
 1 © 2019 by ASME 

Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers 
and Information in Engineering Conference 

IDETC/CIE 2019 
August 18-21, 2019, Anaheim, California, USA 

 
 

DETC2019-97913 

AN OPTIMAL QUANTITY OF SCHEDULING MODEL FOR 
MASS CUSTOMIZATION-BASED ADDITIVE 

MANUFACTURING  
 

 
ABSTRACT 

The purpose of this study is to optimize production 
planning decisions in additive manufacturing for mass 
customization (AMMC) systems in which customer 
demands are highly variable. The main research question is 
to find the optimal quantity of products for scheduling, the 
economic scheduling quantity (ESQ). If the scheduling 
quantity is too large, the time to collect customer orders 
increases and a penalty cost occurs due to the delay in 
responding to consumer demands. On the other hand, if the 
scheduling quantity is too small, the number of parts per jobs 
decreases and parts are not efficiently packed within a 
workspace and consequently the build process cost 
increases. An experiment is provided for the case of 
stereolithography (SLA) and 2D packing to demonstrate 
how the build time per part increases as the scheduling 
quantity decreases. In addition, a mathematical framework 
based on ESQ is provided to evaluate the production 
capacity in satisfying the market demand.  

Keywords: additive manufacturing, production 
planning, economic scheduling quantity, mass 
customization 

NOMENCLATURE 
𝜆 The arrival rate of customer demands (units / h)  
𝑃 The production rate of scheduled parts (units / 

h)  
𝑄 The number of parts for scheduling (units)  
𝑇𝑐 Cycle time for scheduling (h)  

𝑇𝑝 Completion time for production (h)  
𝑇𝑏  Total build time (h)  
𝑐𝑡 Penalty cost per hour ($/h)  
𝑐𝑝 Build process cost per hour ($/h)  
𝑐𝑚 Unit material cost ($/mm3) 
𝑣̅ The average volume per part (mm3/unit) 
𝑀 The number of AM machines (units) 

 
1. INTRODUCTION 

Recently, on-demand production in 3D printing plants, 
or 3D printing farms, has been developed as a promising 
business model [1]–[4]. In this newly developed business 
model, manufacturers install multiple 3D printers and run 
them simultaneously to produce hundreds and thousands of 
parts in a very short period of time. Customers place their 
orders through e-commerce websites by registering 3D 
models of what they need. Consumer orders are produced 
by multiple 3D printers and are shipped to consumers. In 
these types of business models, consumer orders are coming 
one by one and are highly variable in terms of features and 
characteristics. Products and design blueprints are 
personalized based on each customer order.  

The current business models show that Additive 
Manufacturing (AM) is spotlighted for both mass 
production and customization. The focus of this study is on 
a production system for a 3D printing plant with mass 
customization capabilities named as AM for Mass 
Customization (AMMC). 
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Figure 1: A production system in Additive Manufacturing for Mass Customization (AMMC) 

 
AMMC adopts the make-to-order (MTO) production 

strategy [5]. Once a customer demand arrives, the plant 
begins the production. In MTO for AMMC, manufacturers 
have to deal with extremely customized parts, with different 
size, geometry and shape for individual customers. 

Figure 1 represents how the AMMC system works. 
Customer demands arrive at a 3D printing plant. Each order 
has its own characteristics. Once the number of incoming 
orders reaches to 𝑄 , known as scheduling quantity, the 
manufacturer starts defining a production plan to take care 
of customer orders. Then, parts are grouped into jobs (or 
builds [6]). A job is a group of parts produced 
simultaneously by an AM machine (a 3D printer). Then, 
jobs are assigned to AM machines. Each AM machine has a 
queue and jobs in a queue are processed by their own AM 
machine. This is a type of parallel production in which 
multiple AM machines work on their assigned jobs 
independently.  

The main question in this study is to decide about the 
scheduling quantity, 𝑄. Defining a plan with a high number 
of parts (large 𝑄) has a positive effect on minimizing the 
total build time, since it increases the number of parts per 
job and consequently improves the packing utilization. 
However, waiting to collect a high number of orders and 
then start the production may result in higher lead time and 
delay in responding to consumer demands. This study 
develops a method to find the optimal quantity of parts, the 
economic scheduling quantity (ESQ), 𝑄∗, with the aim of 

minimizing the production cost that also includes the 
penalty cost of delaying in addressing consumer orders. 

