2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

An Interactive Algorithm for Synchronizing
from Burst Deletions

Shuyang Jiang, Clayton Schoeny, and Lara Dolecek
Dept. of Electrical and Computer Engineering, UCLA, Los Angeles, California 90095
Email: {shuyangjiang, cschoeny}@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the efficient synchronization between two
distant nodes, A and B, that are connected through a lossless
bidirectional communication channel. In our setup, Node A
contains file X, and node B contains file Y that is generated
through burst deletions from X. The burst deletion pattern is
modeled by a stationary two-state Markov chain. Inspired by
the previously proposed synchronization protocol of Yazdi and
Dolecek that is specifically designed to handle i.i.d. deletions, we
create a new synchronization algorithm that is efficient for the
case of burst deletions. Utilizing the previous overall framework
from Yazdi and Dolecek, we first prove that the matching module
still works well in our scenario. We then invent two new schemes
for the implementation of the burst deletion recovery module. The
remaining errors created in the first two modules are eliminated
by the final LDPC decoder. Lastly, we provide experimental
results of the proposed synchronization algorithm for both i.i.d.
and realistic sources.

I. INTRODUCTION

Consider two nodes A and B that are connected through a
two-way communication channel. Node A holds file X, and
node B holds file Y, which is derived from file X through
some deletions. We assume that these deletions appear in
bursts, which is more representative of practical scenarios. The
locations of deleted bits are unknown to either node. We seek
to fully recover file X at node B in an efficient manner. For
efficiency, we are concerned with the overall bandwidth, which
is measured by the total amount of data exchanged by the two
nodes, as well as the number of interactive communication
round. Additionally, we desire to reconstruct file X from
file Y with a suitably low probability of error. This problem
of file synchronization arises in many practical applications,
including data storage, file sharing, and cloud applications.

There has already been a large body of research work on
synchronization of two remote files. One collection of work
has concentrated on synchronizing from a prescribed number
of edits between two files X and Y. In [1], Levenshtein built
upon the coding scheme of Varshamov and Tenengolts and
showed that Varshamov-Tenengolts (VT) codes are capable
of correcting a single insertion or deletion edit on binary file
strings. Orlitsky established several fundamental bounds on the
minimum number of transmitted bits for a prescribed edit dis-
tance when interactive communication between two nodes is
allowed [2]. The work of Orlitsky was followed by a series of
works such as [3], [4] and [5], which give explicit protocols for

Research supported in part by NSF grant CCF-CIF-1527130

978-1-5386-7048-4/18/$31.00 ©2018 IEEE

interactive communication. More recently, Venkataramanan et
al. [6] developed a low-complexity synchronization scheme,
which can correct a sublinear rate of edits with near-optimal
communication rate. It uses a divide-and-conquer approach
to isolate edits and efficiently split the source sequence into
substrings containing exactly one deletion or insertion. Each
of these substring is then synchronized using an optimal one-
way algorithm based on VT codes. The authors generalized
their results in [7], in which the protocol is modified to deal
with more general cases such as bursts, substitution errors, and
limited rounds of communication.

In recent years, works have focused on the case where
the number of edits is proportional to the length of the file.
This setting is more typical in real world applications. In [8],
a deterministic, polynomial-time synchronization scheme is
proposed. For this synchronization protocol, the edited file Y
is obtained from the binary uniform source file X by deleting
each bit independently with the same small probability S. It
has order-optimal communication rate, polynomial computa-
tional complexity, and the error probability is exponentially
low in the size of X. There are three parts of the protocol:
the matching module, the deletion recovery module, and
the LDPC decoder. The deletion recovery module essentially
comes from the previously introduced algorithm proposed by
Venkataramanan et al. [6]. Based on [8], several extensions to
the synchronization protocol [9]-[11] have been proposed. In a
recent work by Ma et al. [12], achievability bounds were given
on the communication rate for synchronization from deletions.
The deletions are viewed as the output of a Markov process,
and hence the number of deletions is linear in the file length.

