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Abstract
Hinge-loss Markov random fields (HL-MRFs) are
a class of undirected graphical models that has
been successfully applied to model richly struc-
tured data. HL-MRFs are defined over a set of
continuous random variables in the range [0,1],
which makes computing the MAP convex. How-
ever, computation of marginal distributions re-
main intractable. In this paper, we introduce
a novel sampling-based algorithm to compute
marginal distributions. We define the notion of
association blocks, which help identify islands of
high probability, and propose a novel approach to
sample from these regions. We validate our ap-
proach by estimating both average precision and
various properties of a social network. We show
that the proposed approach outperforms MAP es-
timates in both average precision and the accuracy
of the properties by 20% and 40% respectively on
the large social network.

1. Introduction
Hinge-loss Markov random fields(HL-MRFs) (Bach et al.,
2017) are a class of undirected probabilistic graphical mod-
els used to model richly structured data. HL-MRFs have
been successfully applied to areas such as information ex-
traction (Liu et al., 2016), visual question answering (Aditya
et al., 2018), recommender systems (Kouki et al., 2015),
knowledge graphs (Pujara et al., 2013) and stance classi-
fication (Sridhar et al., 2015; Ebrahimi et al., 2016). Like
Markov logic networks(MLNs) (Richardson & Domingos,
2006), HL-MRFs are defined using a set of weighted logical
rules. However, unlike MLNs which are defined over a set
of boolean random variable, HL-MRFs are defined over
continuous random variables in the range [0, 1]. HL-MRFs
also make use of hinge functions as potentials which enables
MAP inference to be cast as a convex optimization problem.
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As a result, the MAP computation is extremely efficient and
can infer the values of 2.5 million random variables in less
than a minute(Augustine & Getoor, 2018). However, the
computation of marginal distributions in HL-MRFs remain
intractable.

Sampling approaches such as importance sampling and
Markov Chain Monte Carlo (MCMC) are typically used
to compute the marginal distributions empirically (Sudderth
et al., 2010; Ihler & McAllester, 2009; Noorshams & Wain-
wright, 2013). In particular, Gibbs sampling (Gilks et al.,
1995), an advanced class of MCMC, has been successfully
used to compute marginal distribution for a wide range of
probabilistic graphical models (Plummer et al., 2003) in-
cluding Markov logic networks (Richardson & Domingos,
2006). Gibbs sampling involves iteratively sampling values
for each random variable conditioned on all other random
variables. However, using Gibbs sampling for HL-MRFs
has two main challenges. First, unlike discrete MRFs, where
the conditional distributions often follow a multinomial dis-
tribution and is easy to sample from, it is non-trivial to
generate samples from the conditional distributions of HL-
MRFs. The conditional distributions do not correspond to
any standard named distributions. Second, Gibbs sampling
has poor convergence rates when there are small islands of
high probability. Identifying such high probability regions
is challenging.

In this paper, we propose a tractable approach to com-
pute marginal distributions for HL-MRFs. Our approach
computes the marginal distributions empirically using the
samples generated from a Gibbs sampler. To sample from
the conditional distributions, we propose a Metropolis step
within the Gibbs sampler (also called Metropolis-within-
Gibbs (R. Gilks et al., 1995)) that replaces explicit sampling
from the conditionals with a single step of the metropolis
algorithm. To identify island of high probability, we define
the notion of association blocks, and propose a technique
that infers them for the logical rules used to define HL-
MRFs. We propose a blocked Gibbs sampler that jointly
samples random variables in an association block that en-
sures faster convergence. We perform experiments to show
that our approach correctly identifies island of high prob-
ability. We further estimate several properties of a social
network and show that the proposed approach outperforms
MAP estimates by upto 40%.
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2. Background
HL-MRFs are conditional distributions defined over a set of
random variables in range [0, 1]. Given a set of unobserved
random variables Y = {y1, y2, · · · , yn}, and a set of
observed variables or evidence X = {x1, x2, · · · , xm} a
HL-MRF is defined as follows:

P (Y |X) =
1

Z(X,Y )
exp−E(Y,X) (1)

where E(Y,X) is the energy function and Z(X,Y ) is the
normalization constant given by

∫
Y
exp−E(Y,X).

The energy function E(Y,X) is given by

E(Y,X) =
N∑
r=1

wrφr(X,Y ) (2)

The potential functions φr are defined using a probabilistic
programming language called Probabilistic soft logic(PSL),
and N is the total number of potentials generated by PSL.
PSL uses weighted first-order logic rules that is instantiated
using the data to define hinge-loss potential functions φr.

