
Proceedings of the ASME 2019 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2019
August 18–21, 2019, Anaheim, California, USA

IDETC2019-98251

A GRAPH COLORING TECHNIQUE FOR IDENTIFYING THE MINIMUM NUMBER OF
PARTS FOR PHYSICAL INTEGRATION IN PRODUCT DESIGN

Praveen Kumare Gopalakrishnan
Graduate Research Assistant

Department of Mechanical and Aerospace Engineering
Industrial and Systems Engineering Department

University at Buffalo, SUNY
Buffalo, NY 14260

Email: pgopalak@buffalo.edu

Jeffery Cavallaro
Graduate Research Assistant

Department of Mathematics and Statistics
San Jose State University

San Jose, CA 95192
Email: jeffery.cavallaro@sjsu.edu

Sogol Jahanbekam
Assistant Professor

Department of Mathematics and Statistics
San Jose State University

San Jose, CA 95192
Email: sogol.jahanbekam@sjsu.edu

Sara Behdad
Assistant Professor

Department of Mechanical and Aerospace Engineering
Industrial and Systems Engineering Department

University at Buffalo, SUNY
Buffalo, NY, 14260

Email: sarabehd@buffalo.edu

ABSTRACT
The objective of this study is to develop a mathematical

framework for determining the minimum number of parts re-
quired in a product to satisfy a list of functional requirements
(FRs) given a set of connections between FRs. The problem is
modeled as a graph coloring technique in which a graph G with
n nodes (representing the FRs) and m edges (representing the
connections between the FRs) is studied to determine the graph’s
chromatic number χ(G), which is the minimum number of colors
required to properly color the graph. The chromatic number of
the graph represents the minimum number of parts needed to sat-
isfy the list of FRs. In addition, the study calculates the compu-
tational efficiency of the proposed algorithm. Several examples
are provided to show the application of the proposed algorithm.

NOMENCLATURE

FR A functional requirement in a design

DP A design parameter
(FR) A vector of functional requirements
(DP) A vector of design parameters
(A) A square, full-rank design matrix that relates FRs to DPs

by the matrix equation (FR) = (A)(DP)
G A graph, which is a mathematic object consisting of a set of

nodes and a set of edges
V (G) The set of all nodes in graph G
E(G) The set of all edges in graph G
n(G) The order of (number of nodes in) graph G
m(G) The size of (number of edges in) graph G
u,v,w, . . . Nodes in a graph
uv An edge in a graph between nodes u and v
N(v) The neighborhood of node v
d(v) The number of edges incident to node v in a graph
c A coloring of a graph
G−v The graph formed from G with node v and all of its inci-

1 Copyright c© 2019 by ASME

dent edges removed
G−X The graph formed from G with nodes in some set X ⊆

V (G) and all of their incident edges removed
G ·uv The graph formed from G by contracting nodes u and v
G+uv The graph formed from G by adding edge uv
χ(G) The chromatic number of graph G

BACKGROUND

The objective of this study is to determine the minimum number
of parts required in a product to satisfy the list of FRs. There-
fore, in this section, we provide an overview of the concepts of
physical integration, part consolidation, part integration, modu-
lar design, and part clustering and how they have been presented
in the literature as a means to reduce the number of parts in a
product.

Physical Integration
The concept of physical integration was first introduced in

the Axiomatic Design field by Professor Nam P. Suh at MIT in
1976. Per Axiomatic Design, a good design should satisfy two
main axioms: the Independence Axiom and the Information Ax-
iom. The Independence Axiom states that the functional require-
ments (FRs) of a design should be independently satisfied by a
list of Design Parameters (DPs). The Information Axiom states
that a design with lower information content or lower complex-
ity has a higher probability of success [1]. In addition, Professor
Suh believes that a simple design — a design in which the list of
FRs can be satisfied by a limited number of parts — is a good
design. This suggests the idea of physical integration in order to
achieve a lower number of parts in a product.

It should be noted that having a lower number of parts does
not conflict with the Independence Axiom. The statement of FR
independence is embodied in the design matrix equation:

(FR) = (A)(DP) (1)

where (FR) is a vector of some number of functional require-
ments, (DP) is a vector of an equal number of design parame-
ters, and (A) is a square, full-rank design matrix. Thus, a higher
number of FRs (rows of (A)) requires an equally higher number
of DPs (columns of (A)) in order to maintain the independence
of the FRs, but does not necessarily require a higher number of
parts [2].

Concepts such as part consolidation in additive manufactur-
ing [3–5], modular design, and part clustering convey a similar
message as physical integration, since all of them aim to reduce
the number of parts or modules within a product. However, phys-
ical integration is beyond just part consolidation or improving the
degree of modularity in a design, as it aims to increase the degree

of physical integration while simultaneously satisfying the inde-
pendence of the FRs. The number of studies that have addressed
the concept of physical integration is very limited, therefore we
briefly provide a review of studies that have covered the concepts
of part consolidation, modular design, and part clustering.

Part Consolidation
Part consolidation is a capability offered by additive manu-

facturing that makes the design and manufacturing of complex
products possible. It can be used with the aim of reducing the
weight and height of a multipart assembly [4]. Yang et al. [5]
developed a part consolidation method that uses FRs, an initial
CAD model, and performance requirements as inputs to first in-
tegrate feasible functions and then optimize the structure of the
design. In another study [3], the same group attempted to au-
tomate the traditional procedure for applying design heuristics
that are used to select potential candidates for part consolidation.
They formulated the problem as a graph and developed an algo-
rithm to group parts as part consolidation candidates considering
the physical attributes of the parts. Tang et al. [6] commented that
functionality integration and part consolidation will improve the
sustainability of the design by reducing part count and improving
performance.

Modular Design
The modular design concept divides the design into smaller

modules that can be independently analyzed or can be used in-
terchangeably with different modules [7]. Modular design uses
pre-defined modular interfaces, industry standard interfaces for
functional partitioning of reusable modules, and discrete scala-
bility [8]. These concepts use modules that are similar to the FRs
used in Axiomatic Design. The FRs are independent on their own
and have their own function just like modules and can be used
for different designs or in other words combined with different
modules. Applications vary from biomedical (protein analysis),
where similar structured proteins are considered as modules and
their interactions are studied [9–11], to product design studies
focused on product family design [12–14]. These researchers
show how the modular design concept uses modules as indepen-
dent entities used for clustering analysis.