In addition, there exist some practical synchronization tools.
One of these utilities is rsync [13], which is very robust and
only requires a single round of communication. However, it
can be in general very inefficient and the number of transmitted
bits can be exponentially larger than the optimal one.

In most previous works that are focused on synchronizing
from a fixed rate of edits between two files X and Y,
it is assumed that every bit of X is edited independently
with the same probability. In this paper, we focus on the
synchronization from burst edits, since burst edits are, in
general, more realistic than i.i.d. edits. For simplicity, we only
consider binary uniform source file X, and limit the edits to
short bursts of deletions. And we utilize a stationary two-state
Markov chain as our error model.

2018 IEEFE 10th International Symposium on Turbo Codes & Iterative Information Processing

In [12], a Markov chain is used to model the burst dele-
tions. However, [12] does not offer an explicit, deterministic
construction for a synchronization protocol. We construct a
valid, explicit protocol for synchronizing from short bursts
of deletions. We adopt the overall framework from [8]. We
prove that the matching module works well in our scenario,
and create two new algorithms for the burst deletion recovery
module. Furthermore, we evaluate the performance of our
protocol in experimental simulations and demonstrate its im-
proved efficiency in the case of both i.i.d. and realistic sources.

II. PROBLEM SETTING
A. Problem Statement

We represent a binary file string X of length n by X =
(X1, X, ..., X,), in which X; € {0,1}. The deletion channel
is a channel that can delete any subset of the bits of the
input file string. We let X and Y be the input and the output
of the deletion channel, respectively. The set of deleted bits
from the input file string is represented by a binary vector
D = (D4, Ds,...,D,). We call D the deletion pattern. If X
is deleted from X, we have that D; = 1 and otherwise D; = 0.
In this paper, we consider the case of burst deletion patterns,
i.e., consecutive 1’s in D. For the burst deletion pattern D, we
define a function fp, which maps the indices of bits in X to
their corresponding indices in Y. More specifically, for index
i, if D; =0, then fp(i) =i — Ej<iDj’ and if D; = 1, then
fp(i) = fp(i'), where i is the largest index smaller than i
for which D; = 0.

Then, the problem of file synchronization from burst dele-
tions that we need to address is as follows: Let node A
and B contain binary file strings X and Y, respectively. Y
is the output of a deletion channel with input X and burst
deletion pattern D. The burst deletion pattern is unknown to
both nodes A and B. We suppose that the source file string
X is generated by an i.i.d. Bernoulli source with parameter
%. The burst deletion pattern is mathematically modeled as a
stationary two-state Markov chain, which will be discussed in
detail in Section II-B. We are interested in a synchronization
algorithm on a two-way channel between nodes A and B so
that node B can recover file string X from Y with a small
probability of error.

B. The Burst Deletion Pattern

In order to model the burst deletion pattern D =
(D1, Do, ..., D,,), we use a stationary two-state Markov chain.
The transition probabilities P(D; = 0/D;—; = 0) = 1 —
P(Dl = 1|Di—1 = O) = P1, and P(Dl = 1|Di—1 = 1) =
1-— P(Dz = O|Di—1 = 1) = P2, for all i = 273,...,71. D1
follows the stationary distribution of the Markov chain, i.e.,
P(Dy =1)=1-P(D; =0) = (1 —p1)/(2—p1 — p2).
The schematic diagram of this Markov chain model is shown
in Fig. 1. From the definitions of p; and p,, we know that
both p; and p2 should be very close to 1 in order to make the
deleted bits appear in bursts. Next, we will explore properties
of the proposed Markov chain model for the burst deletion
pattern.

Fig. 1. The proposed model for generating burst deletion pattern D. D; = 1
means that the ith bit is deleted, and D; = 0 means that it is not deleted.