  
2. LITERATURE REVIEW 
 
2.1 Production planning for AM 

Studies on production planning for AM have 
considered how to group parts into jobs and how to assign 
jobs to AM machines. Grouping parts into a single job has 
usually been focused on using different packing algorithms 
including 2D packing [7] and 3D packing [8]. In the case of 
grouping parts into multiple jobs, the approaches for the 
traditional bin packing problems are adopted for AM [6]. In 
addition to packing, build orientation determination is 
another aspect that should be addressed since the packing 
utilization depends on part orientations. Griffiths et al 
(2018) provided a heuristic method dealing with both bin 
packing problem and build orientation problem [9]. 
However, considering only the grouping issue is not 
sufficient for managing production systems at a higher level. 
This is where the planning and scheduling for AM with 
multiple 3D printers become important.  

For assigning jobs or parts to AM machines, most of the 
previous studies have been based on classical scheduling 
problems. To name a few studies, Li et al. (2017) proposed 
heuristic algorithms and mathematical models to minimize 
the average production cost per volume of material [10]. 
Kim et al. (2017) suggested a genetic algorithm (GA) to 
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match parts to 3D printers in order to minimize makespan 
[11]. Ransikarbum et al. (2018) solved a part-to-printer 
assignment problem by using multi-objective optimization 
[12]. However, previous studies have focused on planning 
and scheduling without considering the packing. To 
consider the details of the packing in the production 
planning level, mathematical models become too 
complicated and heuristic models result in computational 
inefficiencies. To overcome this issue, the current study 
considers the packing issue indirectly by using a result 
function extracted from a packing simulation experiment.    
 
2.2 The economic order quantity model 

Economic order quantity (EOQ) is the order inventory 
quantity to minimize the total holding and ordering costs 
proposed by Harris (1913) [13]. The EOQ model is one of 
the oldest classical production scheduling and inventory 
control models [14]. It has been extended in many ways 
including the economic production quantity (EPQ) model 
[15], the reorder point [16], and the stochastic EOQ [17]. 
EOQ has still being studied as a solid mathematical model 
for inventory lot sizing [18].  

Although the classical EOQ model is based on 
inventory management [19], the current study focuses on a 
different production planning problem emphasizing more on 
customer demands. In order to find the optimal quantity of 
scheduling for AM, it only adopts the mathematical 
approach of the EOQ model for identifying the optimal 
quantity between the trade-off factors.    

 
3. APPROACH 

This section describes the proposed mathematical 
framework for calculating the total build time and the ESQ 
model. The following assumptions have been used:  
 The customer demand arrival rate is known and is 

constant over time. 
 Each customer demand has only one part. 
 To make a production plan, 𝑄 is consistent for each 

cycle. 
 All AM machines have the same process parameters. 

The size of the workspace and the model of AM 
machine are the same.  

 Setup time for each job is not considered since it is 
negligible compared to its build time.  

 
3.1 The relation between build time and scheduling 
quantity 

Each job is completed through a build process by an 
AM machine, which means that each job has its own build 
time. The total build time of the jobs, 𝑇𝑏 , is the sum of build 
time for all jobs that result from part grouping by using 𝑄. 
Once 𝑇𝑏  is divided by  𝑄 , the build time per part is 
obtained.     

In the case of handling hundreds or thousands of parts 
using stereolithography (SLA) and 2D packing, it is likely 

that the build time per part decreases as 𝑄 increases. This 
is mainly due to the increase in packing utilization. 

To validate this, an experiment with the following 
conditions has been conducted. The build time estimation 
model and the 2D packing algorithm developed by Oh et al. 
(2017) are modified and adopted for this experiment [20]. 
1000 input parts are randomly generated to simulate 
customer orders for AMMC. To generate random inputs, 
parts are arbitrarily chosen from a set of 100 different 
geometries from Thingiverse.com [21] and, after 
normalizing their size, the size is re-scaled by multiplying a 
value from a uniform distribution (1, 10). Without changing 
the build orientation of parts, the initial orientation is used 
for part placement. To avoid the undesired case that the 
shape and size of the generated 1000 parts are biased, the 
experiment is repeated three times. The width, length, and 
height of a workspace of an AM machine are 200×200×200 
mm, respectively.  

