̂i�1, Fi, F̂i+1, ..., F̂N ) and F̄�i :=
(F̂1, ...F̂i�1, F̂i+1, ..., F̂N ). Let F̄ (u) :=

P
i F̄i(ui). Let ū⇤

i

be what ISO assigns, and pi(F̄ ) be what ISO charges, when
F̄ is announced by the agents. Let u⇤

i be what ISO assigns
and pi(F̂ ) be what ISO charges when F̂ is announced by
agents.
Note that F̄�i = F̂�i, and so hi(F̄�i) = hi(F̂�i). Hence

for agent i, the difference between the net utilities resulting
from announcing Fi and F̂i is

h
Fi(ū

⇤
i )� pi(F̄ )

i
�
h
Fi(u

⇤
i )� pi(F̂ )

i

=Fi(ū
⇤
i )� hi(F̄�i) +

X

j 6=i

F̂j(ū
⇤
i )� Fi(u

⇤
i ) + hi(F̂�i)

�
X

j 6=i

F̂j(u
⇤
i ) = F̄ (ū⇤)� F̄ (u⇤) � 0,

where the last inequality holds since ū⇤ is the optimal
solution to the social welfare problem with utility functions
F̄ .

The above VCG scheme can be extended to the important
case of dynamic systems. We first consider the deterministic
case. This is a straightforward extension of the static case
since one can consider the sequence of actions taken by an
agent as a vector action. That is, one can simply view the
problem as an open-loop control problem, where the entire
decision on the sequence of controls to be employed is taken
at the initial time, and so treatable as a static problem.
For agent i, let Fi,t(xi(t), ui(t)) be the one-step utility

function at time t. Suppose that the state of agent i evolves
as:

xi(t+ 1) = gi,t(xi(t), ui(t)).

The ISO asks each agent i to bid its one-step utility func-
tions {F̂i,t(xi(t), ui(t)), t = 0, 1, . . . , T � 1}, state equation
{ĝi,t, t = 0, 1, . . . , T � 1}, and initial condition x̂i,0. The
ISO then calculates (x⇤

i (t), u
⇤
i (t)) as the optimal solution,

assumed to be unique, to the following utility maximization
problem:

max
NX

i=1

T�1X

t=0

F̂i(xi(t), ui(t))

subject to

xi(t+ 1) = ĝi(xi(t), ui(t)), for 8i and 8t,
NX

i=1

ui(t) = 0, for 8t,

xi(0) = x̂i,0, for 8i.

We denote this problem as (F̂ , ĝ, x̂0). We can extend the
notion of VCG payment pi to the deterministic dynamic
system as follow. Let

pi :=
X

j 6=i

T�1X

t=0

F̂j(x
(i)
j (t), u(i)

j (t))�
X

j 6=i

T�1X

t=0

F̂j(x
⇤
j (t), u

⇤
j (t)).

Here (x(i)
i (t), u(i)

i (t)) is the optimal solution to the following
problem, which is assumed to be unique:

max
X

j 6=i

T�1X

t=0

F̂j(xj(t), uj(t))

subject to

xj(t+ 1) = ĝj(xj(t), uj(t)), for j 6= i and 8t,
X

j 6=i

uj(t) = 0, for 8t,

xj(0) = x̂j,0, for j 6= i.

More generally, we can consider a Groves payment pi
defined as:

pi := hi,t(F̂�i)�
X

j 6=i

T�1X

t=0

F̂j(x
⇤
j (t), u

⇤
j (t)).

where hi,t is any arbitrary function. We first show in the
following theorem that truth-telling is still the dominant
strategy equilibrium in Groves mechanism.

Theorem 2. Truth-telling of utility function, state dynamics

and initial condition (F̂i = Fi, ĝi = gi and x̂i,0 = xi,0) is a

dominant strategy equilibrium under the Groves mechanism

for a dynamic system.

Proof. Let F̂ := (F̂1, ..., F̂i, ..., F̂N ), ĝ := (ĝ1..., ĝi, ..., ĝN ),
and x̂0 := (x̂1,0, ..., x̂i,0, ..., x̂N,0). Suppose agent
i announces the true one-step utility function Fi,
true state dynamics gi, and true initial condition
xi,0. Let F̄ := (F̂1, ...F̂i�1, Fi, F̂i+1, ..., F̂N ),
ḡ := (ĝ1, ...ĝi�1, gi, ĝi+1, ..., ĝN ), and x̄0 :=
(x̂1,0, ...x̂i�1,0, xi,0, x̂i+1,0, ..., x̂N,0). Let (x̄⇤

i (t), ū
⇤
i (t))
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be what ISO assigns and pi(F̄ , ḡ, x̄0) be what ISO charges
when (F̄ , ḡ, x̄0) is announced by agents. Let (x⇤

i (t), u
⇤
i (t))

be what ISO assigns and pi(F̂ , ĝ, x̂0) be what ISO
charges when (F̂ , ĝ, x̂0) is announced by agents. Let
F̄ (xi(t), ui(t)) :=

P
i F̄i(xi(t), ui(t)).

