Mitigating Noisy Inputs for Question Answering

Denis Peskov', Joe Barrow", Pedro Rodriguez', Graham Neubig?®, Jordan Boyd-Graber®

1University of Maryland Department of Computer Science and UMIACS
2Carnegie Mellon University Language Technology Institute
3University of Maryland Department of Computer Science, iSchool, UMIACS, and LSC

{{dpeskov|, |jdbarrow, pedro}@cs.umd.edu,

Abstract

Natural language processing systems are often downstream
of unreliable inputs: machine translation, optical character recog-
nition, or speech recognition. For instance, virtual assistants can
only answer your questions after understanding your speech.
We investigate and mitigate the effects of noise from Automatic
Speech Recognition systems on two factoid Question Answering
(QA) tasks. Integrating confidences into the model and forced
decoding of unknown words are empirically shown to improve
the accuracy of downstream neural QA systems. We create and
train models on a synthetic corpus of over 500,000 noisy sen-
tences and evaluate on two human corpora from Quizbowl and
Jeopardy! competitions.

1. Introduction

Progress on question answering (QA) has claimed human-level
accuracy. However, most factoid QA models are trained and
evaluated on clean text input, which becomes noisy when ques-
tions are spoken due to Automatic Speech Recognition (ASR)
errors. This consideration is disregarded in trivia match-ups
between machines and humans: 1BM Watson [1]] on Jeopardy!
and Quizbowl matches between machines and trivia masters [2]]
provide text data for machines while humans listen. A fair test
would subject both humans and machines to speech input.

Unfortunately, there are no large spoken corpora of factoid
questions with which to train models; text-to-speech software
can be used as a method for generating training data at scale for
question answering models (Section[2). Although synthetic data
is less realistic than true human-spoken questions it easier and
cheaper to collect at scale, which is important for training. These
synthetic data are still useful; in Section[4.I] models trained on
synthetic data are applied to human spoken data from Quizbowl
tournaments and Jeopardy!

Noisy ASR is particularly challenging for QA systems (Fig-
ure[T). While humans and computers might know the title of
a “revenge novel centering on Edmund Dantes by Alexandre
Dumas”, transcription errors may mean deciphering “novel cen-
tering on edmond dance by alexander <unk>" instead. Dantes
and Dumas are low-frequency words in the English language
and hence likely to be misinterpreted by a generic ASR model;
however, they are particularly important for answering the ques-
tion. Additionally, the introduction of distracting words (e.g.,
“dance”) causes QA models to make errors [3]]. Section[2.I]char-
acterizes the signal in this noise: key terms like named entities
are often missing, which is detrimental for QA.

Previous approaches to mitigate ASR noise for answering
mobile queries [4] or building bots [S]] typically use unsupervised
methods, such as term-based information retrieval. Our datasets
for training and evaluation can produce supervised systems that
directly answer spoken questions. Machine translation [6] also

gneubig@cs.cmu.edul,

Jbgl@umiacs.umd.edu

6.-,

2 strident dolon 1948 while
S A a unk forty well
= A

o~
o o
g~
bo] () squabbles kermit rita operas
o g unk unk unk unk
)
U E
o9&
S n
o (=} hellblazer gupta clarendon triumph
= "y blazer group claritin unk
= v
o o
3 &
o Ay - - - -
o o [mllllmeterwwde nevermlndl culmination [tnbutary
= 7 illimeter mind combination tributaries
T g mi

s

[0.0-1.0] (1.0-3.0] (3.0-5.0] (5.0-12.0]
log(Term Frequency), by Word

Figure 1: ASR errors on QA data: original spoken words (top
of box) are garbled (bottom). While many words become into
“noise”—frequent words or the unknown token—consistent errors
(e.g., “clarendon” to “clarintin”) can help downstream systems.
Additionally, words reduced to <unk> (e.g., “kermit”) can be
useful through forced decoding into the closest incorrect word
(e.g., “hermit” or even “car”).

uses ASR confidences; we evaluate similar methods on QA.

