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Abstract
Modern Machine Translation (MT) systems
perform consistently well on clean, in-domain
text. However human generated text, partic-
ularly in the realm of social media, is full of
typos, slang, dialect, idiolect and other noise
which can have a disastrous impact on the
accuracy of output translation. In this paper
we leverage the Machine Translation of Noisy
Text (MTNT) dataset (Michel and Neubig,
2018) to enhance the robustness of MT sys-
tems by emulating naturally occurring noise
in otherwise clean data. Synthesizing noise in
this manner we are ultimately able to make a
vanilla MT system resilient to naturally occur-
ring noise and partially mitigate loss in accu-
racy resulting therefrom.

1 Introduction

Machine Translation (MT) systems have been
shown to exhibit severely degraded performance
when presented with translation of out-of-domain
or noisy data (Luong and Manning, 2015; Sak-
aguchi et al., 2016; Belinkov and Bisk, 2017).
This is particularly pronounced in systems trained
on clean, formalized parallel data such as Eu-
roparl (Koehn, 2005), are tasked with translation
of unedited, human generated text such as is com-
mon in domains such as social media, where ac-
curate translation is becoming of widespread rele-
vance (Michel and Neubig, 2018).

Improving the robustness of MT systems to nat-
urally occurring noise presents an important and
interesting task. Recent work on MT robustness
(Belinkov and Bisk, 2017) has further demon-
strated the need to build or adapt systems that are
resilient to such noise.

We approach the problem of adapting to noisy
data through two primary research questions:
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1. Can we artificially synthesize the types of
noise common to social media text in other-
wise clean data?

2. Are we able to improve the performance of
vanilla MT systems on noisy data by leverag-
ing artificially generated noise?

In this work we present two primary methods of
synthesizing natural noise in accordance with the
types of noise identified in prior work (Eisenstein,
2013; Michel and Neubig, 2018) as naturally oc-
curring in internet and social media based text.

We present a series of experiments based on the
Machine Translation of Noisy Text (MTNT) data
set (Michel and Neubig, 2018) through which we
demonstrate improved resilience of a vanilla MT
system by adaptation using artificially noised data.

The primary contributions of this work are our
Synthetic Noise Induction model which specifi-
cally introduces types of noise unique to social
media text and the introduction of back translation
(Sennrich et al., 2015a) as a means of emulating
target noise.

2 Related Work

Szegedy et al. (2013) demonstrate the fragility of
neural networks to noisy input. This fragility has
been shown to extend to MT systems (Belinkov
and Bisk, 2017; Khayrallah and Koehn, 2018)
where both artificial and natural noise are shown
to negatively affect performance.

Human generated text on the internet and so-
cial media are a particularly rich source of nat-
ural noise (Eisenstein, 2013; Baldwin et al.,
2015) which causes pronounced problems for MT
(Michel and Neubig, 2018).

Robustness to noise in MT can be treated as a
domain adaptation problem (Koehn and Knowles,
2017) and several attempts have been made to



handle noise from this perspective. Notable ap-
proaches include training on varying amounts of
data from the target domain (Li et al., 2010; Axel-
rod et al., 2011), Luong and Manning (2015) sug-
gest the use of fine-tuning on varying amounts of
target domain data, and Barone et al. (2017) note
a logarithmic relationship between the amount of
data used in fine-tuning and the relative success of
MT models.

Other approaches to domain adaptation in-
clude weighting of domains in the system objec-
tive function (Wang et al., 2017) and specifically
curated datasets for adaptation (Blodgett et al.,
2017). Kobus et al. (2016) introduce a method of
domain tagging to assist neural models in differ-
entiating domains. Whilst the above approaches
have shown success in specifically adapting across
domains, we contend that adaptation to noise is a
nuanced task and treating the problem as a domain
adaptation task may fail to fully account for the
varied types of noise that can occur in internet and
social media text.

Experiments that specifically handle noise in-
clude text normalization approaches (Baldwin
et al., 2015) and (most relevant to our work) the
artificial induction of noise in otherwise clean data
(Sperber et al., 2017; Belinkov and Bisk, 2017).

3 Data

To date, work in the adaptation of MT to natural
noise has been restricted by a lack of available par-
allel data. Michel and Neubig (2018) introduce
a new data set of noisy social media content and
demonstrate the success of fine-tuning which we
leverage in the current work. The dataset consists
of naturally noisy data from social media sources
in both English to French and English to Japanese
pairs.

In our experimentation we utilize the subset of
the data for English to French which contains data
scraped from Reddit1. The data set contains train-
ing, validation and test data. The training data is
used in fine-tuning of our model in certain set-
tings outlined below and all results are reported
on the MTNT test set for French-English. We
additionally use other datasets including Europarl
(EP) (Koehn, 2005) and TED talks (TED) (Ye
et al., 2018) for training our models as described
in §5.