To produce 1000 parts based on AMMC, 𝑄 is set from 
30 (representing a small number of parts) to 1000 (a large 
number). Table 1 shows 𝑇𝑏  based on 𝑄 and its build time 
per part. Given the dataset of 𝑄 and the build time per part, 
the relation can be represented by a non-linear curve model 
as shown in Equation (1). In this equation, 𝛼  is mostly 
affected by the size of workspace and the average volume of 
parts while 𝛽 usually indicates the type of AM processes.  
 

 

CurveExpert Professional 2.6.5 is used to identify two 
parameters, 𝛼  and 𝛽 , of the curve model, which are 
0.3480 and 3.5095, respectively. Figure 2 represents the 
curve model fitting the dataset. As shown in the figure, the 
build time per part decreases and converges as 𝑄 increases.  

 
Table 1: 𝑇𝑏 to produce 1000 parts depending on 𝑄 

𝑸  𝑻𝒃  
(hours) 

Build time per 
part* (hours) 

30      14.18       0.4727  
100 35.96       0.3596  
200 74.96       0.3748  
300 110.62       0.3687  
500 178.78       0.3576  

1000 352.80       0.3528  
Build time per part* = 𝑇𝑏/𝑄 

  

𝐵𝑢𝑖𝑙𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡 = 𝛼 +
𝛽

𝑄
  (1) 
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Figure 2: The build time per part depending on 𝑄 

3.2 The economic scheduling quantity (ESQ) 
Equation (1) is used to estimate 𝑇𝑏  based on 𝑄  by 

multiplying 𝑄 to both sides of the formula. It is shown as 
follow:  

𝑇𝑏 = 𝛼𝑄 + 𝛽 (2) 

In parallel production, jobs are assigned to multiple AM 
machines and the machines run simultaneously and 
independently. Therefore, if a manufacturer has more AM 
machines, the completion time, 𝑇𝑝  of 𝑄  units will be 
smaller. Given this relation, 𝑇𝑝 is calculated as follows:   

𝑇𝑝 =
𝑇𝑏

𝑀
=

𝛼𝑄 + 𝛽

𝑀
 (3) 

Figure 3 presents the number of scheduled and not 
scheduled customer demands over time. With 𝑇𝑐, the solid 
line that represents the not scheduled customer demands 
repeats with the same cycle. At the point of scheduling, 𝑄 
units of customer demands are scheduled by grouping parts 
into jobs. Then, they are sent to queues of AM machines and 
the production begins. Therefore, at this point, while the 
number of not scheduled customer demands becomes zero, 
the number of scheduled orders goes to 𝑄.  
 

 
Figure 3: Customer demand level according to time  

Since 𝑄 units are scheduled for each cycle, with the 
arrival rate of 𝜆, the time 𝑇𝑐, can be calculated by Equation 

(4). 𝑇𝑐 means the waiting time to make a production plan 
until 𝑄 units of consumer orders arrive.   

𝑇𝑐 =
𝑄

𝜆
 (4)  

In a similar way,  𝑄  units are produced during 𝑇𝑝 , 
therefore, the production rate, 𝑃, is as follows: 

𝑃 =
𝑄

𝑇𝑝

 (5)  

Since the customer demand level increases linearly or 
decreases between 0 and 𝑄  as shown in Figure 3, the 
average customer demand level can be calculated by 
Equation (6). Since the customer demand level is 
periodically repeated, this can be used as the average 
customer demand level over a time horizon. 

The average customer demand level 

=
𝑄(𝑇𝑐 + 𝑇𝑝)

2𝑇𝑐

 
(6) 

The average penalty cost, 𝐶𝑡(𝑄) , is obtained by 
multiplying the average customer demand level with the 
penalty cost per part, 𝑐𝑡 . In addition, 𝑇𝑐  and 𝑇𝑝  are 
replaced by Equations (4) and (3), respectively. 

𝐶𝑡(𝑄) =
𝑐𝑡𝑄(𝑇𝑐 + 𝑇𝑝)

2𝑇𝑐

=
𝑐𝑡𝑄

2
+

𝛼𝜆𝑐𝑡𝑄

2𝑀
+

𝛽𝜆𝑐𝑡

2𝑀
 (7) 

For each cycle, the cost of build processes is calculated 
by multiplying 𝑇𝑏  with a unit build process cost per hour, 
𝑐𝑝.  