Part Clustering
Graph theory and network analysis is a promising approach

for clustering analysis and decision-making in engineering de-
sign [15–17]. Converting design problems to graphs, or their
equivalent matrices, helps designers understand them better as
abstractions of real-world problems. There are different ways
of analyzing the graphs. Graph coloring is a preferred tech-
nique [18] that offers a wide range of applications like graph
partitioning algorithms, graph clustering techniques, ranking of

2 Copyright c© 2019 by ASME

graphs, and complexity analysis [19].
The graph partitioning approach has already been used for

solving design problems. Li and his group worked on devel-
oping a knowledge-based graph partitioning technique to iden-
tify reusable CAD model designs [20]. Wolfie et. al. devel-
oped a graph partitioning technique for watermarking in VLSI
design [21, 22]. Other design problems such as topological de-
sign for industrial networks [23], RNA graph partitioning [24],
SMART partitioning to analyze datasets [25], and graph par-
titioning for multi-processor system-on-a-chip design [26] are
all examples of successful implementations of graph partition-
ing techniques. Similar to partitioning techniques, graph cluster-
ing has also been widely used for analyzing design optimization
problems [27], data analysis [28], and structural design [29].

While graph partitioning techniques have already been used
in the design domain for different purposes, the application of
them for defining the number of parts is quite new. The main
contribution of this study is to develop a new graph partitioning
technique for identifying the number of parts within a product by
considering the compatibility of FRs.

GRAPH THEORY BASICS

In order to better understand the proposed algorithm, a short in-
troduction to the concepts and terminology of graph theory is
provided in this section.

Nodes and Edges
A graph G is a mathematical object consisting of two sets:

a set of nodes (vertices), denoted by V (G); and a set of edges,
denoted by E(G). Each edge in E(G) is associated with two
(possibly the same) nodes in V (G), referred to as the edge’s end-
points. The endpoints of an edge are said to be adjacent. An
edge and its endpoints are said to be incident. A node with no
incident edges is said to be isolated.

For our application, it is sufficient to use a restricted set of
graphs called simple graphs; these are graphs with no loop edges
on a single node and no multiple edges between two nodes. Thus,
an edge’s endpoints are always distinct and each pair of nodes has
at most one incident edge.

Individual nodes in a graph are typically identified by lower-
case letters: u,v,w, . . .∈V (G). A node can also be identified by a
descriptive label. Edges are typically identified by juxtaposition
of their endpoints: uv ∈ E(G). Note that simple graphs are not
directed, so uv and vu denote the same edge.

Order and Size
The order of a graph G, denoted by n(G) or just n if the

graph in question is unambiguous, is the number of nodes in G:

n = n(G) = |V (G)| (2)

A graph with no nodes (and hence no edges) is called the null
graph.

The size of a graph G, denoted by m(G) or just m if the graph
in question is unambiguous, is the number of edges in G:

m = m(G) = |E(G)| (3)

A graph with no edges is called trivial.
The maximum number of edges in a graph G is given by the

following theorem:

Theorem 1. Let G be a graph of order n and size m:

m≤ n(n−1)
2

(4)

A graph with the maximum number of edges (hence all of
the nodes in G are adjacent with each other) is called complete.

Neighborhood and Degree
Given a graph G and a node v ∈V (G), the neighborhood of

v, denoted by N(v), is the set of all nodes in G that are adjacent
to v:

N(v) = {u ∈V (G)|uv ∈ E(G)} (5)

The degree of v, denoted by d(v), is the number of edges
in G that are incident to v, which corresponds to the number of
nodes in G that are adjacent to v. In other words:

d(v) = |N(v)| (6)

For a graph of order n, it is the case that 0≤ d(v)< n. Note that
for an isolated node v: N(v) = /0 and d(v) = 0.

The degrees of the nodes in a graph and the size of the graph
are related by the so-called Fundamental Theorem of Graph The-
ory:

Theorem 2 (Fundamental Theorem of Graph Theory).
Let G be a graph of size m:

∑
v∈V (G)

d(v) = 2m (7)

Coloring
A coloring c of a graph G is a function c : V (G)→C, where

C is a set of “colors.” Thus, the color of a node is nothing more

3 Copyright c© 2019 by ASME

than an attribute of the node. Although the elements of C are usu-
ally actual colors (red, green, blue, etc.), a graph coloring prob-
lem is free to select any value type for the color attribute. Note
that there is no assumption that c is surjective, so the codomain
C may contain unused colors.

A coloring c on a graph G is called proper when:

∀u,v ∈V (G),v ∈ N(u) =⇒ c(u) 6= c(v) (8)

In other words, no two adjacent nodes have the same color.
A proper coloring c of a graph G where |C| = k is called a

k-coloring of G; the coloring uses at most k colors. A graph that
has a k-coloring is called k-colorable. Since there is no require-
ment to use all of the colors in a k-coloring of a graph G, we can
make the following statement:

Proposition 1. Let G be a graph:

G is k-colorable =⇒ G is (k+1)-colorable

The minimum k such that G is k-colorable is called the chro-
matic number of G, denoted by χ(G). A k-coloring for a graph
G where k = χ(G) is called k-chromatic.

The primary purpose of a k-coloring of a graph G is to dis-
tribute the nodes of G into k so-called independent (some pos-
sibly empty) sets, where all of the nodes in an independent set
are non-adjacent. We use the term “distribute” instead of the
term “partition” since the formal definition of a partition does
not allow for empty sets. However, note that when a coloring is
chromatic, there are no empty sets and the distribution is a true
partition.

PURPOSE

The purpose of this paper is to develop a graph coloring tech-
nique for determining the minimum number of parts required in
a product to satisfy a list of functional requirements (FRs) con-
sidering a set of connections between FRs. It is assumed that the
designer has already determined the FRs, which are represented
by the nodes of a graph, and has determined which FRs cannot
be satisfied in the same part, represented by edges between in-
compatible FR nodes. The solution then becomes determining
the chromatic number for the resulting graph.

The development of FRs is driven by the customer attributes
from the customer domain and the FRs are subject to the inde-
pendence and information axioms [30]. Thus, the determination
of the nodes in the graph tend to be relatively clear. The de-
termination of the connections between the FRs may not be so
straightforward. In practice, the compatibility of the nodes is
defined by the likelihood that the designer would like to have
certain FRs together. In fact, the graph is defined based on
certain predefined feasibility principles used by designers. One

possible framework for determining the edges in the graph may
be found in the movement, material, and assembly/disassembly
constraints of Boothroyd and Dewhurst’s design for manufacture
and assembly (DFMA) [31]. Regardless, FR and edge determi-
nation are assumed to have been decided prior to application of
the proposed algorithm, and thus the methods for doing so are
beyond the scope of this paper.

It is important to note that the goal of the proposed algorithm
is to determine the chromatic number for the resulting graph, not
to determine a particular chromatic coloring. Determining the
chromatic number is an NP-hard problem. The typical approach
in graph theory is to apply various theorems to try and determine
a lower bound, and then use some heuristic algorithm like greedy
coloring to determine an upper bound. If one gets lucky, the
upper and lower bounds match and the chromatic number is thus
found. All known exact algorithms run in exponential time. So,
like most exponential-time algorithms, the goal is to develop an
algorithm that shaves magnitude from the exponent.