As an illustration, consider the following PSL rule which
encodes that people who live together are friends:

λ : LIVETOGETHER(ei,ej) =⇒ FRIENDS(ei,ej)

Predicates such as LIVETOGETHER, whose truth values are
observed, are called closed predicates. Predicates such as
FRIENDS, whose truth value needs to be inferred, are called
open predicates.

Consider a database that includes information about a large
collection of people. For any two people Alice, Bob in
the database, the rule is instantiated or grounded to generate
the following ground rule:

λ : LIVETOGETHER(Alice,Bob)

=⇒ FRIENDS(Alice,Bob)

For the above ground rule, PSL generates a potential
function by computing the distance to satisfaction using
Lukasiewicz norm and co-norm. The potential function is
given by:

φ(x, y) = max{x− y, 0}p

where x is the observed random variable associated with
LIVETOGETHER(Alice,Bob) and y is the unobserved
random variable associated with FRIENDS(Alice,Bob)
and p ∈ {1, 2}. The set of potential functions generated
from all the ground rules along with the rule weights is used
to compute the energy function as given in (2).

3. Gibbs Sampling for HL-MRFs
Gibbs sampling is a type of sampling approach based on
Markov chains (Neal, 1993), and generates samples from
the joint distribution by iteratively sampling from the con-
ditional distribution of each random variable keeping the
remaining random variables fixed. It is a preferred choice
for many multivariate distributions as it does not require tun-
ing of parameters (Casella & George, 1992). The samples
generated from the stationary distribution of the Gibbs sam-
pling scheme is guaranteed to be from the joint distribution
(Gilks et al., 1995).

A Gibbs sampler assumes that it is easy to generate samples
from the conditional distribution. The conditional distri-
bution for a random variable yi conditioned on all other
variables X , Y−i in an HL-MRF is given by:

p(yi|X,Y−i) ∝ exp{−
Ni∑
r=1

wrφr(yi, X, Y−i)} (3)

where Ni is the number of groundings that variable yi par-
ticipates in. The above distribution neither correspond to
any standard named distribution nor has a form amenable
to techniques such as inversion sampling. Therefore, it is
non-trivial to sample from the above conditional.

We overcome this challenge by using a Metropolis step to
sample from the conditional instead of direct sampling. For
each random variable yi, we first sample a new value y′i from
a proposal distribution g(yi) and compute the acceptance
ratio α given by:

α =
exp{−

∑Ni

r=1 wrφr(y
′
i, X, Y−i)}

exp{−
∑Ni

r=1 wrφr(yi, X, Y−i)}
(4)

We then accept the new value y′i with a probability propor-
tional to the acceptance ratio α. Using the right proposal
distribution g is critical to ensure that the stationary distri-
bution corresponds to the correct distribution. Since the
random variables represents soft truth values, we use the
uniform distribution in the range [0, 1] as the proposal dis-
tribution.

The Markov chain of the Gibbs sampler requires several
iterations before converging to the stationary distribution
and is known as burn-in time. Therefore, it is essential to
ignore these initial iterations (in our experiments we discard
the first 1000 samples). The burn-in time is sensitive to the
initial point. The time taken to converge from an arbitrary
initial state can be large. Since we can efficiently estimate
the MAP state for HL-MRFs, we initialize the sampler with
the MAP values. This ensures that the chain starts from a
region of high density and can converge quickly.

The algorithm for generating samples is shown in Algorithm
1. We initialize the random variables to the MAP state. We
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Algorithm 1 Metropolis-in-Gibbs sampler for PSL

Input: Set of N ground rules, # of iterations T, burn-in
period b
Output: Set of samples S
# Initialize Y (0) to MAP state
Y (0) ← argmaxY p(Y |X)
# Sample values for each yi
for t from 1 to T do

for y(t)i ∈ Y (t) do
y′i ∼ U [0, 1]

α =
exp{−

∑Ni
r=1 wrφr(y

′
i,X,Y

(t+1)
1:i−1 ,Y

(t)
i:n )}

exp{−
∑Ni

r=1 wrφr(yi,X,Y
(t+1)
1:i−1 ,Y

(t)
i:n )}

u ∼ U [0, 1]
if u < α then
y
(t+1)
i = y′i

else
y
(t+1)
i = y

(t)
i

end if
end for
# Consider samples after burn-in period b
if t > b then
S = S ∪ Y (t)

end if
end for
Return S

then iteratively sample new values for each random variable
after burn-in period b. We empirical estimate the marginals
using these samples.