Property 1: For the burst deletion pattern generated by
the proposed Markov chain model, the burst length of non-
deleted bits and deleted bits, B, and By, follow geometric
distributions: B,q ~ Geo(l — p1) and By ~ Geo(l — ps).
Hence, the average burst length of non-deleted bits and deleted

bits are Bng = = and By = 1=, respectively, and the
average deletion rate is d = %.

Property 2: For the burst deletion pattern D of length n =
1/d (d < 1) generated by the proposed Markov chain model,
we denote the number of deletion bursts within D as A,,. We

then have

P(An = O) > p2(1 - d)a
P(A, > 1) <d(1—p2)+ (1—p2)*

From Property 2, we know that within a burst deletion
pattern of length 1/d, there is a very high probability to have
no deletion bursts and a very low probability to have more
than 1 deletion bursts. This property will be helpful for the
design of the burst deletion recovery module.

C. Assumptions

To make our file synchronization problem more tractable,
we make two simplifying assumptions for the burst deletion
pattern:

1) The length of most deletion bursts B, should be no
larger than a predefined maximum length B« (e.g.,
Bmax =]-O)a

2) The average deletion rate d is quite small (e.g., d =
0.005,0.01).

In order to satisfy assumption 1), we have P(B,q <
Buax) = (1=p2)(1+pa+ ...+ pFmex=1) = 1 — pPmex which
should be close to 1. Assumption 2) usually holds like in [8]
and [9]. For this assumption, we get that d = % < 1,
i.e., 1 —p; < 1 — po. In addition, ps should be close to 1 so
that the deleted bits appear in bursts. Hence, the requirements
for the parameters p; and py of the proposed Markov chain
model are as follows:

1) p2B‘“‘“‘ < 1, but ps is close to 1,

2) For every fixed ps, we have various p; that satisfies that

1-p1 <1—=po.

III. SYNCHRONIZATION PROTOCOL

In this section, we propose a new synchronization protocol,
which can correct short bursts of deletions in an efficient way.

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

We build our synchronization algorithm based on the work of
[8], and use the same framework with it. Similarly, the new
protocol also consists of three modules: the matching module,
the burst deletion recovery module, and the LDPC decoder
module. The matching module is adapted to our scenario in
a very straightforward way, while the burst deletion recovery
module is redesigned by using new algorithms.

A. Protocol Overview

Since our protocol has the same framework with that of [8],
one can find that the main processes of two protocols are quite
similar. However, the detailed implementations of first two
modules, especially the burst deletion recovery module, are
quite different. We first take a brief overview of the proposed
protocol.

To begin, node A partitions the file X into segment sub-
string S; (1 < i < k) and pivot substring P; (1 <1i <k — 1).
Then, file X becomes as follows:

X =51,P1,52, P, ..., 51, Pre—1, Sk,

in which |S;| = Ls = 1/d and |P;| = Lp = O(log(1/d)).
d= 2_1;1’)_11)2 is the average deletion rate. Note that the length
of a pivot string Lp is much smaller than the length of a
segment string Lg. Based on Property 2, We choose the length
of the segment string Ls = 1/d so that most of segment
strings has 0 or 1 deletion burst.

Then, node A sends pivot strings Py, Py, ..., P;_1 to node B
in order. And the matching module attemps to find the correct
copies of these pivots within file Y. Because of the deletions in
the file, the matching module is only able to find the matches
for a subsets of P;’s, which are denoted as F;,.... P, |,
1<iy <ig < ... <ip—q <k—1, where k¥’ < k. Based on
the positions of matched P;’s, the matching module divides
file Y into substrings as

Y = F1,P,,Fs, P,

19 27"'7Fk’—17pik/,17Fk’~

The indices of matched pivots {i1, ..., g1 } are then sent back
to node A, which accordingly divides file X into