In one of the previous papers of the authors [32], a graph col-
oring technique was defined to determine the number of parts;
however, that algorithm was not computationally efficient and
the user was required to test the algorithm for a list of a given
number of parts. In this paper, we aim to overcome the limita-
tions of the previous algorithm and prove a theorem to determine
the number of parts in a closed-form computational timeframe.
Moreover, the proposed algorithm considers the absolute com-
patibility of FRs unlike the previous algorithm. which integrates
the weighted connections between FRs. Overall, while both al-
gorithms have the same objective of minimizing the number of
parts, their applications and the scopes of their usage would be
different.

PROPOSED ALGORITHM

We start with a precise statement of the proposed algorithm. This
is followed by a more detailed description of the algorithm’s
steps and the application of those steps to an example graph. Fi-
nally, for the hearty reader, the theoretical basis for the algorithm
and the algorithm’s computational complexity is presented.

The input to the algorithm is a graph G whose nodes repre-
sent the functional requirements (FRs) of a product and whose
edges represent the connections between those FRs: adjacent
FRs cannot be combined into a single part due to some design
constraint enforced by the designer. The output is χ(G), which
represents the minimum number of parts required to satisfy all of
the FRs in the product. Once this number is known, any solution
from a heuristic algorithm such as the greedy coloring algorithm
that uses this number of colors in known to be ideal. FRs of the
same color can then be combined into the same part.

The algorithm is divided into two parts: a recursive subrou-
tine and an outer main loop.

4 Copyright c© 2019 by ASME

Recursive Subroutine
The recursive subroutine: is-k-colorable(G,k), is responsible

for determining whether the specified graph G is k-colorable for a
specified value of k. It returns either true or false. Any alterations
that the subroutine makes to G are passed back to the calling
main loop.

The steps of the recursive subroutine are as follows:

1. If n≤ k then return true (Proposition 2).
2. If m >

n
2k

(kn−n) then return false (Lemma 1).

3. Let X = {v ∈V (G)|d(v)< k}. If |X |= 0 then go to 4. Oth-
erwise, replace G with G−X and go to 1 (Corollary 2).

4. If G has nodes u and v such that N(u) ⊆ N(v) then replace
G with G−u and go to 1 (Lemma 4).

5. Select two non-adjacent nodes u,v ∈V (G) with the smallest
number of common neighbors. If k≥ 2 and |N(u)∩N(v)|>
n−2− n−2

k−1
then return false (Corollary 3).

6. Return is-k-colorable(G · uv, k) or is-k-colorable(G+ uv, k)
(Lemma 7).

The subroutine is guaranteed to return because either there
will be sufficient node reductions and/or contractions such that
n ≤ k or sufficient edge additions such that the graph becomes
complete and m > n

2k (kn−n) for any k < n.

Main Loop
The main loop: find-k-colorable(G), is responsible for de-

termining the chromatic number for the specified graph G. It
returns χ(G).

The steps of the main loop are as follows:

1. If n = 0 then return 0.
2. Set k = 1.
3. If is-k-colorable(G, k) then return k.
4. k = k+1
5. Go to 3.

The main loop is guaranteed to complete because eventually
k will exceed n, which will cause the called subroutine to return
true.

ALGORITHM DESCRIPTION

The main loop of the algorithm tries increasing values of k un-
til the called recursive subroutine confirms that G is k-colorable.
This will find the smallest such k, which is indeed the desired
χ(G) value. Thus, the rest of this section will focus on the recur-
sive subroutine.

The recursive subroutine starts with one fairly straightfor-
ward fact: if n≤ k then G must be k-colorable because each node
can be assigned its own color:

Proposition 2. Let G be a graph of order n and let k∈N∪{0}:

n≤ k =⇒ G is k-colorable.

Thus, the strategy of the recursive subroutine is to attempt to
decompose G into progressively simpler graphs with fewer nodes
such that G is k-colorable iff the simpler graphs are k-colorable.
If such a simpler graph can be found of order n≤ k then we can
conclude that the original G is indeed k-colorable. Otherwise,
the main loop increments k and we try again.

The steps of the recursive subroutine are described in the
following sections.

STEP 1: Checking for Success
This step applies the success condition of Proposition 2. If

n ≤ k then every node can have its own color and the graph is
k-colorable so return true. Otherwise, continue with the next
step.

STEP 2: Edge Density Test
As the number of edges increases the number of adjacencies

increases thus requiring a larger k. This test establishes an edge
density threshold:

n
2k

(kn−n) (9)

If the size m exceeds this threshold then the graph cannot be
k-colorable so return false. This will cause the main loop to in-
crement k and try again. Otherwise, continue with the next step.

STEP 3: Removing Low-degree Nodes
Nodes with degrees < k are unlikely to affect k-colorability.

In fact, they (and their incident edges) can be removed without
affecting the k-colorability of a graph. This is the most efficient
order-reducing step of the algorithm. If some nodes are removed
then go to step 1. Otherwise, continue with the next step.

STEP 4: Removing Neighborhood Subsets
A node whose neighborhood is a subset of another node’s

neighborhood does not affect the overall colorability and can be
removed (along with its incident edges). This is the second and
slightly more complex order-reducing step of the algorithm. If
such a node is found and removed then go to step 1. Otherwise,
continue with the next step.

STEP 5: Smallest Neighborhood Intersection Test
If there are no more low-degree nodes or neighborhood sub-

sets then there is one more check that can be applied before hav-
ing to resort to expensive recursion. Two nodes with the smallest

5 Copyright c© 2019 by ASME

neighborhood intersection are located and then the following cal-
culation is made:

n−2− n−2
k−1

(10)

This is an upper bound for the smallest possible neighborhood
intersection. If the intersection of the previously found nodes
exceeds this value then the graph cannot be k-colorable so return
false. This will cause the main loop to increment k and try again.
If not, then proceed with the recursive step.

STEP 6: Recursive Step
It is the recursive steps that make algorithms like this so ex-

pensive. Hopefully, a determination for χ(G) is made by the pre-
ceding steps. If not, then recursive calling is necessary to further
decompose the graph.

First, it is assumed that the graph is k-colorable with some
proper coloring c. Now, consider the nodes determined in the
previous smallest neighborhood step. If such a c exists, then the
two nodes can have either the same color or different colors. The
same color allows the two nodes to be compacted in order to
reduce the order of the graph. Different colors allow an edge to
be added between the two nodes. The goal of the extra edge is to
affect the subsequent edge density calculation.

ALGORITHM EXAMPLE

Graphs are better visualized pictorially, where the nodes are
drawn as circles with labels and edges are drawn as lines be-
tween adjacent nodes. Thus, the algorithm will be demonstrated
using the sample graph in Figure 1.

FR1

FR2 FR3

FR4 FR5

FR6FR7 FR8

FIGURE 1. SAMPLE GRAPH

Note that for the sample graph: n = 8 and m = 12.