4. Association blocks
Another challenge is the slow convergence of the Gibbs
sampler when the stationary distribution has low dispersion.
To illustrate this in the case of a HL-MRF generated by
a PSL program, consider the following rule that encodes
symmetry between two random variables:

λ : FRIENDS(ei,ej) =⇒ FRIENDS(ej ,ei)

Consider two people Alice and Bob, present in the data
resulting in the following two ground rules:

λ : FRIENDS(Alice, Bob) =⇒ FRIENDS(Bob, Alice)
λ : FRIENDS(Bob, Alice) =⇒ FRIENDS(Alice, Bob)

Fig. 1 shows the normalized negative energy function for
the two random variables corresponding to the ground atoms
FRIENDS(Alice, Bob) and FRIENDS(Bob, Alice). We ob-
serve that as the rule weight λ increases from 1 to 100,
the region of high probability gets concentrated along the
x = y line. Once the Markov chain reaches a state
where FRIENDS(Alice, Bob) = FRIENDS(Bob, Alice),

it cannot transition to a another state unless both
FRIENDS(Alice, Bob) and FRIENDS(Bob, Alice) update
their values together. We refer these sets of variables that
jointly induce regions of high probability as association
blocks. It is important to identify association blocks and
jointly sample them from a suitable proposal distribution
for faster convergence of Markov chains.

In the following subsection, we first discuss our approach
to identify association blocks from the set of weighted log-
ical rules. We restrict ourselves to rules with at most two
open predicates. The class of HL-MRFs generated by such
rules correspond to pairwise-MRFs. We then propose a
novel sampling approach for variables in the association
cluster(proposal distribution g). Our approach generates
samples from regions of high probability, resulting in faster
convergence rates for the sampler. We refer to this approach
as ABGibbs.

4.1. Identifying association blocks

As shown in the previous section, high weighted PSL rules
result is distributions with low dispersion. The majority
of the probability mass is confined to regions where the
sum or difference between two random variables lie in a
small interval. We first propose an approach to identify such
random variable pairs and extend these pairwise associations
to identify association blocks.
Theorem 1. A PSL ground rule with two open predicates
result is a potential function that can be minimized by one
of the following four conditions:

yi − yj ≤ c
yi − yj ≥ c
yi + yj ≤ c
yi + yj ≥ c

where yi and yj are random variables corresponding to
open predicates and c ∈ R.

Proof. Any logical PSL rule can be written in a disjunctive
normal form (DNF) and has one the following forms:

rs(ei, · · · ) ∨ rt(ej , · · · ) ∨u ru(ek, · · · ) ∨v ¬rv(el, · · · )
¬rs(ei, · · · ) ∨ rt(ej , · · · ) ∨u ru(ek, · · · ) ∨v ¬rv(el, · · · )
rs(ei, · · · ) ∨ ¬rt(ej , · · · ) ∨u ru(ek, · · · ) ∨v ¬rv(el, · · · )
¬rs(ei, · · · ) ∨ ¬rt(ej , · · · ) ∨u ru(ek, · · · ) ∨v ¬rv(el, · · · )

where rs and rt are open predicates, ru and rv refers to
the set of non-negated and negated closed predicates.

The potential functions φ for each these rules are as follows:

max{1− yi − yj − c1, 0}p

max{yi − yj − c2, 0}p

max{yi + yj − 1− c3, 0}p

max{yj − yi − c4, 0}p
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(a) Weight = 1 (b) Weight = 10 (c) Weight = 100

Figure 1: Negative energy function normalized between zero and one for two random variables grounded by the symmetric
rule. As the weight of rule increases, region of high probability gets concentrated along the x = y line.

where yi and yj are random variables corresponding to rs
and rt. c1, c2, c3, c4 ∈ R and their values depend on the
closed predicates ru and rv .