1www.reddit.com

Training Data # Sentences Pruned Size

Europarl (EP) 2,007,723 1,859,898
Ted talk (TED) 192,304 181,582

Noisy Text (NTMT) 19,161 18,112

Table 1: Statistics about different datasets used in our
experiments. We prune each dataset to retain sentences
with length ≤ 50.

4 Baseline Model

Our baseline MT model architecture consists of a
bidirectional Long Short-Term Memory (LSTM)
network encoder-decoder model with two layers.
The hidden and embedding sizes are set to 256
and 512, respectively. We also employ weight-
tying (Press and Wolf, 2016) between the embed-
ding layer and projection layer of the decoder.

For expediency and convenience of experimen-
tation we have chosen to deploy a smaller, faster
variant of the model used in Michel and Neubig
(2018), which allows us to provide comparative
results across a variety of settings. Other model
parameters reflect the implementation outlined in
Michel and Neubig (2018).

In all experimental settings we employ Byte-
Pair Encoding (BPE) (Sennrich et al., 2015b) us-
ing Google’s SentencePiece2.

5 Experimental Approaches

We propose two primary approaches to increasing
the resilience of our baseline model to the MTNT
data, outlined as follows:

5.1 Synthetic Noise Induction (SNI)
For this method, we inject artificial noise in the
clean data according to the distribution of types of
noise in MTNT specified in Michel and Neubig
(2018). For every token we choose to introduce
the different types of noise with some probabil-
ity on both French and English sides in 100k sen-
tences of EP. Specifically, we fix the probabilities
of error types as follows: spelling (0.04), profanity
(0.007), grammar (0.015) and emoticons (0.002).
To simulate spelling error, we randomly add or
drop a character in a given word. For grammar
error and profanity, we randomly select and insert
a stop word or an expletive and its translation on
either side. Similarly for emoticons, we randomly
select an emoticon and insert it on both sides. Al-
gorithm 1 elaborates on this procedure.

2https://github.com/google/sentencepiece
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Figure 1: Pipeline for injecting noise through Back-Translation. For comprehension purposes we show the process
through an English sentence. For generating actual noisy data for training, we use French sentences as input with
reversed model order.

Algorithm 1 Synthetic Noise Induction

Inputs:[(p1, η1), (p2, η2) · · · (pk, ηk)] ▷ pairs of

noise probabilities and noise functions

procedure ADD NOISE(fr, en)
o = 1−

∑
i pi ▷ probability of keeping original

D = [o, p1, p2, · · · , pk] ▷ Discrete densities

j ← Select Index(Draw(D)) ▷ noise type

if j ̸= 0 then ▷ not original

(fr, en)← ηj(fr, en) ▷ add noise to

words

return fr, en

5.2 Noise Generation Through
Back-Translation

We further propose two experimental methods
to inject noise into clean data using the back-
translation technique (Sennrich et al., 2015a).

5.2.1 Un-tagged back-translation (UBT)
We first train both our baseline model for fr-en
and an en-fr model using TED.We subsequently
take 100k french sentences from EP and generate a
noisy version thereof by passing them sequentially
through the trained models as shown in Figure 1.
We hypothesize that the resulting translation will
be inherently noisy as a result of imperfect trans-
lation of the intervening MT system.

5.2.2 Tagged back-translation (TBT)
The intuition behind this method is to generate
noise in clean data whilst leveraging the particu-
lar style of the intermediate corpus. Both models
are trained using TED and MTNT as in the pre-
ceding setting, save that we additionally append a
tag in front on every sentence while training in ac-
cordance with Kobus et al. (2016), to indicate the
origin data set of each sentence.

6 Results

We present quantitative results of our experiments
in Table 3 below.

Figure 2: The impact of varying the amount of Syn-
thetic Noise Induction on BLEU.

Of specific note is the apparent correlation
between the amount of in-domain training data
and the resulting BLEU score. The tagged
back-translation technique produces the most pro-
nounced increase in BLEU score being +6.07
points. This represents a particularly significant
result given that we do not fine-tune the baseline
model on in-domain data. We attribute this gain to
the quality of the noise generated.

The results for all our proposed experimental
methods further imply that out-of-domain clean
data can be leveraged to make the existing MT
models robust on a noisy dataset. However, sim-
ply using clean data is not that beneficial as can be
seen from the experiment involving FT Baseline
w/ TED-100k.

7 Analysis

In this section we present qualitative analysis of
both methods introduced above.