1. (main) Since n = 8 > 0, G is not the null graph so set k = 1
and call the recursive subroutine.

2. (sub-0) Since n = 8 > 1 = k, do not return.
3. (sub-0) Perform the edge density calculation for n = 8,k =

1,m = 12:

n
2k

(kn−n) =
8

2 ·1
(1 ·8−8) = 0 < 12 = m (11)

Thus, G is not 1-colorable so return false.
4. (main) Set k = 2 and call the recursive subroutine.
5. (sub-0) Since n = 8 > 2 = k, do not return.
6. (sub-0) Perform the edge density calculation for n = 8,k =

2,m = 12:

n
2k

(kn−n) =
8

2 ·2
(2 ·8−8) = 16≥ 12 = m (12)

Thus, G may be 2-colorable so do not return.
7. (sub-0) Since d(FR8) = 1 < 2 = k, replace G with G−
{FR8} as shown in Figure 2.

FR1

FR2 FR3

FR4 FR5

FR6FR7

FIGURE 2. FR8 REMOVED

8. (sub-0) The new G now has n = 7 and m = 11. Since n =
7 > 2 = k, do not return.

9. (sub-0) Perform the edge density calculation for n = 7,k =
2,m = 11:

n
2k

(kn−n) =
7

2 ·2
(2 ·7−7) = 12.25 > 11 = m (13)

Thus, G may be 2-colorable so do not return.
10. (sub-0) There are no nodes with degree < 2 so continue.

6 Copyright c© 2019 by ASME

FR1

FR2 FR3

FR4 FR5

FR6

FIGURE 3. FR7 REMOVED

11. (sub-0) Since N(FR7) ⊆ N(FR5), replace G with G−FR7
as shown in Figure 3.

12. (sub-0) The new G now has n = 6 and m = 9. Since n = 6 >
2 = k, do not return.

13. (sub-0) Perform the edge density calculation for n = 6,k =
2,m = 9:

n
2k

(kn−n) =
6

2 ·2
(2 ·6−6) = 9≥ 9 = m (14)

Thus, G may be 2-colorable so do not return.
14. (sub-0) There are no nodes with degree < 2 so continue.
15. (sub-0) There are no neighborhood subsets so continue.
16. (sub-0) By the symmetry of the graph, we can see that any

two non-adjacent nodes have two common neighbors. So se-
lect FR1 and FR4 and perform the minimum neighborhood
intersection check:

n−2− n−2
k−1

= 6−2− 6−2
2−1

= 0 < 2 (15)

Thus, G is not 2-colorable so return false.
17. (main) Set k = 3 and call the recursive subroutine.
18. (sub-0) Since n = 6 > 3 = k, do not return.
19. (sub-0) Perform the edge density calculation for n = 6,k =

3,m = 9:

n
2k

(kn−n) =
6

2 ·3
(3 ·6−6) = 12≥ 9 = m (16)

Thus, G may be 3-colorable so do not return.
20. (sub-0) There are no nodes with degree < 2 so continue.
21. (sub-0) There are no neighborhood subsets so continue.

22. (sub-0) By the symmetry of the graph, we can see that any
two non-adjacent nodes have two common neighbors. So se-
lect FR1 and FR4 and perform the minimum neighborhood
intersection check:

n−2− n−2
k−1

= 6−2− 6−2
3−1

= 2≥ 2 (17)

Thus, G may be 3-colorable so do not return.
23. (sub-0) Contract FR1 and FR4 as shown in Figure 4 and

recursively call the recursive subroutine.

FR1

FR2 FR3

FR5

FR6

FIGURE 4. FR1 AND FR4 CONTRACTED

24. (sub-1) The new G now has n = 5 and m = 7. Since n = 5 >
3 = k, do not return.

25. (sub-1) Perform the edge density calculation for n = 5,k =
3,m = 7:

n
2k

(kn−n) =
5

2 ·3
(3 ·5−5) = 8.3≥ 7 = m (18)

Thus, G may be 3-colorable so do not return.
26. (sub-1) Since d(FR2) = d(FR6) = 2 < 3 = k, replace G

with G−{FR2,FR6} as show in Figure 5.
27. (sub-1) The new G now has n = 3 and m = 3. Since n = 3≤

3 = k, conclude that G is 3-colorable and return true.
28. (sub-0) Return true.
29. (main) Return χ(G) = 3.

For the sake of demonstration, assume that the recursive call
after the contraction returns false.

29. (sub-0) Add an edge between FR1 and FR4, as shown in
Figure 6 and recursively call the recursive subroutine.

30. (sub-1) The new G now has n = 6 and m = 10. Since n =
6 > 3 = k, do not return.

7 Copyright c© 2019 by ASME

FR1

FR3

FR5

FIGURE 5. FR2 AND FR6 REMOVED

FR1

FR2 FR3

FR4 FR5

FR6

FIGURE 6. FR1-FR4 EDGE ADDED

31. (sub-1) Perform the edge density calculation for n = 6,k =
3,m = 10:

n
2k

(kn−n) =
6

2 ·3
(3 ·6−6) = 12≥ 10 = m (19)

Thus, G may be 3-colorable so do not return.
32. (sub-1) There are no nodes with degree < 3 so continue.
33. (sub-1) Since N(FR5)⊆N(FR1, replace G with G−{FR5}

as shown in Figure 7.
34. (sub-1) The new G now has n = 5 and m = 7. Since n = 5 >

3 = k, do not return.
35. (sub-1) Perform the edge density calculation for n = 5,k =

3,m = 7:

n
2k

(kn−n) =
5

2 ·3
(3 ·5−5) = 8.3≥ 7 = m (20)

Thus, G may be 3-colorable so do not return.
36. (sub-1) Since d(FR3) = d(FR6) = 2 < 3 = k, replace G

with G−{FR3,FR6} as show in Figure 8.
37. (sub-1) The new G now has n = 3 and m = 3. Since n = 3≤

3 = k, conclude that G is 3-colorable and return true.

FR1

FR2 FR3

FR4

FR6

FIGURE 7. FR5 REMOVED

FR1

FR2

FR4

FIGURE 8. FR3 AND FR6 REMOVED

38. (sub-0) Return true.
39. (main) Return χ(G) = 3.

The result of running the algorithm on the sample graph
shows that the sample graph is 3-colorable. An example 3-
coloring of the sample graph is shown in Figure 9.

FR1

FR2 FR3

FR4 FR5

FR6FR7 FR8

FIGURE 9. SAMPLE 3-COLORING

8 Copyright c© 2019 by ASME

This means that nodes (FRs) that are assigned the same color
can be combined together into a single physical part.

THEORETICAL BASIS

The lemmas and corollaries that support the steps in the algo-
rithm are now presented. All of these proofs actually apply to
steps in the recursive subroutine; the main loop is more straight-
forward.