Each of these potential functions attain a minimum value 0
when the following conditions are satisfied for c ∈ R:

yi + yj ≥ c
yi − yj ≤ c
yi − yj ≥ c
yi + yj ≤ c

PSL also supports arithmetic rules and has the following
form:

rs(ei, · · · ) + rt(ej , · · · )±u ru(ek, · · · ) = c

rs(ei, · · · )− rt(ej , · · · )±u ru(ek, · · · ) = c

These rules result in potentials that attain a minimum value
of 0 when following conditions are satisfied:

c1 ≤ yi − yj ≤ c2
c3 ≤ yi + yj ≤ c4

Theorem 2. A PSL rule with a single open predicate results
in a potential function that can be minimized by the condi-
tion yi ≤ c, where yi is the random variables corresponding
to the open predicate and c ∈ R.

Proof. The proof is similar to the above proof.

Presence of two high weighted ground rules such that they
are both minimized only when the sum or difference be-
tween yi, yj lies in a small region results in distributions
with small dispersion. For example, consider the following
two rules:

yi − yj ≥ c1
yi − yj ≤ c2

The rules together ensure that most of the probability mass is
concentrated in region where the difference between yi and
yj is in the range [c1, c2] (Positive association). Similarity
the following two rules concentrate the probability mass
to region where the sum of yi and yj to the range [c1, c2]
(Negative association):

yi + yj ≥ c1
yi + yj ≤ c2

Our approach to identify association blocks is shown in
Algorithm 2. We first identify pairwise association from
ground rules with weights greater that a threshold λt. We
also keep track of the region where these potential functions
are minimized. We then identify pairwise associations when
the region of minimum potential functions is below a thresh-
old θ. Finally, we merge these pairs into blocks such that all
associated pairs lie in the same block.

4.2. Sampling approach for association blocks
(Metropolis step)

Presence of high weighted rules result in most of the prob-
ability mass being accumulated in regions where all rules
are satisfied. If this region is small, independently sampling
each random variable in a block leads to high reject rate as
a large number of samples are outside this region. We pro-
pose a novel sampling approach (as the proposal distribution
for Metropolis step) for the association blocks that ensures
most of the samples lie in the region of high probability
mass. This is essential to ensure fast convergence. The pro-
posed sampling approach is given in Algorithm 3. We first
randomly chose a variable yi in the association block, and
sample a value from U [0, 1]. We then update the bounds for
all variables, that contain yi as a part of pairwise association,
based on the sampled value for yi. We randomly chose a
variable yj , which is bounded, and sample a value from the
bounded range with probability β and sample a value in
the range U [0, 1] with probability 1− β. We again update
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Algorithm 2 Identifying blocks of associated random vari-
ables

Input: Set of N ground rules G, weight threshold λt,
range threshold θ
Output: Blocks of associated random variables C
Initialize: Hashmaps R+ and R− that hold additive and
subtraction bounds
for r ∈ 1 to N do

# For rules with high weights
if λr > λt then

# Update the bounds
if r is of the form a− b ≤ c then
R−(a, b).max = min{R−(a, b).max, c}

else if r is of the form a− b ≥ c then
R−(a, b).min = max{R−(a, b).min, c}

else if r is of the form a+ b ≤ c then
R+(a, b).max = min{R+(a, b).max, c}

else if r is of the form a+ b ≥ c then
R+(a, b).min = max{R+(a, b).min, c}

end if
end if

end for
# Identify clusters from pairwise associations
for (a, b) ∈ R+

⋃
R− do

if R+(a, b).max − R+(a, b).min ≤ θ or
R−(a, b).max−R−(a, b).min ≤ θ then

Merge blocks containing a,b and update C
end if

end for
Return set of blocks C

the bounds for all variables that contain yj . This process is
performed iteratively for all the variables in block.

5. Experimental Evaluation
In this section, we validate our approach by performing em-
pirical evaluation on a synthetic social network where the
nodes represent people and edges represent friendship links.
We consider the problem of node classification where the
task is to infer the political affiliation of each person. We
infer the political affiliations using a HL-MRF generated by
a PSL model. We evaluate the performance of the inferred
affiliations using average precision and the Precision-Recall
curve (PR-curve). We further use the inferred affiliations to
estimate two properties of the network. We compare five dif-
ferent strategies: MAP estimate (MAP) that corresponds
to set of values with the highest probability density, mean
of the samples generated by the Gibbs sampler and the
ABGibbs sampler (GibbsMean and ABGibbsMean)
and expected value under the samples generated by the two
samplers (GibbsExp and ABGibbsExp).