Specifically, some accuracy loss from noisy inputs can be
mitigated through a combination of forcing unknown words to
be decoded as the closest option (Section[3.2)), and incorporating
the uncertainties of the ASR model directly in neural models
(Section[3.3). The forced decoding method reconstructs missing
terms by using terms audibly similar to the transcribed input.
Word-level confidence scores incorporate uncertainty from the
ASR system into neural models. Section] compares these meth-
ods against baseline methods on our synthetic and human speech
datasets for Jeopardy! and Quizbowl.

2. Spoken question answering datasets

Neural networks require a large training corpus, but recording
hundreds of thousands of questions is not feasible. Crowd-
sourcing with the required quality control (speakers who say
“cyclohexane” correctly) is expensive. As an alternative, we gen-
erate a data-set with Google Text-to-Speech on 96,000 factoid
questions from a trivia game called Quizbowl [2], each with 4-6
sentences for a total of over 500,000 sentences We then decode
these utterances using the Kaldi chain model [7], trained on the
Fischer-English dataset 8] for consistency with past results on
mitigating ASR errors in MT [6]. This model has a Word Error

http://cloud.google.com/text-to-speech

mailto:dpeskov@cs.umd.edu
mailto:jdbarrow@cs.umd.edu
mailto:pedro@cs.umd.edu
mailto://gneubig@cs.cmu.edu
mailto://jbg@umiacs.umd.edu
http://cloud.google.com/text-to-speech

Rate (WER) of 15.60% on the eval2000 test set. The WER in-
creases to 51.76% on our Quizbowl data, which contains out of
domain vocabulary. The most BLEU improvement in machine
translation under noisy conditions could be found in this middle
WER range, rather than in values below 20% or above 80% [6].
Retraining the model on the Quizbowl domain would mitigate
this noise; however, in practice one is often at the mercy of a
pre-trained recognition model due to changes in vocabularies or
speakers. Intentional noise has been added to machine transla-
tion data [9} [10]. Alternate methods for collecting large scale
audio data include Generative Adversarial Networks [11] and
manual recording [12].

The task of QA requires the system to provide a correct
answer out of many candidates based on the question’s word-
ing. We test on two varieties of different length and framing.
Quizbowl questions, which are generally four to six sentences
long, test a user’s depth of knowledge; early clues are chal-
lenging and obscure but they progressively become easy and
well-known. Competitors can answer these types of questions
at any point. Computer QA is competitive with the top play-
ers [13]. Jeopardy! questions are single sentences and can only
be answered after the question ends. To test this alternate syntax,
we use the same method of data generation on a dataset of over
200,000 Jeopardy questions [14].

2.1. Why QA is challenging for ASR

ASR changes the features of the recognized text in several impor-
tant ways: the overall vocabulary is quite different and important
words are corrupted. First, it reduces the overall vocabulary. In
our dataset, the vocab drops from 263,271 in the original data
to a mere 33,333. This is expected, as ASR only has 42,000
words in its vocab, so the long tail of the Zipf’s curve is lost.
Second, unique words—which may be central to answering the
question—are lost or misinterpreted; over 100,000 of the words
in the original data occur only once. Finally, ASR systems tend to
delete unintentionally delete words, which makes the sentences
shorter. In our Quizbowl data, the average number of words
decreases from 21.62 to 18.85 per sentence.

The decoding system is able to express uncertainty by pre-
dicting <unk>. These account for slightly less than 10% of all
our word tokens, but is a top-2 prediction for 30% of the 260,000
original words. For QA, words with a high TF-IDF measure are
valuable. While some words are lost, others can likely be re-
covered: “hellblazer’ becoming “blazer”, “clarendon” becoming
“claritin”. We evaluate this by fitting a TF-IDF model on the
Wikipedia dataset and then comparing the average TF-IDF per
sentence between the original and the ASR data. The average
TF-IDF score drops from 3.52 to 2.77 per sentence.