Edge Density Test (Step 2)
We start with the justification for the edge density threshold.

Lemma 1. Let G be a graph of order n and size m:

G is k-colorable =⇒ m≤ n
2k

(kn−n).

Proof. Assume G is k-colorable. This means that V (G) can be
distributed into k independent (some possibly empty) subsets.
Call these subsets A1, . . .Ak and let ai = |Ai|. Thus, each v ∈ Ai
can be adjacent to at most n−ai other nodes in G, and hence the
maximum number of edges incident to nodes in Ai is given by:
ai(n− ai) = nai− a2

i . Now, using the fundamental theorem of
graph theory, the maximum number of edges in G is given by:

m≤ 1
2

k

∑
i=1

(nai−a2
i)

with the constraint:

k

∑
i=1

ai = n

This problem can be solved using the Lagrange multiplier tech-
nique:

1
2
(n−2ai) = λ

ai =
n
2
−λ

k

∑
i=1

ai =
k

∑
i=1

(n
2
−λ

)
= k

(n
2
−λ

)
= n

λ =
n
2
− n

k

ai =
n
2
−
(n

2
− n

k

)
=

n
k

Therefore:

m≤ 1
2

k

∑
i=1

[
n
(n

k

)
−
(n

k

)2
]
=

k
2

(
n2k−n2

k2

)
=

n
2k

(kn−n)

The algorithm actually uses the contrapositive:

Corollary 1. Let G be a graph of order n and size m and let
k ∈ N:

m >
n
2k

(kn−n) =⇒ G is not k-colorable.

Low Degree Node Removal (Step 3)
Next is the lemma that justifies removal of low-degree

nodes. This lemma requires a small utility lemma, which is pre-
sented first:

Lemma 2. Let G be a graph and let v ∈V (G):

G is k-colorable =⇒ G− v is k-colorable.

Proof. Assume G is k-colorable.

Case 1: v has its own unique color.
G−v still has a proper coloring using k−1 colors and hence
is (k−1)-colorable, and thus is k-colorable (Proposition 1).

Case 2: v shares a color with some other node.
G− v still has a proper coloring using k colors and is thus
still k-colorable.

∴ G− v is k-colorable.

Now, we present the actual lemma:

Lemma 3. Let G be a graph and let v∈V (G) such that d(v)< k
for some k ∈ N:

G is k-colorable ⇐⇒ G− v is k-colorable.

Proof.
=⇒ Assume G is k-colorable.

∴ G− v is k-colorable (Lemma 2).
⇐= Assume G− v is k-colorable. By assumption, d(v) < k,

meaning v has at most k− 1 neighbors, using at most k− 1
colors. Thus, there is always an additional color avail-
able for v. So extend G− v to G and color v with one
of the available k − d(v) colors. The result is a proper
((k−1)+1 = k)-coloring of G.
∴ G is k-colorable.

The algorithm actually uses an inductive corollary that en-
ables all such low-degree nodes to be removed at once:

Corollary 2. Let G be a graph of order n and let X =
{v ∈V (G)|d(v)< k} for some k ∈ N:

9 Copyright c© 2019 by ASME

G is k-colorable ⇐⇒ G−X is k-colorable.

Proof. (by induction on |X |)

1. (Base Case) Let |X |= 0.
Since G− X = G, G is k-colorable ⇐⇒ G− X = G is
k-colorable.

2. (Inductive Assumption) Let |X |= r.
Assume G is k-colorable ⇐⇒ G−X is k-colorable.

3. (Inductive Step) Consider |X |= r+1.
Since |X |= r+1 > 0, there exists v ∈ X such that d(v)< k.
Let Y =X−{v} and note that |Y |= |X |−1=(r+1)−1= r.
So, G is k-colorable ⇐⇒ G− v is k-colorable (Lemma 3)
⇐⇒ (G−v)−Y = G−X is k-colorable (inductive assump-
tion).

Therefore, by the principle of induction, G is k-colorable
⇐⇒ G−X is k-colorable.

Neighborhood Subset Check (Step 4)
Next is the lemma that justifies removal of nodes whose

neighborhoods are subsets of other nodes.

Lemma 4. Let G be a graph and let u,v ∈ V (G) such that
N(u)⊆ N(v):

G is k-colorable ⇐⇒ G−u is k-colorable

Proof.
=⇒ Assume G is k-colorable.

∴ G−u is k-colorable (Lemma 2).
⇐= Assume G−u is k-colorable.

Since N(u) ⊆ N(v) and (by definition) u /∈ N(u), it must be
the case that u /∈ N(v) and hence uv /∈ E(G). Thus u and v
are allowed to have the same color. Furthermore, since every
node adjacent to u is also adjacent to v, none of these nodes
can have the same color as v. So extend G−u to G and color
u with the same color as v. The result is a proper coloring of
G using the same k colors.
∴ G is k-colorable.

Smallest Neighborhood Intersection (Step 5)
Next is the smallest neighbor intersection test. This lemma

requires a small utility lemma, which is presented first:

Lemma 5. Let G be a graph and let S ⊆ V (G) such that S 6= /0
and ∀u,v ∈ S,uv /∈ E(G):

(∃v ∈ S,∀w ∈V (G)−S,vw ∈ E(G)) =⇒ ∀u ∈ S,N(u)⊆ N(v)

Proof. Assume ∃v ∈ S,∀w ∈ V (G)− S,vw ∈ E(G). Now, as-
sume u ∈ S:

Case 1: N(u) = /0.
Therefore, by definition, N(u) = /0⊆ N(v).

Case 2: N(u) 6= /0.
Assume w ∈ N(u). This means that uw ∈ E(G) and hence
w /∈ S. So w ∈ V (G)− S and thus, by assumption, vw ∈
E(G). Hence w ∈ N(v) and therefore N(u)⊆ N(v).

∴ ∀u ∈ S,N(u)⊆ N(v)

Now, we present the actual lemma:

Lemma 6. Let G be a graph of order n and size m such that
∀u,v ∈V (G),N(u) 6⊆ N(v) and let k ∈ N such that 2≤ k < n:

G is k-colorable =⇒ ∃w,z ∈ V (G) such that |N(w)∩
N(z)| ≤ n−2− n−2

k−1 .

Proof. Assume G is k-colorable. This means that V (G) can be
distributed into k independent (some possibly empty) subsets
A1, . . . ,Ak such that ai = |Ai| and a1 ≥ a2 ≥ ·· · ≥ ak. Since n > k,
by the pigeonhole principle, it must be the case that a1 ≥ 2. As-
sume v ∈ A1.