Algorithm 3 Sampling scheme for variables in a block

Input: A block of random variables c, R+, R−

Output: Sample s for variables in c
s = ∅
Pick a variable yi from c at random
yi ∼ U [0, 1]
s.add(a)
while yj ∈ c \ s and associated to some variable in s do

Update range [u, v] for yj based on A, R+, and R−

b ∼ [0, 1]
if b ≤ β then
yj ∼ U [u, v]

else
yj ∼ U [0, 1]

end if
s.add(yj)

end while
Return s

5.1. Experimental setup

Data: We generate a social network graph using the NE-
TRATE tool (Gomez-Rodriguez et al., 2011). We then gen-
erate cascades using the independent diffusion model and
label nodes in the cascade as belonging to partyAwith prob-
ability 0.7. We stop this process when 50% of the nodes are
labeled party A. We label remaining nodes in the graph as
belonging to party B. This ensures that adjacent nodes are
more likely to belong to the same party. We sub sampled
the nodes in the graphs to generate three versions of the
graph: small(S), medium(M) and large(L). The statistics of
the graphs are given in table Table 2.

To help infer the party affiliations we generated two signals:
STRONG and WEAK. We first randomly sampled 50% of
the nodes in the graph. For each sampled node ei, we
sample values for the ground atoms STRONG(ei, Party A)
and STRONG(ei, Party B), from a Bernoulli distribution
with parameters 0.9 for the true label, and with parameter
0.1 for the other party. We similarly generated a weak
signal, WEAK, by sampling values from a Bernoulli with
parameters 0.65 and 0.35.

PSL model: The PSL model for inferring political
affiliations given a graph is shown in below:

10 : STRONG(ei,ej) =⇒ PARTY(ei,ej)

5 : WEAK(ei,ej) =⇒ PARTY(ei,ej)

5 : PARTY(ei,ek) ∧ FRIENDS(ei,ej) =⇒ PARTY(ej ,ek)

1000 : PARTY(ei,+ek) = 1

1 : PARTY(ei,ej) = 0.5



Tractable Marginal Inference for Probabilistic Soft Logic

Methods Small Medium Large
Avg Prec P1 P2 Avg Prec P1 P2 Avg Prec P1 P2

MAP 0.801 7 3 0.744 35 19 0.710 130 121
GibbsMean 0.813 22 9 0.750 69 31 0.707 1001 339
GibbsExp 0.817 19 8 0.751 70 29 0.702 1004 354

ABGibbsMean 0.847 18 8 0.823 98 38 0.859 280 105
ABGibbsExp 0.782 27 12 0.750 113 47 0.777 484 172
Ground Truth N/A 42 12 N/A 258 87 N/A 595 187

Table 1: Metrics: Performance of different approaches across graphs of varying sizes. We observe that ABGibbsMean

has higher average precision and ABGibbsExp estimates the properties accurately.

(a) Small graph (b) Medium graph (c) Large graph

Figure 2: PR Curve: Precision-Recall (PR) curve for MAP, GibbsMean and ABGibbsMean on graphs of varying
sizes. We observe that ABGibbsMean outperforms other methods.

Size Nodes Edges
Small 100 109

Medium 500 832
Large 1000 2026

Table 2: Data stats: The number of nodes and edges for
three graphs.

The open predicate PARTY encodes the party affiliations and
FRIENDS encodes the edges in the graph. The first two rules
use the strong and the weak signals to infer party affiliations.
The third rule propagates the affiliations over the friendship
links in the graph. The fourth rule ensures that the party
affiliations for a person sums to one. Finally, the last rule
assigns a prior value for 0.5 for all affiliations.

Parameters: In our experiments, for identifying associ-
ated blocks, we set λt = 100 and θ = 0.1. For sampling
variables in the associated block, we set β = 0.001. For
ABGibbs and Gibbs, we generate 10000 samples and
discard the first 1000 samples as burn-in time b.

5.2. Inferred party affiliations

In this subsection, we evaluate the inferred party affiliations
using average precision and PR curve.

Precision: Table 1 shows the average precision for dif-

ferent approaches. We observe that ABGibbsMean has
the highest average precision and the performance of
ABGibbsExp is relatively poor. Many random vari-
ables do not have strong signal to infer their correct af-
filiations and hence marginal distributions have high dis-
persion. As a result, many samples have low precision.
We also observe that the performance of GibbsMean and
GibbsExp are similar to the performance of the MAP.
This is because Gibbs starts at the MAP state and does not
mix well due to the association between random variables.
We also show the Precision-Recall(PR) curve for MAP,
GibbsMean and ABGibbsMean in Fig. 2. We observe
that ABGibbsMean outperforms other approaches on all
three networks.