X = F17P11,F2,Pi2, ---7Fk/—1a13ik/717Fk/7

So far, we have gotten many pairs of segment strings
{(Fj,F}),j = 1,2,..,k'}. As will be explained in Section
III-C, F; can be derived from F; by very few (mostly 0
or 1) short bursts of deletions if both P, , and P;, are
matched correctly in Y. Then, we need to synchronize F;
with the corresponding F);, which is finished by the burst
deletion recovery module. Since deletions appear in bursts, it is
no longer efficient to use the divide-and-conquer approach to
isolate deletions until each matched substring only contains
one deletion. In our burst deletion recovery module, two
different new schemes are used. One scheme still uses the
divide-and-conquer approach while the other one does not.
Compared with the first scheme, the second one needs far
less (at most two) rounds of interaction but consumes more
bandwidth. It is verified that these two new algorithms work
well in our case. At the end of this step, we recover the

estimates of all F;’s from F';’s. And an estimate of the original
file X is gotten as:

X = F17Pi17ﬁ‘27p’i27'-'7ﬁ‘k’7lap’ikz_1aﬁ‘k'7

which has the same length as file X. At the last step, we use
the LDPC decoder module to correct the residual errors created
from the erroneous match of pivot strings and the algorithm
used in the burst deletion recovery module.

Up to now, we have taken an overview of the new synchro-
nization protocol. Next, we recall a theorem from [12], which
provides the minimum rate of any synchronization algorithm
under the burst deletion channel modeled by Markov chain.

Theorem 1 (Ma et al., [12]): We consider the synchroniza-
tion algorithm under the burst deletion channel, which is
modeled by the stationary Markov chain. If 1 —p; < 1 and p»
is fixed, for any € > 0, we have the minimum communation
rate

Rmin(phpQ) = 7(1 7p1) log(l 7p1)

+(1—p1) <1+h2<1_m)+10g6 = C) +0((1=p1)*7),

1—p2
where C = Y2 27 1logl ~ 1.29, and ho(z) =
—zlogz — (1 — z)log(l — z).

The above theorem considers the case when 1 — p; < 1
and p. is fixed, which coincides with our assumptions given
in section II-C. From this theorem, we can get the lower bound
of communication rate for our new synchronization protocol.

In the following sections, we give further details into the
matching module and the burst deletion recovery module.

B. Matching Module

The task of the matching module is to detect correct matches
of P;’s within file Y. In [8], a graph theoretic method is used
to construct this module. The method makes use of a matching
graph to get the matches of P;’s. Adapting the matching
module from the case of i.i.d. deletion pattern in [8] to our
scenario of burst deletion pattern is quite straightforward.
The construction of the matching graph and some relevant
mathematical analysis can be made in a very similar fashion.
Before introducing the construction of the matching module,
we need to formalize the notion of correct and incorrect
matches for P;’s.

For any pivot P;, there might be many matches for it within
file Y. Because of this, we need to define what is the correct
match of P;. Let us denote the index of the first bit of P; in
X by p; and the index of the last bit of P; in X by p;. Based
on the number of deletions that acts on each P; in X, we have
the following two cases:

1) There is no deletion within P;. Then, the copy of P;
in Y between indices fp(p;) and fp(p;) is the correct
match while all other copies of P; in Y are incorrect
matches.

2) There is at least one deletion within P;. Then, all copies
of P; in Y are incorrect matches.

In contrast with [8], we do not consider the case where
exactly one deletion occurs in P;, since the probability of one

2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

deletion in P; is much smaller in the burst deletion pattern
case compared with the i.i.d. deletion pattern case.

Similar to the theoretical analysis about the occurrence
of correct matches for P; in [8], we have the following
conclusion:

Remark 1: With probability (1—d)p=* =" > 1—Lpd+o(d),
P; has no deletion and there is one correct match for P; within
Y. And with probability 1 — (1 —d)pZ? ™' < Lpd + o(d), P;
has at least one deletion and there is no correct match for P;
within Y.

Similarly, we define R = 1 — Lpd. From Remark 1, we
conclude that

Remark 2: For a random string X and a random burst dele-
tion pattern D defined in Section II, on average, the number of
pivots with one correct match in Y is (1 — d)p-* 'k, which
is no less than (R + o(d))k.