For agent i, the difference between net utility resulting
from announcing (Fi, gi, xi,0) and (F̂i, ĝi, x̂i,0) is
hX

t

Fi(x̄
⇤
i (t), ū

⇤
i (t))� pi(F̄ , ḡ, x̄0)

i
�
hX

t

Fi(x
⇤
i (t), u

⇤
i (t))

� pi(F̂ , ĝ, x̂0)
i

=
X

t

Fi(x̄
⇤
i (t), ū

⇤
i (t))� hi,t(F̄�i) +

X

j 6=i

X

t

F̂j(x̄
⇤
i (t), ū

⇤
i (t))

�
X

t

Fi(x
⇤
i (t), u

⇤
i (t)) + hi,t(F̂�i)�

X

j 6=i

X

t

F̂j(x
⇤
i (t), u

⇤
i (t))

=
X

t

F̄ (x̄⇤
i (t), ū

⇤
i (t))�

X

t

F̄ (x⇤
i (t), u

⇤
i (t)) � 0,

since (x̄⇤
i (t), ū

⇤
i (t)) is the optimal solution to the problem

(F̄ , ḡ, x̄0).

IV. THE DYNAMIC STOCHASTIC VCG
In the above section, we have shown that the VCG mech-

anism can be naturally extended to dynamic deterministic
systems by employing an open-loop solution. However, when
agents are dynamic stochastic systems, we need to consider
closed-loop solutions. Such closed-loop controls depend on
the observations of the agents, which are generally private.
So the states of the system are private random variables.
Hence the problem becomes one of additionally ensuring
that each agents reveals its “true” states at all times. This
additional complication appears to prevent a solution for
general systems. However, as we will see, in the case of
LQG agents one can indeed ensure the dominance of truth
telling strategies that reveal the true states. However, it does
not appear feasible to also then ensure that the agents reveal
their true state equations and cost functions.
To obtain the correct payment structure, we will need to

carefully redefine the VCG payments such that incentive
compatibility is still assured for the special case of linear
quadratic Gaussian (LQG) systems. As noted above, one
cannot treat the system as an open-loop system as in the
previous section. In particular, this necessitates collecting
payments from agents at each step. For agent i, let wi ⇠
N (0,�i) be the discrete-time additive Gaussian white noise
process affecting state xi(t) via:

xi(t+ 1) = aixi(t) + biui(t) + wi(t),

where xi(0) ⇠ N (0, ⇣i) and is independent of wi. Each
agent has a one-step utility function

Fi(xi(t), ui(t)) = qix
2
i (t) + riu

2
i (t).

Let X(t) = [x1(t), ..., xN (t)]T , U(t) = [u1(t), ..., uN (t)]T

and W (t) = [w1(t), ..., wN (t)]T . Let Q =
diag(q1, ..., qN )  0, R = diag(r1, ..., rN ) < 0,

A = diag(a1, ..., aN ), B = diag(b1, ..., bN ),
⌃ = diag(�1, ...,�N ) > 0 and Z = diag(⇣1, ..., ⇣N ) > 0.
Let RSW :=

PN
i=1

PT�1
t=0 [XT (t)QX(t) + UT (t)RU(t)]

be the random variable denoting the social welfare of the
agents, and let SW := E[RSW ] denote the expected social
welfare. The random social welfare could also be called the
“ex-post social welfare”. The ISO aims to maximize the
social welfare, leading to the following LQG problem:

max E
NX

i=1

T�1X

t=0

⇥
XT (t)QX(t) + UT (t)RU(t)

⇤

subject to

X(t+ 1) = AX(t) +BU(t) +W (t),

1TU(t) = 0, for 8t, (1)

X(0) ⇠ N (0, Z),W ⇠ N (0,⌃).

We will rewrite the random social welfare and thereby the
social welfare in terms more convenient for us. We will
decompose X(t) as:

X(t) :=
tX

s=0

X(s, t), 0  t  T � 1, (2)

where X(s, s) := W (s�1) for s � 1 and X(0, 0) := X(0).
Let

X(s, t) := AX(s, t�1)+BU(s, t�1), 0  s  t�1, (3)

with U(s, t) yet to be specified. We suppose that U(t) can
also be decomposed as:

U(t) :=
tX

s=0

U(s, t), 0  t  T � 1. (4)

Then regardless of how the U(s, t)’s are chosen, as long as
the U(s, t)’s for 0  s  t are indeed a decomposition of
U(t), i.e., (4) is satisfied, the random social welfare can be
written in terms of X(s, t)’s and U(s, t)’s as:

RSW =
T�1X

s=0

Ls,

where Ls for s � 1 is defined as:

Ls : =
T�1X

t=s


XT (s, t)QX(s, t) + UT (s, t)RU(s, t) (5)

+2

 
s�1X

⌧=0

X(⌧, t)

!
QX(s, t) + 2

 
s�1X

⌧=0

U(⌧, t)

!
RU(s, t)

�
,

and L0 is defined as:

L0 :=
T�1X

t=0

h
XT (0, t)QX(0, t) + UT (0, t)RU(0, t)

i
.