Figure 2 illustrates the relative effect of varying
the level of SNI on the BLEU score as evaluated
on the newsdiscuss20153 dev set. From this we
note that the relationship between the amount of
noise and the effect on BLEU score appears to be
linear. We also note that most negative effect is

3http://www.statmt.org/wmt15/test.tgz
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Output

REFERENCE > And yes, I am an idiot with a telephone in usb-c... F*** that’s annoying, I had to invest in new cables when I changed phones.
Baseline (trained on Europarl) And yes, I am an eelot with a phone in the factory ... P***** to do so, I have invested in new words when I have changed telephone.
FT w/ NTMT-train-20k > And yes, I am an idiot with a phone in Ub-c. Sh**, it’s annoying that, I have to invest in new cable when I changed a phone.
FT w/ EP-100k-TBT - And yes, I’m an idiot with a phone in the factory... Puard is annoying that, I have to invest in new cables when I changed phone.
FT w/ EP-100k-TBT > And yes, I am an idiot with a phone in USb-c... Sh** is annoying that, I have to invest in new cables when I changed a phone.

+ NTMT-train-20k

Table 2: Output comparison of decoded sentences across different models. Profane words are censored.

Training data BLEU

Baselines

Baseline Europarl (EP) 14.42
+ FT w/ NTMT-train-10k 22.49
+ FT w/ NTMT-train-20k 23.74

Baseline FT w/ TED-100k 10.92
+ FT w/ NTMT-train-20k 24.10

Synthetic Noise Induction

Baseline FT w/ EP-100k-SNI 13.53
+ FT w/ NTMT-train-10k 22.67
+ FT w/ NTMT-train-20k 25.05

Un-tagged Back Translation

Baseline FT w/ EP-100k-UBT 10.13
+ FT w/ NTMT-train-10k 22.75
+ FT w/ NTMT-train-20k 24.84

Tagged Back Translation

Baseline FT w/ EP-100k-TBT 20.49
+ FT w/ NTMT-train-10k 23.89
+ FT w/ NTMT-train-20k 25.75

Table 3: BLEU scores are reported on NTMT test set.
NTMT valid set is used for fine-tuning in all the exper-
iments. + FT denotes fine-tuning of the Baseline model
of that particular sub-table, being continued training for
30 epochs or until convergence.

obtained by including profanity. Our current ap-
proach involves inserting expletives at random po-
sitions in a given sentence. However we note that
the latter approach may under-represent the nu-
anced linguistic usage of the latter in natural text,
which may result in its above-mentioned effect on
accuracy.

Table 2 shows the decoded output produced by
different models. We find that the output produced
by our best model is reasonably successful at imi-
tating the language and style of the reference. The
output of Baseline + FT w/ EP-100k-TBT is far
superior than that of Baseline, which highlights
the quality of obtained back translated noisy EP
through our tagging method.

We also consider the effect of varying the
amount of supervision which is added for fine-
tuning the model. From Table 4 we note that

Output

REFERENCE Voluntary or not because politicians are *very*
friendly with large businesses.

FT w/ EP-100k-TBT Whether it’s voluntarily, or invoiseally because
the fonts are *èsn* friends with the big companies.

FT w/ EP-100k-TBT Whether it’s voluntarily, or invokes because the
+ NTMT-train-10k politics are *rès* friends with big companies.

FT w/ EP-100k-TBT Whether it’s voluntarily, or invisible because the
+ NTMT-train-20k politics are *very* friends with big companies.

Table 4: Output comparison of decoded sentences for
different amount of supervision. Here * denotes pres-
ence in the reference.

the Baseline + FT w/ EP-100k-TBT model al-
ready produces a reasonable translation for the in-
put sentence. However, if we further fine-tune the
model using only 10k NTMT data, we note that
the model still struggles with generation of *very*.
This error dissipates if we use 20k NTMT data for
fine-tuning. These represent small nuances which
the model learns to capture with increasing super-
vision.

To better understand the performance difference
between UBT and TBT, we evaluate the noised EP
data. Figure 1 shows an example where we can
clearly see that the style of translation obtained
from TBT is very informal as opposed to the out-
put generated by UBT. Both the outputs are noisy
and different from the input but since the TBT
method enforces the style of MTNT, the resulting
output is perceptibly closer in style to the MTNT
equivalent. This difference results in a gain of 0.9
BLEU of TBT over UBT.

8 Conclusion

In this paper we introduce two novel methods of
improving the resilience of vanilla MT systems to
noise occurring in internet and social media text.
Namely a method of emulating specific types of
noise and the use of back-translation to create ar-
tificial noise.

Both of these methods are shown to increase
system accuracy when used in fine-tuning without
the need for the training of a new system and for
large amounts of naturally noisy parallel data.
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