Remark 3: For a random string X and a random burst
deletion pattern D defined in Section II, with probability
1—272) there are ((1—d)pt? ™" +o(d))k > (R+o(d))k
pivots with one correct match in Y.

The proof of the above three remarks is quite similar to that
of the corresponding results in [8]. For details, please refer to
[8]. From Remark 3, we see that most of pivots has one correct
match in Y in the case of burst deletion pattern.

Note that the theoretical results about the occurence of
correct matches of P; in the previous discussion are quite
simiar with those in [8]. Both our protocol and the protocol of
[8] focus on the deletion-only edits. This inspires us to use the
same construction of the matching module with [8] (i.e., the
same matching graph) to find the correct matches of P;. The
detailed implementation of the matching graph can be found
in [8]. In addition, we make two slight modifications for the
matching graph as follows:

1) For any two vertices in layers ¢ and j with ¢ < j, we
connect these two vertices if and only if the distance
between them is within [0, (j —¢—1)Lp+(j—7)Ls] (In
[8], the distance is within [—1, (j—i—1)Lp+ (j—i)Lg]).
This is due to the small different definition of correct
and incorrect matches for P;.

2) We need to find a path of length (1 —d)p=? 'k +o(d)k
from the begining vertex s to the ending vertex ¢ in the
matching graph (In [8], this length is (1—Lp8+28)k+
o(B)k where 5 is the deletion rate).

The numerical experiment shows that, for a proper Lp, it is
with a very high probability that nearly all detected matches
of P;’s are correct matches. However, to get a theoretical
guarantee of this like that in [8], is rather difficult and is left
for future investigation.

C. Burst Deletion Recovery Module

After the matching of pivots, we have divided the problem
of synchronizing Y to X into many subproblems. For each
subproblem, we need to synchronize a segment string F'; in
Y to its orignial one [in X, which is the goal of the burst
deletion recovery module. Since most of the pivots can be
correctly matched, we expect that most of segment strings

Fj’s in X are of length 1/d. From Property 2, we know that
most of F';’s in Y are derived from the corresponding F;’s in
X by 0 or 1 short burst of deletions. This observation inspires
us to develop a new algorithm for the burst deletion recovery
module as follows.

In the first round, if the lengths of F'; and Fj differ by 0,
1, or more than 1, we would declare Fj synchronized, send a
VT syndrome, or use a single-deletion-burst synchronization
algorithm, respectively. Then after the first round, most of
Fj’s are succussfully synchronized. Only a small percentage
of F;’s, which are derived by multiple short deletion bursts,
need additional rounds of interaction to synchronize. For these
Fj’s in Y, we use the divide-and-conquer approach to split
them into smaller segment strings until each of segment strings
differs by 0 or 1 short deletion burst from the corresponding
segment string in X.

In our new algorithm, one key submodule is the single-
deletion-burst synchronization algorithm. In order to synchro-
nize from a single deletion burst of length /g, we use the
one-way protocol introduced in [6]. The segment string x of
length n in X is divided into [p substrings so that every
substring contains only one deletion. Then by sending the
VT syndromes of these [p substrings to node B, x can be
recovered at node B. The bandwidth for this protocol is
Iglog(n/lg + 1) bits. In [7], an improved single-deletion-
burst synchronization algorithm is derived, which only costs
at most 4log(1 + n/lg) + 3(lp — 2) on average. However,
compared with the one-way protocol in [6], this improved
algorithm needs an additional round of interaction and has
an comparable bandwidth when [p is small. Hence, we do
not adopt this improved algorithm in our protocol.

We summarize our new algorithm as follows:

1) In the first round, if the lengths of Fj and I} differ
by 0, 1 or I > 1, we would declare Fj synchronized,
send a VT syndrome, or send [p VT syndromes with
hash, respectively. For those pairs of matching segment
strings where hashes do not agree after [z VT decoding,
we put them in the unresolved list Lx at node A and
the corresponding list Ly at node B.