𝑐𝑝𝑇𝑏 = 𝛼𝑐𝑝𝑄 + 𝛽𝑐𝑝 (8) 

In addition, the material cost to produce 𝑄  units is 
computed as follows:  

Material cost = 𝑄𝑣̅𝑐𝑚 (9) 

The production cost for each cycle is the build process 
cost plus the material cost. In order to obtain the production 
cost per unit time, the cost is divided by the length of cycle 
time, 𝑇𝑐. Therefore, the annual cost, 𝐺(𝑄), consists of the 
build process cost, the material cost, and the penalty cost as 
shown in Equation (10). 

𝐺(𝑄) =
(𝛼𝑐𝑝𝑄 + 𝛽𝑐𝑝  + 𝑄𝑣̅𝑐𝑚)

𝑇𝑐

+ 𝐶𝑡(𝑄) 

= 𝛼𝜆𝑐𝑝 +
𝛽𝜆𝑐𝑝

𝑄
+ 𝜆𝑣̅𝑐𝑚 +

𝑐𝑡𝑄

2
+

𝛼𝜆𝑐𝑡𝑄

2𝑀
+

𝛽𝜆𝑐𝑡

2𝑀
 

(10) 

We wish to find 𝑄∗  to minimize 𝐺(𝑄) . 
The derivative of 𝐺(𝑄)  with respect to 𝑄  is obtained as 
follows: 

𝐺′(𝑄) = −
𝛽𝜆𝑐𝑝

𝑄2
+

𝑐𝑡

2
+

𝛼𝜆𝑐𝑡

2𝑀
 (11) 

According to Equation (12), 𝐺′′(𝑄) > 0 . Therefore, 
𝐺(𝑄)  is a convex function of 𝑄  and we can get the 
optimum (minimum) value.  
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𝐺′′(𝑄) =
2𝛽𝜆𝑐𝑝

𝑄3
> 0 (12) 

The optimal value of 𝑄 , ESQ, is obtained from 
𝐺′(𝑄) = 0. 

𝑄∗ = √
2𝛽𝜆𝑀𝑐𝑝

𝑐𝑡(𝑀 + 𝛼𝜆)
 (13) 

Some terms in Equation (10) are not functions of the 
scheduling size, 𝑄, so we have put them in 𝐶, as shown in 
Equation (14). Therefore, the global average annual cost, 
𝐺(𝑄), is re-described by the partial average annual cost, 
𝑅(𝑄), and 𝐶 as shown in Equation (15). 𝑅(𝑄), is defined 
as the sum of 𝐵(𝑄)  and 𝐸(𝑄) , the buildup cost and 
penalty cost as functions of 𝑄. 

𝐶 = 𝛼𝜆𝑐𝑝 + 𝜆𝑣̅𝑐𝑚 +
𝛽𝜆𝑐𝑡

2𝑀
  (14) 

𝐺(𝑄) = 𝑅(𝑄) + 𝐶 (15) 

𝑅(𝑄) = 𝐵(𝑄) + 𝐸(𝑄)  (16) 

𝐵(𝑄) =
𝛽𝜆𝑐𝑝

𝑄
 (17) 

𝐸(𝑄) = (
𝑐𝑡

2
+

𝛼𝜆𝑐𝑡

2𝑀
) 𝑄 (18) 

In Figure 4, the curves represent 𝑅(𝑄) , 𝐵(𝑄)  and 
𝐸(𝑄). If 𝐵(𝑄) = 𝐸(𝑄) is solved for 𝑄, the ESQ formula, 
Equation (13), is obtained. This means the minimum 𝑄∗is 
occurring at the intersection of the two curves, 𝐵(𝑄) and 
𝐸(𝑄) . This is the point of minimizing 𝑅(𝑄)  as well as 
𝐺(𝑄). 

 
Figure 4: The partial average annual cost, 𝑅(𝑄), consisting of 
the buildup and penalty costs with only the terms involved 𝑄 

3.3 Diagnosis for production status by ESQ  
The production efficiency of a 3D printing plant can be 

analyzed by using ESQ. ESQ can help identify whether the 
current production capacity is sufficient to deal with the 
arrival rate of customer demands. This can be achieved by 
comparing 𝑇𝑐

∗  and 𝑇𝑝
∗ . Given 𝑄∗ , 𝑇𝑐

∗  and 𝑇𝑝
∗  are 

computed by Equations (4) and (3). 