First, assume by way of contradiction (ABC) that v is ad-
jacent to all other nodes in V (G)−A1. Since a1 ≥ 2, there ex-
ists u ∈ A1 such that u 6= v and u is not adjacent to v. Thus,
N(u) ⊆ N(v) (Lemma 5), which contradicts the assumption.
Therefore, ∃v′ ∈V (G)−A1 such that vv′ /∈E(G). Assume v′ ∈Ai
for some i such that 1 < i≤ k:

Case 1: ai = 1
By the pigeonhole principle:

a1 ≥
⌈

n−1
k−1

⌉
≥ n−1

k−1

Now, assume by way of contradiction (ABC) that v′ is ad-
jacent to all nodes in V (G)−A1−Ai and assume u ∈ N(v).
Then it must be the case that u ∈ V (G)− A1 − Ai and so
uv′ ∈ E(G) and thus u ∈ N(v′). Therefore N(v) ⊆ N(v′),
which contradicts the assumption. This means that there ex-
ists some u ∈ V (G)−A1−Ai such that uv′ /∈ E(G). This
results in the upper bound:

|N(v)∩N(v′)| ≤ n−2− n−1
k−1

Comparing this to the desired bound:(
n−2− n−2

k−1

)
−
(

n−2− n−1
k−1

)
=

1
k−1

> 0

for k ≥ 2. Thus the new bound is tighter and so:

|N(v)∩N(v′)| ≤ n−2− n−1
k−1

≤ n−2− n−2
k−1

10 Copyright c© 2019 by ASME

Case 2: ai = 2
By the pigeonhole principle:

a1 ≥
⌈

n−2
k−1

⌉
≥ n−2

k−1

This results in the upper bound:

|N(v)∩N(v′)| ≤ n−2− n−2
k−1

Case 3: ai ≥ 3
By the pigeonhole principle:

a1 ≥
⌈

n−3
k−1

⌉
≥ n−3

k−1

This results in the upper bound:

|N(v)∩N(v′)| ≤ n−3− n−3
k−1

Comparing this to the desired bound:

(
n−2− n−2

k−1

)
−
(

n−3− n−3
k−1

)
= 1− 1

k−1
≥ 0

for k ≥ 2. Thus the new bound is tighter and so:

|N(v)∩N(v′)| ≤ n−3− n−3
k−1

≤ n−2− n−2
k−1

∴ ∃w,z ∈V (G) such that |N(w)∩N(z)| ≤ n−2− n−2
k−1 .

The algorithm actually uses the contrapositive:

Corollary 3. Let G be a graph of order n and size m such that
∀u,v ∈V (G),N(u) 6⊆ N(v) and let k ∈ N such that 2≤ k < n:(

∀w,z ∈V (G), |N(w)∩N(z)|> n−2− n−2
k−1

)
=⇒

G is not k-colorable.

Recursive Step (Step 6)
Finally, we present the lemma for the recursive call.

Lemma 7. Let G be a graph of order n >= 2 and let u,v ∈ G
such that uv /∈ E(G):

G is k-colorable ⇐⇒ G ·uv or G+uv is k-colorable.

Proof.
=⇒ Assume G is k-colorable.

Case a: u and v have the same color.
Then ∀w ∈ N(u)∪N(v) it must be the case that w is
a different color than the color of u and v. Let v′ be
the contracted node, so that N(v′) = N(u)∪N(v), and
color v′ with the same color as u and v. The result is a
proper k-coloring of G ·uv.
∴ G ·uv is k-colorable.

Case b: u and v have the different colors in c.
By adding edge uv, u and v become adjacent and thus
must have different colors. Therefore, u and v can re-
tain their same colors. The result is a proper k-coloring
of G+uv.

∴ G ·uv or G+uv is k-colorable.
⇐= Assume G ·uv or G+uv is k-colorable.

Case a: G ·uv is k-colorable.
Let v′ be the contracted node with some assigned color.
It must be the case that ∀w ∈ N(v′),w has a different
color than v′. Expand G ·uv to G and color u and v with
the same color as v′. The result is a proper k-coloring
of G.

Case b: G+uv is k-colorable.
Remove edge uv. Since u and v are no longer adjacent,
there are no requirements on their colors. Thus, they
can retain their original colors. The result is a proper
k-coloring of G.

∴ G is k-colorable.

ALGORITHM COMPLEXITY

The running time of the proposed algorithm is determined by
Theorem 3.

Theorem 3. Let G be a graph of order n and size m. Using the
above algorithm, we can determine in time 2

n
2k (kn−n)−m if G is

k-colorable or not.

Proof. We apply induction on n
2k (kn−n)−m. If m> n

2k (kn−n)
then G is not k-colorable by Lemma 1. Thus, assume that m ≤
n
2k (kn−n).

To find the degrees of the nodes, the complexity would
be at most n2. If G has a node v of degree at most k − 1
then by the induction hypothesis we can determine in time
2

n−1
2k (k(n−1)−(n−1)−k)−m+k−1 if G− v is k-colorable. As a re-

sult, we can determine in time n2 + 2
n−1
2k (k(n−1)−(n−1))−m+k−1 <

2
n
2k (kn−n)−m if G is k-colorable, as desired.

To check if G has a pair of nodes u and v such that N(u) ⊆
N(v), we need at most n3 operations. If G has nodes u and

11 Copyright c© 2019 by ASME

v such that N(u) ⊆ N(v), then by the induction hypothesis we
can determine in time 2

n−1
2k (k(n−1)−(n−1))−m+k−1 if G− u is k-

colorable. As a result, by Lemma 4, we can determine in time
n3 +2

n−1
2k (k(n−1)−(n−1))−m+k−1 < 2

n
2k (kn−n)−m if G is k-colorable,

as desired.
Now suppose u and v are are nodes in G with the smallest

number of common neighbors in G. The cost to find this pair of
nodes in G is at most n3. By Lemma 6 we have |N(u)∩N(v)| ≤
n−2− n−2

k−1 .
By Lemma 7, G is k-colorable iff G · uv or G+ uv are k-

colorable. Note that G · uv has n− 1 nodes and at least m− n+
2+ n−2

k−1 edges. Moreover, G+ uv has n nodes and m+ 1 edges.
Therefore, we can apply the induction hypothesis on the graphs
G · uv and G+ uv. As a result, by the induction hypothesis, we
can determine in time:

n3+2
n−1
2k (k(n−1)−(n−1))−m+n−2− n−1

k−1 +2
n
2k (kn−n)−m+1 (21)

= n3 +2
n
2k (kn−n)−m−1

(
2

n
k−

1
2k−

n−2
k−1 +1

)
(22)

< 2
n
2k (kn−n)−m (23)

if G is k-colorable or not, as desired.

This expression predicts that the sample graph with n = 9
and k = 3 will take at most 1024 steps.

Looking at the edge cases, a complete graph should be on
the order of n steps, since the edge density test will fail on each
iteration until k = n. The expression predicts on the order of 1
step. An empty graph should be on the order of n2 steps, since
low degree removal will remove all the nodes on the first itera-
tion. The expression predicts on the order of 1 step.