Hence,

SW = E
T�1X

s=0

Ls.
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In the scheme to follow the ISO will choose all U(s, t)’s
for different t’s at time s based on the information it has
at time s. (Note that t � s). Hence X(s, t) is completely
determined by W (s � 1), and U(s, t) for s  t  T � 1.
Indeed X(s, t) can be regarded as the contribution to X(t)
of these variables.
Here we assume that the ISO knows the true system

parameters Q, R, A and B. This may hold if the ISO
has previously run the VCG bidding scheme for a dynamic
deterministic system, or equivalently, a day-ahead market,
and system parameters remain unchanged when agents par-
ticipate in the real-time stochastic market.
We will consider a scheme where at each stage, the ISO

asks the agents to bid their xi(s, s) (which is equal to wi(s�
1)) at each time s, for 0  s  T � 1. Let x̂i(s, s) be what
the agents actually bid, since they may not tell the truth.
Based on their bids x̂i(s, s) for 1  i  N , the ISO solves
the following problem:

max Ls

subject to

1TU(s, t) = 0, for s  t  T � 1,

X̂(s, s) = [x̂1(s, s), ..., x̂N (s, s)]T .

The variables X̂(s, t) for t > s are defined as X̂(s, t) =
AX̂(s, t� 1) +BU(s, t� 1), that is, with zero noise in the
state variable updates starting from the “initial condition”
X̂(s, s).
The interpretation is the following. Based on the bids,

X̂(s, s), which is supposedly a bid of W (s � 1), the ISO
calculates the trajectory of the linear systems from time s
onward, assuming zero noise from that point on. It then
allocates consumptions/generations U(s, t) for future periods
t for the corresponding deterministic linear system, with bal-
ance of consumption and production (1) at each time t. These
can be regarded as taking into account the consequences
of the disturbance occurring at time s. More specifically,
X(s, t) is the trajectory resulting from the disturbanceW (s�
1) at time s, and U(s, t) is the adjustment made at time s
to allocation at time t due to disturbance at time s.
Next, the ISO collects a payment pi(s) from agent i at

time s as:

pi(s) := hi(X̂�i(s, s))�
X

j 6=i

T�1X

t=s


qj x̂

2
j (s, t) + rju

⇤2
j (s, t)

+2qj

 
s�1X

⌧=0

x̂j(⌧, t)

!
x̂j(s, t) + 2rj

 
s�1X

⌧=0

uj(⌧, t)

!
u⇤
j (s, t)

�
,

where X̂�i(s, s) = [x̂1(s, s), ..., x̂i�1(s, s), x̂i+1(s, s), ...
, x̂N (s, s)]T , and hi is any arbitrary function (as in the
Groves mechanism).
Before we prove incentive compatibility, we need to define

what is meant by the term “rational agents”.

Definition 1. Rational Agents: We say agent i is rational at
time T � 1, if it adopts a dominant strategy, when there is a

unique dominant strategy. An agent i is rational at time t if
it adopts a dominant strategy at time t under the assumption
that all agents including itself are rational at times t+1, t+
2, ..., T � 1, when there is a unique such dominant strategy.

Rationality is defined in a recursion fashion.

Theorem 3. Truth-telling of state x̂i(s, s) for 0  s  T�1,
i.e., bidding x̂i(s, s) = wi(s � 1), is the unique dominant

strategy for the stochastic ISO mechanism, if system param-

eters Q  0, R < 0, A and B are truthfully known, and

agents are rational.

Proof. We show by backward induction. When agent i is at
the last stage T � 1, it is easy to verify that truth-telling of
state (noise) is dominant, i.e., x̂i(T � 1, T � 1) = xi(T �
1, T � 1). We next employ induction and so assume that
truth-telling of states is a dominant strategy equilibrium at
time k. If agents are rational, we can take expectation over
X(s, s), s � k, and since optimal feedback gain does not
change with respect to time, the cross terms cancel and agent
i’s objective aligns with the ISO’s. We conclude that truth-
telling x̂i(k � 1, k � 1) = xi(k � 1, k � 1) is the dominant
strategy for agent i at time k � 1.

V. CONCLUDING REMARKS

It remains an open problem how to construct a mechanism
that ensures the dominance of dynamic truth-telling for
agents comprised of general stochastic dynamic systems.
For the special case of LQG agents, by careful construction
of a sequence of layered VCG payments over time, the
intertemporal effect of current bids on future payoffs can be
decoupled, and truth-telling of dynamic states is guaranteed
if system parameters are known and agents are rational. Our
results can be generalized to LQG systems with partial state
observation and time-varying cost and/or state dynamics.
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