Figure 4 compares the two cases. In Case 1, if 𝑇𝑐
∗ > 𝑇𝑝

∗, 
all scheduled parts are produced before the next cycle. In 
other words, the production capacity is sufficient to satisfy 
incoming orders. In Case 2, if 𝑇𝑐

∗ < 𝑇𝑝
∗, all scheduled parts 

cannot be completed before the next cycle. Therefore, some 
parts that were scheduled in the previous cycle are still in 
production at the point of arrival of the new scheduled parts. 
In other words, production capacity is not sufficient to 
produce incoming parts. This could result in the stacking of 
customer demands and high penalty cost.   
 

 
Figure 5: Diagnosis of production status 

To fully handle incoming parts, a sufficient number of 
AM machines are needed. However, investing in too many 
AM machines may bring unnecessary costs to the system. 
Therefore, it is important to identify the minimum number 
of AM machines needed to satisfy consumer orders.  

Equation (3) can be represented for 𝑀. 𝑇𝑝 is replaced 
by 𝑇𝑐 since the machine number is minimized when 𝑇𝑝 =

𝑇𝑐. Then, 𝑇𝑐 is substituted by 𝑄/𝜆 according to Equation 
(4). Given 𝑄∗ , the minimum number of AM machines is 
calculated by Equation (19). Since the machine number is a 
positive integer value, the equation has a ceiling function.  

𝑀∗ = ⌈
𝛼𝑄∗ + 𝛽

𝑇𝑝

⌉ = ⌈
𝛼𝑄∗ + 𝛽

𝑇𝑐

⌉ = ⌈𝜆 (𝛼 +
𝛽

𝑄∗
)⌉ (19) 

 
4. SENSITIVITY ANALYSIS 

This section investigates the way that 𝑄 influences the 
average annual cost. The first sub-section describes the 
effect of 𝑄 on the global cost, 𝐺(𝑄), and the second sub-
section shows the impact of 𝑄 on the partial cost, 𝑅(𝑄).  
 
4.1 The impact of parameters 𝝀 and 𝒄𝒕 on G(Q) 

In this study, the decision variable 𝑄 is determined to 
minimize the total cost, 𝐺(𝑄). Since 𝐺(𝑄) consists of a 
variable part, 𝑅(𝑄), and a constant part, 𝐶, determining 𝑄 
is important if 𝑅(𝑄) takes up the large part of 𝐺(𝑄). To 
identify what conditions increase the effect of 𝑅(𝑄)  in 
𝐺(𝑄), two parameters,𝜆  and 𝑐𝑡 , are investigated. To do 
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this, real estimates are used as shown in Table 2. 𝛼, 𝛽 and 
𝑣̅ come from the experiment in Section 3.1. 𝑐𝑚 is based on 
the material cost of SLA.  

 
Table 2: Real values for major parameters 

𝛼 0.3480 𝛽 3.5095 
𝑀 10 machines 𝑐𝑝 10 $/hour 
𝑣̅ 37928 mm3 𝑐𝑚 0.00009 $/mm3 

 
Tables 3 and 4 represent 𝑅(𝑄), 𝐶, and 𝐺(𝑄) based 

on 𝜆 and 𝑐𝑡, respectively. Figure 6 shows the 𝑅(𝑄)/𝐺(𝑄) 
fraction based on 𝜆  and 𝑐𝑡 . As 𝜆  decreases and 𝑐𝑡 
increases, 𝑅(𝑄) is getting more portion in 𝐺(𝑄), meaning 
that the global cost is getting more affected by 𝑄. However, 
when 𝜆 is a large number, both 𝑅(𝑄) and 𝐶 increase to 
take care of many customer orders. In this case, even though 
𝑅(𝑄) is relatively small compared to 𝐶, it is sufficiently 
large that cannot be negligible. 

   
Table 3: 𝑅(𝑄), 𝐶 and 𝐺(𝑄) depending on 𝜆 (𝑐𝑡 = 3) 

𝜆 𝑅(𝑄) 𝐶 𝐺(𝑄) 
1 14.76 7.42 22.18 
5 35.16 37.10 72.26 

10 53.28 74.20 127.48 
20 84.51 148.40 232.91 
30 113.63 222.60 336.23 
60 197.52 445.20 642.72 

 

Table 4: 𝑅(𝑄), 𝐶 and 𝐺(𝑄) depending on 𝑐𝑡 (𝜆 = 10) 

𝑐𝑡 𝑅(𝑄) 𝐶 𝐺(𝑄) 
0.1 9.73 69.11 78.84 
0.5 21.75 69.81 91.56 

1 30.76 70.69 101.45 
2 43.50 72.44 115.95 
4 61.52 75.95 137.47 
8 87.00 82.97 169.97 

 

  
Figure 6: The 𝑅(𝑄) portion of 𝐺(𝑄) depending on 𝜆 and 𝑐𝑡 

 
4.2 Sensitivity analysis of Q on R(Q) 

Given 𝜆 = 20 , 𝑐𝑡 = 1  and the numbers in Table 2, 
ESQ is obtained as shown in Equation (20).  