2) In each round, node A sends m, anchor bits around the
center of each substring in Lx to node B. Node B tries
to align these bits as close as possible to the center of
the corresponding substring in Ly . If a match is found,
the substring is split into two pieces strl and str2.

o If one piece strl contains no deletion, we declare
strl synchronized. For the other piece str2, node
B puts this piece in Ly (and instructs node A to
put its corresponding piece in Lx).

o If both strl and str2 contain some deletions, we
perform the following steps for each piece: 1) if
the number of deletions is 1, node B requests the
VT syndrome for synchronization; 2) if the number
of deletions is Ip > 1, node B requests (g VT
syndromes with hash. If hashes match after [VT
decoding, we declare the piece synchronized; oth-

2018 IEEFE 10th International Symposium on Turbo Codes & Iterative Information Processing

erwise, node B puts this piece in Ly (and instructs
node A to put its corresponding piece in Lx).
If node B can not align the anchor bits due to deletions,
it requests another set of m, anchor bits for the sub-
string, which is chosen adjacent to a previously sent set
of anchor bits and as close to the center of the substring
as possible.

3) The process continues until Ly (or Lx) is empty.

In addition, whenever a yet-to-be-synchronized substring is
short enough that sending /g VT syndromes with hash or
sending anchor bits is not meaningful, the substring is just
sent in full.

Based on the just introduced new algorithm, another sim-
plified algorithm without the divide-and-conquer approach can
be derived as follows:

1) The first step is the same with the above algorithm.

2) For all substrings in Lx, node A send these substrings in

full to node B and hence complete the synchronization.

In the second step of simplified algorithm, all substrings
in Lx contain more than 1 deletion bursts and account for
a very small percentage of all F;’s. Hence, sending all these
substrings in full would not consume much more bandwidth,
while the round of interaction is reduced to at most two rounds.

IV. EXPERIMENTAL RESULTS

We compare the bandwidth of our synchronization protocols
with the bound of Theorem 1. The number of rounds used
by our protocols is also recorded. In the experiments, we
first use the i.i.d. Bernoulli(0.5) binary sequence of length
n = 100k as source file X. File Y is derived from file X by
applying our proposed burst deletion pattern with parameters
(d,p2) = (0.005,0.82), (0.002,0.82) and (0.005,0.91) (p; is
hence determined). Then, we consider some realistic data by
using a Mona Lisa image and Martin Luther King’s speech
text as source file. The image and text are first converted
to binary strings of length 231200 and 63623 respectively,
and then fed into a burst deletion channel with parameters
(d,p2) = (0.005,0.82) to get file Y. For the matching module,
we have that Lg = 1/d and Lp = 10. We further set the
length of anchor bits m, = 6 and the hash length as 5 bits.
The results are averaged over 100 trials for i.i.d. source file
and over 1 trial for realistic data. Table I shows the results.

As shown in the table, when file X is i.i.d. binary string,
the expected bandwidth of both protocols is within a small
factor (around 6 in our simulations) of the bound in [12]. The
simplified protocol requires only 3 rounds of interaction in
total but slightly more bandwidth compared with the original
new protocol. When we increase py from 0.82 to 0.91 (i.e., the
deletion bursts have larger length on average), the simplified
protocol needs nearly the same bandwidth with original one.
This is because that much fewer segment substrings contain
more than 1 deletion bursts and sending these substrings in
full adds very little bandwidth. In the case of realistic data
sets, our protocols are still very efficient with their bandwidth
larger than the lower bound by a small factor (about 6), and
need moderate rounds of interaction.

_TABLE I
THE AVERAGE BANDWIDTH (3) AND AVERAGE INTERACTIVE ROUNDS
(R) USED BY THE PROTOCOLS OF OURS, WITH LOWER BOUND OF
BANDWIDTH Byyi,, GIVEN IN THEOREM 1 [12].