The run times for various approaches are given in Table 3.
Since MAP solves an optimization problem, it has the least
run time. We also observe that ABGibbs takes slightly
longer than Gibbs for each iteration. However, ABGibbs
converges with fewer iterations when compared to Gibbs.

5.3. Estimating network properties

In this section, we evaluate two network properties, one
associated with the nodes in the network and the other asso-
ciated with the edges in the network.

Property 1 (P1): We estimate the number of pairs of people
who are friends but are affiliated to different parties. Table 1
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Gibbs

(a) PARTY(ei, Party A) (b) PARTY(ei, Party B)

ABGibbs

(c) PARTY(ei, Party A) (d) PARTY(ei, Party B)

Figure 3: Inferred distributions of party affiliation for a
person in the network by Gibbs and ABGibbs. Gibbs
is unable to transition for the MAP state as the two vari-
ables belong to the same dependency cluster. However,
ABGibbs is not contrasted to the initial state.

shows the estimated values by different approaches for all
three networks. We observe that the MAP underestimates
the value by a large margin. ABGibbsExp provides the
best estimate of property value. This is because of the
point-estimate nature of MAP that does not take the entire
distribution into account.

Property 2 (P2): We estimate the number of people who
have at least one friend belonging to each party. Table 1
shows the estimated values by different approaches for all
three networks. We observe that the results obtained for this
property is similar to that of P1. ABGibbsExp performs
the better than all other methods.

The main reason Gibbs performs similar to MAP is due
to the inability of some random variables to transition states.
This is caused by the association between variables in the
blocks. As Gibbs samples variables individually, the prob-
ability of acceptance of a sample in the Metropolis step
drops severely for variables in an association block. Fig.
3 shows the inferred distributions of party affiliation for a
person in the network. Here we observe that the distribution
obtained using Gibbs has low dispersion. ABGibbs, on
the other hand, recovers the true distribution. This is be-
cause, each person in the network generates two random
variables, one for each party. We have a rule with weight
1000 which states that the sum of random variable gener-
ated by one person has to be equal to one. This couples
the two random variables tightly and forms a association
block. Therefore, conditioned on the first variable (variable
1) the possible values for the second variable (variable 2)

Methods Small Medium Large
MAP 120 832 1242
Gibbs 132 1760 2897

ABGibbs 161 1697 3797

Table 3: Runtime for each approach in seconds. ABGibbs
takes slightly longer than Gibbs for each iteration. How-
ever, as shown in Fig. 3 ABGibbs converges with fewer
iterations when compared to Gibbs.

Initialization Random MAP
Gibbs 0.519 0.707

ABGibbs 0.859 0.859

Table 4: Avg precision for samplers with random and MAP
initialization. We observe that Gibbs performs poorly for
random initialization.

shrinks to a single point. This makes it almost impossible
for the Metropolis step to accept any other value for the
variable 2. As a result, Gibbs does not move and has poor
mixing. ABGibbs does not suffer from this issue, as it
jointly samples all variables in the association block using a
proposal distribution described in Algorithm 3.

5.4. Impact of initialization

To analyze the impact of initialization, we run both the
samplers starting from the MAP and a random state. The
average precision for both the sampling methods is given in
Table 4. We observe that while ABGibbs converges to the
stationary distribution for both the initializations, Gibbs
performs poorly for random initialization. This again due to
the slow mixing time which results in the chain not moving
far from the initial state. The PR curves for the MAP,
ABGibbsMean and ABGibbsMean with MAP and ran-
dom initialization is given in Fig. 4.

6. Conclusion
In this paper, we have presented a novel sampling approach
to compute the marginal distributions of HL-MRFs. We
also define the notion of association blocks, identify islands
of high probability, and propose a sampling approach that
samples from the regions of high probability. We estimate
various properties of a social network using the marginals
and show that the estimates are more accurate than other
methods. While the initial results are promising, there are
many further directions for research including computing
confidence intervals, experimenting our approach to larger
realworld datasets, and generalizing our approach to cases
where the association blocks have no region where all rules
are satisfied.
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(a) MAP initialization (b) Random initialization

Figure 4: PR Curve: Precision-Recall (PR) curve for MAP, ABGibbsMean and ABGibbsMean with MAP and
random initialization on the large graph. We observe that GibbsMean performs poorly when initialized with a random
state.
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