3. Mitigating noise

This section discusses two approaches to mitigating the effects
of missing and corrupted information caused by ASR systems.
The first approach—forced decoding—exploits systematic errors
to arrive at the correct answer. The second uses confidence
information from the ASR system to down-weight the influence
of low-confidence terms. Both approaches improve accuracy
over a baseline DAN model and show promise for short single-
sentence questions. However, a IR approach is more effective on
long questions since noisy words are completely avoided during
the answer selection process.

Table 1: As original data are translated through ASR, it degrades
in quality. One-best output captures per-word confidence. Full
lattices provide additional words and phone data captures the
raw ASR sounds. Our confidence model and forced decoding
approach could be used for such data.

Clean For 10 points, name this revenge novel centering
on Edmond Dantes, written by Alexandre Dumas
1-Best for® 935 ten®9%5 points®8™ same®-%17 this?

...revenge novel centering on <unk> written by
alexander <unk> ...

“Lattice” for-935 [eps]04064 pretend0‘001 ten?-935

... pretend point points point name same named
name names this revenge novel . ..

Phones f BO935 o E0-935 { 0935 o ql , RO-935
...p_.Boy In_ItIs Esils Bey Im_Edh_B
ih_.Is_ Er Biy Iv_Ieh In_Ijh_En_BaalIv_I
ah_I1.1...

3.1. IR baseline

The IR baseline reframes Jeopardy! and Quizbowl QA tasks as
document retrieval ones with an inverted search index. We create
one document per distinct answer; each document has a text field
formed by concatenating all questions with that answer together.
At test time questions are treated as queries, and documents are
scored using BM25 [15/16]]. We implement this baseline with
Elastic Search and Apache Lucene.

3.2. Forced decoding

We have systematically lost information. We could predict the
answer if we had access to certain words in the original question
and further postulate that wrong guesses are better than knowing
that a word is unknown.

We explore commercial solutions—Bing, Google, IBM,
Wit—with low transcription errors. However, their APIs en-
sure that an end-user often cannot extract anything more than
one-best transcriptions, along with an aggregate confidence for
the sentence. Additionally, the proprietary systems are moving
targets, harming reproducibility.

We use Kaldi [17] for all experiments. Kaldi is a commonly-
used, open-source tool for ASR; its maximal transparency enables
approaches that incorporate uncertainty into downstream models.
Kaldi provides not only top-1 predictions, but also confidences
of words, entire lattices, and phones (Table[T). Confidences are
the same length as the text, range from 0.0 to 1.0 in value, and
correspond to the respective word or phone in the sequence.

The typical end-use of an ASR system wants to know when
when a word is not recognized. By default, a graph will have a
token that represents an unknown; in Kaldi, this becomes <unk>.
At a human-level, one would want to know that an out of context
word happened.

However, when the end-user is a downstream model, a sys-
tematically wrong prediction may be better than a generic state-
ment of uncertainty. So by removing all reference to <unk> in
the model’s Finite State Transducer, we force the system to de-
code “Louis Vampas” as “Louisiana” rather than <unk>. The risk
we run with this method is introducing words not present in the
original data. For example, “count” and “mount” are similar in
sound but not in context embeddings. Hence, we need a method
to downweight incorrect decoding.

3.3. Confidence augmented DAN

‘We build on Deep Averaging Networks [18, DAN], assuming
that deep bag-of-words models can improve predictions and be
robust to corrupted phrases. The errors introduced by ASR can
hinder sequence neural models as key phrases are potentially
corrupted and syntactic information is lost.

The original Deep Averaging Network, or DAN, classifier
has three sections: a “neural-bag-of-words” (NBOW) encoder,
which composes all the words in the document into a single
vector by averaging the word vectors; a series of hidden transfor-
mations, which give the network depth and allow it to amplify
small distinctions between composed documents; and a softmax
predictor that outputs a class.