< Our protocol Simplified protocol Buin
(7}72) E E E E [12]
(0.005, 0.82) 9.23k | 13.79 | 10.32k 3 1.77k
(0.002, 0.82) 4.05k | 11.70 5.21k 3 0.75k
(0.005, 0.91) 8.13k | 11.79 8.30k 3 1.23k
King’s speech text
(0.005, 0.82) 6.47k 10 7.31k 3 1.13k
Mona Lisa image
(0.005, 0.82) 21.39k| 13 24.35k 3 4.10k

V. CONCLUSION

We studied the problem of file synchronization under burst
deletions. To generate the burst deletion pattern, a stationary
Markov chain is used. Based on the work of [8], we adapt
the matching module and redesign the burst deletion recovery
module. Two new protocols are derived, which have improved
efficiency for both i.i.d. and realistic sources. Further work
involves the theoretical analysis of total bandwidth and the
extension to the case of both burst deletions and insertions.

REFERENCES

[1] V. I Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals (in Russian),” Soviet Phys. Doklady, vol. 163, no. 4,
pp. 845-848, 1965.

A. Orlitsky, “Interactive communication of balanced distributions and of

correlated files,” STAM J. Discrete Math., vol. 6, no. 4, pp. 548-564, 1993.

[3] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Communica-
tion complexity of document exchange,” in Proc. 11th Annu. ACMSIAM
Symp. Discrete Algorithms, San Francisco, CA, USA, Jan. 2000, pp. 197-
206.

[4] A. V. Evfimievski, “A probabilistic algorithm for updating files over

a communication link,” in Proc. 9th Annu. ACM-SIAM Symp. Discrete

Algorithms (SODA), San Francisco, CA, USA, Jan. 1998, pp. 300-305.

A. Orlitsky and K. Viswanathan, “Practical protocols for interactive

communication,” in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC,

USA, Jun. 2001, p. 115.

R. Venkataramanan, H. Zhang, and K. Ramchandran, “Interactive low

complexity codes for synchronization from deletions and insertions,” in

Proc. IEEE 48th Allerton Conf. Commun., Control, Comput., Monticello,

IL, USA, Sep./Oct. 2010, pp. 1412-1419.

[71 R. Venkataramanan, V. N. Swamy, and K. Ramchandran, “Low-
complexity interactive algorithms for synchronization from deletions,
insertions and substitutions,” IEEE Trans. Inf. Theory, vol. 61, pp. 5670-
5689, Oct. 2015.

[8] S. M. S. Tabatabaei Yazdi, and L. Dolecek, “A deterministic polynomial-
time protocol for synchronizing from deletions,” IEEE Trans. Inf. Theory,
vol. 60, no. 1, pp. 397-409, Jan. 2014.

[9] F. Sala, C. Schoeny, N. Bitouz, and L. Dolecek, “Synchronizing files from
a large number of insertions and deletions,” IEEE Trans. Communications,
vol. 64, pp. 2258-2273, Jun. 2016.

[10] C. Schoeny, N. Bitouz, F. Sala, and L. Dolecek, “Efficient file synchro-
nization: extensions and simulations,” in Signals Systems and Computers
2014 48th Asilomar Conference on, pp. 2129-2133, 2014.

[11] N. Bitouz, F. Sala, S. M. S. Tabatabaei Yazdi, and L. Dolecek, “A
practical framework for efficient file synchronization,” in Proc. 51st Annu.
Allerton Conf. Commun., Control, Comput., pp. 1213-1220, Oct. 2013.

[12] N. Ma, K. Ramchandran, and D. Tse, “Efficient file synchronization: a
distributed source coding approach,” in Proc. IEEE Int. Symp. Inf. Theory,
pp. 583-587, 2011-Jul./Aug.

[13] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Dept. Comput. Sci., Austral. Nat. Univ., Canberra, Australia,
2000.

[2

—

[5

—_

[6

[t