The differences can be attributed to the fact that no recursion
is required for these edge cases, and so the exponential terms in
the proof are dominated by the polynomial time steps. Thus, the
derived expression best fits when recursion is necessary.

EXAMPLE: TOASTER DESIGN

In this section, we describe the application of the proposed algo-
rithm to the example of a toaster. The objective is to reduce the
number of parts. Initially, we consider a toaster with 9 FRs such
that each FR is assigned to a separate part — thus 9 parts.

Figure 10 shows two examples of toasters available in the
market. The goal is to reduce the number of parts from 9 to some
value less than 9 by using the proposed algorithm to partition the
FRs into the lower number of parts.

The following functional requirements are defined for the
toaster:

FR1: Advancing of bread (press down)
FR2: Toaster ON

FIGURE 10. TOASTER EXAMPLES

FR3: Toaster start
FR4: Grip for comfort
FR5: Toaster stop
FR6: Temperature control
FR7: Bread holder
FR8: Body must accommodate all parts
FR9: Bush for surface to prevent scratches

We consider three different scenarios (i.e., connections be-
tween FRs) for the same number of FRs. The designer needs to
connect the FRs together in the initial graph based on the desire
to integrate such FRs together. Table 1 illustrates the steps of the
algorithm for the first case. Table 2 shows the resulting graphs
for the other two cases. Finally, Tables 3, 4, and 5 show how the
FRs are arranged together based on the results obtained.

Figure 11 shows a general procedure that can be followed to
determine the minimum number of parts given a set of FRs and
the connection between them.

FIGURE 11. OVERALL PROCEDURE

12 Copyright c© 2019 by ASME

TABLE 1: TOASTER EXAMPLE CASE 1

k = 1
n = 9
m = 16

F1

F2F3

F4

F5

F6

F7

F8

F9

(1): n = 9 > 1 = k, so continue.

(2):
9

2 ·1
(1 ·9−9) = 0 < 16 = m, so set k = 2.

(1): n = 9 > 2 = k, so continue.

(2):
9

2 ·2
(2 ·9−9) = 20.25≥ 16 = m, so continue.

(3): The degrees of all the nodes are >= 2, so con-
tinue.

(4): N(F2)⊆ N(F3), so replace G with G−{F2}.

F1

F3

F4

F5

F6

F7

F8

F9

(1): n = 8 > 2 = k, so continue.

(2):
8

2 ·2
(2 ·9−9) = 18≥ 14 = m, so continue.

(3): The degrees of all the nodes are >= 2, so con-
tinue.

(4): N(F4)⊆ N(F5), so replace G with G−{F4}.
F1

F3

F5

F6

F7

F8

F9

13 Copyright c© 2019 by ASME

(1): n = 7 > 2 = k, so continue.

(2):
7

2 ·2
(2 ·7−7) = 24.5≥ 11 = m, so continue.

(3): The degrees of all the nodes are >= 2, so con-
tinue.

(4): N(F6)⊆ N(F3), so replace G with G−{F6}.
F1

F3

F5

F7

F8

F9

(1): n = 6 > 2 = k, so continue.

(2):
6

2 ·2
(2 ·6−6) = 9≥ 9 = m, so continue.

(3): The degrees of all the nodes are >= 2, so con-
tinue.

(4): N(F5)⊆ N(F9), so replace G with G−{F5}.
F1

F3

F7

F8

F9

(1): n = 5 > 2 = k, so continue.

(2):
5

2 ·2
(2 ·5−5) = 6.25 < 7 = m, so set k = 3.

(1): n = 5 > 3 = k, so continue.

(2):
5

2 ·3
(3 ·5−5) = 8.33≥ 7 = m, so continue.

(3): The degrees of F1,F7,F8 < 3 = k so replace G
with G−{F1,F7,F9}.

F9

(1): n = 1 ≤ 3 = k, so return true (G is 3-colorable).
An example 3-coloring is shown.

F1

F2F3

F4

F5

F6

F7

F8

F9

14 Copyright c© 2019 by ASME

TABLE 2. TOASTER EXAMPLE CASES 2 AND 3

Case 2: 3-colorable (n = 9 and m = 13)

F1

F2

F3

F4

F5

F6

F7

F8

F9

Case 3: 4-colorable (n = 9 and m = 15)

F1

F2

F3

F4

F5

F6

F7

F8

F9

15 Copyright c© 2019 by ASME

TABLE 3. ASSIGNING FRs TO PARTS FOR CASE 1

Case 1
3-colorable

Part 1:
FR1:Advancing of bread (press
down)
Part 2:
FR2:Toaster ON
FR3:Toaster start
FR6:Temperature control
FR7:Bread holder
FR8:Body must accommodate all
parts
Part 3:
FR4:Grip for comfort
FR5:Toaster Stop
FR9:Bush for surface to prevent
scratches

TABLE 4. ASSIGNING FRs TO PARTS FOR CASE 2

Case 2
3-colorable

Part 1:
FR1:Advancing of bread (press
down)
FR4:Grip for comfort
FR7:Bread holder
Part 2:
FR2:Toaster ON
FR6:Temperature control
FR9:Bush for surface to prevent
scratches
Part 3: FR3:Toaster start
FR5:Toaster Stop
FR8:Body must accommodate all
parts

CONCLUSION AND FUTURE WORK

The objective of the study is to develop a graph coloring tech-
nique to identify the minimum number of parts needed to satisfy
a list of FRs and the connections between them. The proposed
algorithm was applied to a toaster design with 9 FRs for 3 dif-

TABLE 5. ASSIGNING FRs TO PARTS FOR CASE 3

Case 3
4-colorable

Part 1:
FR1:Advancing of bread (press
down)
FR4:Grip for comfort
FR7:Bread holder
Part 2:
FR2:Toaster ON
FR6:Temperature control
Part 3:
FR3:Toaster start
FR5:Toaster Stop
FR8:Body must accommodate all
parts
Part 4:
FR9:Bush for surface to prevent
scratches

ferent configurations. The results showed that a 2-part design is
not possible to cover 9 FRs, but a 3-part design is achievable.
The proposed method has potential applications, particularly in
the additive manufacturing industry, which has the capability of
printing products with desired shape and complexity.

This work can be extended in several ways. First, the algo-
rithm can be employed for more complex systems and the effi-
ciency can be compared with different types of algorithms. Sec-
ond, the algorithm can be extended to consider the connection
between FRs based on design parameters, process variables, and
process control factors. Finally, the algorithm can be used in
different manufacturing contexts such as additive manufacturing
and smart manufacturing and its capabilities can be tested at the
process level as well as the design level.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation–USA under grants #CMMI-1727190 and
CMMI-1727743. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

16 Copyright c© 2019 by ASME

REFERENCES

[1] Shirwaiker, R. A., and Okudan, G. E., 2008. “Triz and
axiomatic design: a review of case-studies and a proposed
synergistic use”. J. Intell. Manuf., 19(1), Feb, pp. 33–47.