The encoded representation r is the averaged embeddings
of input words. The word vectors exist in an embedding ma-
trix E, from which we can look up a specific word w with E[w].
The length of the document is N. To compute the composed
representation r, the DAN averages all of the word embeddings:

>, Efw]
r= N M

The network weights W, consist of a weight-bias pair for
each layer of transformations (W™, b®) for each layer i in the
list of layers L. To compute the hidden representations for each
layer, the DAN linearly transforms the input and then applies
a nonlinearity: hy = o(W®™r + b®™). Successive hidden
representations h; are: h; = U(W(h‘)hm + b(h‘)). The final
layer in the DAN is a softmax output: 0 = softmax(W®hy, +
b®). We modify the original DAN models to use word-level
confidences from the ASR system as a feature.

In increasing order of complexity, the variations are: a Con-
fidence Informed Softmax DAN, a Confidence Weighted Average
DAN, and a Word-Level Confidence DAN. We represent the
confidences as a vector ¢, where each cell c¢; contains the ASR
confidence of word wj.

The simplest model averages the confidence across the
whole sentence and adds it as a feature to the final output classi-
fier. For example in Table[T] “for ten points” averages to 0.914.
We introduce an additional weight in the output W€, which ad-
justs our prediction based on the average confidence of each
word in the question.

However, most words have high confidence, and thus the
average confidence of a sentence or question level is high. To
focus on which words are uncertain we weight the word embed-
dings by their confidence attenuating uncertain words before
calculating the DAN average.

Weighting by the confidence directly removes uncertain
words, but this is too blunt an instrument, and could end up
erasing useful information contained in low-confidence words,
so we instead learn a function based on the raw confidence from
our ASR system. Thus, we recalibrate the confidence through a
learned function f:

f(e) = W +p®© 2)

and then use that scalar in the weighted mean of the DAN repre-
sentation layer:

o XV f(0))
= ~ .

In this model, we replace the original encoder r with the new
version ™" to learn a transformation of the ASR confidence that
down-weights uncertain words and up-weights certain words.
This final model is referred to as our “Confidence Model”.

Table 2: Both forced decoding (FD) and the best confidence
model improve accuracy. Jeopardy only has an At-End-of-
Sentence metric, as questions are one sentence in length. Com-
bining the two methods leads to a further joint improvement in
certain cases. IR and DAN models trained and evaluated on
clean data are provided as a reference point for the ASR data.

Quizbowl Jeopardy!

Synth Human Synth Human
Model Start End Start End
Methods Tested on Clean Data
IR 0.064 0.544 0.400 1.000 0.190 0.050
DAN 0.080 0.540 0.200 1.000 0.236 0.033
Methods Tested on Corrupted Data
IR base 0.021 0442 0.180 0.560 0.079 0.050
DAN 0.035 0335 0.120 0440 0.097 0.017
FD 0.032 0354 0.120 0440 0.102 0.033

Confidence 0.036 0374 0.120 0.460 0.095 0.033
FD+Conf 0.041 0.371 0.160 0.440 0.109 0.033

Architectural decisions are determined by hyperparameter
sweeps. They include: having a single hidden layer of 1000
dimensionality for the DAN, multiple drop-out, batch-norm lay-
ers, and a scheduled ADAM optimizer. Our DAN models train
until convergence, as determined by early-stopping. Code is
implemented in PyTorch [19]], with TorchText for batchingﬂ

4. Results

Achieving 100% accuracy on this dataset is not a realistic goal, as
not all test questions are answerable (specifically, some answers
do not occur in the training data and hence cannot be learned
by a machine learning system). Baselines for the DAN (Table[2)
establish realistic goals: a DAN trained and evaluated on the same
train and dev set, only in the original non-ASR form, correctly
predicts 54% of the answers. Noise drops this to 44% with the
best IR model and down to ~ 30% with neural approaches.

Since the noisy data quality makes full recovery unlikely,
we view any improvement over the neural model baselines as
recovering valuable information. At the question-level, strong
IR outperforms the DAN by around 10%.

Since IR can avoid all the noise while benefiting from ad-
ditional independent data points, it scales as the length of data
increases. There is additional motivation to investigate this task
at the sentence-level. Computers can beat humans at the game
by knowing certain questions immediately; the first sentence of
the Quizbowl question serves as a proxy for this threshold. Our
proposed combination of forced decoding with a neural model
led to the highest test accuracy results and outperforms the IR
one at the sentence level.