𝑄∗ = √
2𝛽𝜆𝑀𝑐𝑝

𝑐𝑡(𝑀 + 𝛼𝜆)
= 28.77 (20) 

Based on the  𝑄∗, 𝑅(𝑄∗) is calculated as follow:  

𝑅(𝑄∗) =
𝛽𝜆𝑐𝑝

𝑄∗
+ (

𝑐𝑡

2
+

𝛼𝜆𝑐𝑡

2𝑀
) 𝑄∗ = 48.79 (21) 

However, if a manufacturer does not follow ESQ, 𝑄 
could be different from 𝑄∗. For example, if 𝑄 = 15, then 
𝑅(𝑄)  becomes $59.51. The cost ratio of 𝑅(𝑄)/𝑅(𝑄∗)  is 
1.22.     

The way that 𝑅(𝑄) is sensitive to 𝑄 can be generally 
expressed by a formula. Suppose 𝑅∗ is the partial cost at 
𝑄∗ then it is expressed as Equation (22). 

𝑅∗ = 𝐵(𝑄∗) + 𝐶(𝑄∗) 

=
𝛽𝜆𝑐𝑝

𝑄∗
+ (

𝑐𝑡

2
+

𝛼𝜆𝑐𝑡

2𝑀
) 𝑄∗ 

= 𝛽𝜆𝑐𝑝√
𝑐𝑡(𝑀 + 𝛼𝜆)

2𝛽𝜆𝑀𝑐𝑝

+
𝑐𝑡(𝑀 + 𝛼𝜆𝑐𝑡)

2𝑀
√

2𝛽𝜆𝑀𝑐𝑝

𝑐𝑡(𝑀 + 𝛼𝜆)
 

= √
𝛽𝜆𝑐𝑝𝑐𝑡(𝑀 + 𝛼𝜆)

2𝑀
+ √

𝛽𝜆𝑐𝑝𝑐𝑡(𝑀 + 𝛼𝜆)

2𝑀
 

= √
2𝛽𝜆𝑐𝑝𝑐𝑡(𝑀 + 𝛼𝜆)

𝑀
 

(22) 

It follows Equation (23) for any 𝑄.  

𝑅(𝑄)

𝑅∗
=

1

2𝑄
√

2𝛽𝜆𝑐𝑝𝑀

𝑐𝑡(𝑀 + 𝛼𝜆)
+

𝑄

2
√

𝑐𝑡(𝑀 + 𝛼𝜆)

2𝛽𝜆𝑐𝑝𝑀
 

=
𝑄∗

2𝑄
+

𝑄

2𝑄∗
=

1

2
(

𝑄∗

𝑄
+

𝑄

𝑄∗
) 

(23) 

Therefore, if 𝑄 = 15  and 𝑄∗ = 28.77 , 𝑅(𝑄)/𝑅∗  is 
1.22 from Equation (23) even though 𝑄∗/𝑄 is 1.92. This 
shows that the partial cost is relatively insensitive to errors 
of 𝑄. This point is similar to the concept of EOQ models in 
the inventory planning literature.     
  
5. CONCLUSION 

This paper investigates the concept of production 
planning in mass customization-based additive 
manufacturing systems. Specifically, it provides a 
mathematical method for obtaining the optimal quantity for 
production planning, that is the economic scheduling 
quantity (ESQ). In addition, a mathematical framework is 
provided to analyze the capacity planning in such 
production systems. Several sensitivity analyses have been 
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conducted to show the impact of the model parameters on 
the total cost of the system.  

The research can be extended in several ways. First, 
more accurate functions for calculating the build time per 
part can be extracted from practical experiments. Since the 
provided function is based on SLA and 2D packing, other 
conditions and AM processes can be studied to affect the 
function. Second, when estimating the build time per part 
other factors such as build orientation should be considered. 
In addition, the classical EOQ model could be combined 
with the ESQ model to simultaneously consider inventory 
control issues for parts as well as production planning. 
Lastly, the application of the model can be shown in practice 
for a real case study.  
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