[2] P., Y. V., and Zakrevskij, A. A. S. A. D., 1986. “Appli-
cations of graph theory to the problems of logical design”.
Investig. Appl. Graph Theory, pp. 3–9.

[3] Yang, S., Santoro, F., and Zhao, Y. F., 2018. “Towards
a numerical approach of finding candidates for additive
manufacturing-enabled part consolidation”. J. Mech. Des.,
140(4), p. 41701.

[4] Schmelzle, J., Kline, E. V., Dickman, C. J., Reutzel, E. W.,
Jones, G., and Simpson, T. W., 2015. “(re) designing
for part consolidation: understanding the challenges of
metal additive manufacturing”. J. Mech. Des., 137(11),
p. 111404.

[5] Yang, S., Tang, Y., and Zhao, Y. F., 2015. “A new part con-
solidation method to embrace the design freedom of addi-
tive manufacturing”. J. Manuf. Process., 20, pp. 444–449.

[6] Tang, Y., Yang, S., and Zhao, Y. F., 2016. “Sustainable de-
sign for additive manufacturing through functionality inte-
gration and part consolidation bt”. In Handbook of Sustain-
ability in Additive Manufacturing, S. S. Muthu and M. M.
Savalani, eds., Vol. 1. Springer, Singapore, pp. 101–144.

[7] Rong, Z., Yang, Z., Li, Y., Chen, K., and Dan, B., 2017.
“Modular product design based on the supply chain net-
work”. Adv. Mech. Eng., 9(10), Oct, p. 1687814017732308.

[8] Simpson, T. W., Jiao, J., Siddique, Z., and Hölttä-Otto, K.,
2014. Advances in product family and product platform
design. Springer, New York.

[9] Reichmann, D., Rahat, O., Albeck, S., Meged, R., Dym,
O., and Schreiber, G., 2005. “The modular architecture of
protein–protein binding interfaces”. Proc. Natl. Acad. Sci.
U. S. A., 102(1), Jan, pp. 57–62.

[10] Kaksonen, M., Toret, C. P., and Drubin, D. G., 2005. “A
modular design for the clathrin-and actin-mediated endo-
cytosis machinery”. Cell, 123(2), pp. 305–320.

[11] Lunde, B. M., Moore, C., and Varani, G., 2007. “Rna-
binding proteins: modular design for efficient function”.
Nat. Rev. Mol. cell Biol., 8(6), p. 479.

[12] Dahmus, J. B., Gonzalez-Zugasti, J. P., and Otto, K. N.,
2001. “Modular product architecture”. Des. Stud., 22(5),
pp. 409–424.

[13] Tseng, H. E., Chang, C. C., and Li, J. D., 2008. “Modu-
lar design to support green life-cycle engineering”. Expert
Syst. Appl., 34(4), pp. 2524–2537.

[14] Gu, P., Hashemian, M., Sosale, S., and Rivin, E., 1997.
“An integrated modular design methodology for life-cycle
engineering”. CIRP Ann., 46(1), pp. 71–74.

[15] Zetterberg, A., Mörtberg, U. M., and Balfors, B., 2010.
“Making graph theory operational for landscape ecological

assessments, planning, and design”. Landsc. Urban Plan.,
95(4), pp. 181–191.

[16] Papalambros, P. Y., 1995. “Optimal design of mechanical
engineering systems”. J. Vib. Acoust., 117(B), pp. 55–62.

[17] Bondy, J. A., and Murty, U. S. R., 1976. “Graph theory
with applications”. Citeseer, 290.

[18] Galinier, P., and Hertz, A., 2006. “A survey of local search
methods for graph coloring”. Comput. Oper. Res., 33(9),
pp. 2547–2562.

[19] Descartes, B., 1977. “Ja bondy and usr murty, graph theory
with applications”. Bull. Am. Math. Soc., 83(3), pp. 313–
315.

[20] Li, M., Zhang, Y. F., and Fuh, J. Y. H., 2010. “Retriev-
ing reusable 3d cad models using knowledge-driven depen-
dency graph partitioning”. Comput. Aided. Des. Appl., 7(3),
pp. 417–430.

[21] Wolfe, G., Wong, J. L., and Potkonjak, M., 2002. “Water-
marking graph partitioning solutions”. IEEE Trans. Com-
put. Des. Integr. Circuits Syst., 21(10), pp. 1196–1204.

[22] Wakabayashi, S., Isomoto, K., Koide, T., and Yoshida, N.,
1994. “A systolic graph partitioning algorithm for vlsi de-
sign”. Vol. 1 of Proceedings of the IEEE International Sym-
posium on Circuits and Systems ISCAS’94, pp. 225–228.

[23] Li, F., Zhang, Q., and Zhang, W., 2007. “Graph partitioning
strategy for the topology design of industrial network”. IET
Commun., 1(6), pp. 1104–1110.

[24] Kim, N., Zheng, Z., Elmetwaly, S., and Schlick, T., 2014.
“RNA graph partitioning for the discovery of RNA modu-
larity: A novel application of graph partition algorithm to
biology”. PLoS One, 9(9).

[25] Zhang, C., Zhang, Y., Li, D., Li, J., and Li, M., 2016.
“Smartpartition: Efficient partitioning for natural graphs”.
Proceedings of the IEEE International Conference on Clus-
ter Computing 2016, pp. 130–131.

[26] Jiang, G., Wu, J., Lam, S. K., Srikanthan, T., and Sun,
J., 2015. “Algorithmic aspects of graph reduction for
hardware/software partitioning”. J. Supercomput., 71(6),
pp. 2251–2274.

[27] Dongen, S. M. V., 2000. “Graph clustering by flow
simulation”. PhD Thesis, University of Utrecht, May.
See also URL https://dspace.library.uu.nl/
handle/1874/848.

[28] Brandes, U., Gaertler, M., and Wagner, D., 2003. “Experi-
ments on graph clustering algorithms”. Proceedings of the
European Symposium on Algorithms, pp. 568–579.

[29] Assayony, M. O. H., 2008. “Design of a parallel graph-
based protein sequence clustering algorithm”. Vol. 3 of
Proceedings of the International Symposium on Informa-
tion Technology ITSim 2008, pp. 1–8.

[30] Suh, N. P., 1998. “Axiomatic design theory for systems”.
Research in Engineering Design, 10, pp. 189–209.

[31] Boothroyd, G., Dewhurst, P., and Knight, W., 2010. Prod-

17 Copyright c© 2019 by ASME

uct design for manufacture and assembly. CRC Press, Boca
Raton.

[32] Gopalakrishnan, P. K., Kein, H., Jahanbekam, S., and Be-
hdad, S., 2018. “Graph partitioning technique to identify
physically integrated design concepts”. Proceedings of the
ASME 2018 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2018.

18 Copyright c© 2019 by ASME