A strong TF-IDF IR model can top the best neural model
at the multi-sentence question level in Quizbowl; multiple sen-
tences are important because they progressively become easier to
answer in competitions. However, our models improve accuracy
on the shorter first-sentence level of the question. This behavior
is expected since IR methods are explicitly designed to disregard
noise and can pinpoint the handful of unique words in a long
paragraph; conversely they are less accurate when they extract
words from a single sentence.

Table 3: Variation in different speakers causes different tran-
scriptions of a question on Oxford. The omission or corruption
of certain named entities leads to different predictions, which
are indicated with an arrow.

Speaker Text

Base John Deydras, an insane man who claimed to be Edward II,
stirred up trouble when he seized this city’s Beaumont Palace.

S1 unk an insane man who claimed to be the second unk trouble
when he sees unk beaumont — Richard_I_of_England

S2 john dangerous insane man who claims to be the second stir-
ring up trouble when he sees the city’s beaumont — London

S3 unk dangerous insane man who claim to be unk second third
of trouble when he sees the city’s unk palace — Baghdad

4.1. Qualitative Analysis & Human Data

The synthetic dataset facilitates large-scale machine learning,
but ultimately we care about performance on human data. For
Quizbowl we record questions read by domain experts at a com-
petition. To account for variation in speech, we record five
questions across ten different speakers, varying in gender and
age; this set of fifty questions is used as the human test data.
Table 3] provides examples of variations. For Jeopardy! we
manually parsed a complete episode by question.

The predictions of the regular DAN and the confidence ver-
sion can differ. For input about The House on Mango Street,
which contains words like “novel”, “character”, and “childhood”
alongside a corrupted name of the author, the regular DAN pre-
dicts The Prime of Miss Jean Brodie, while our version predicts
the correct answer.

4.2. Discussion & Future Work

Confidences are a readily human-interpretable concept that may
help build trust in the output of a system. Transparency in the
quality of up-stream content can lead to downstream improve-
ments in a plethora of NLP tasks.

Exploring sequence models or alternate data representations
may lead to further improvement. Including full lattices may
mirror past results for machine translation [6] for the task of ques-
tion answering. Phone-level approaches work in Chinese [12]],
but our phone models had lower accuracies than the baseline,
perhaps due to a lack of contextual representation. Using unsu-
pervised approaches for ASR [20} 21]] and training ASR models
for decoding Quizbowl or Jeopardy! words are avenues for
further exploration.

5. Conclusion

Question answering, like many NLP tasks are impaired by noisy
inputs. Introducing ASR into a QA pipeline corrupts the data.
A neural model that uses the ASR system’s confidence outputs
and systematic forced decoding of words rather than unknowns
improves QA accuracy on Quizbowl and Jeopardy! questions.
Our methods are task agnostic and can be applied to other su-
pervised NLP tasks. Larger human-recorded question datasets
and alternate model approaches would ensure spoken questions
are answered accurately, allowing human and computer trivia
players to compete on an equal playing field.

2Code, data, and additional analysis available at nttps://github.com/

DenisPeskov/QBASR

6. Acknowledgments

This work was supported by NSF Grants I1S-1748663 and IIS-
1748642. We thank the Quizbowl community in general as
well as the specific players who volunteered their time to record
questions during a local competition. We thank the anonymous
paper reviewers, the Kaldi community, and Yogarshi Vyas for
their help.

Any opinions, findings, conclusions, or recommendations
expressed here are those of the authors and do not necessarily
reflect the view of the sponsor.

7. References

[1] D. A. Ferrucci, “Build Watson: an overview of DeepQA for the
Jeopardy! challenge,” in 19th International Conference on Parallel
Architecture and Compilation Techniques, 2010, pp. 1-2.

[2

—

J. Boyd-Graber, S. Feng, and P. Rodriguez, Human-Computer
Question Answering: The Case for Quizbowl. Springer Verlag,
2018.

[3

=

R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” in Proceedings of Empirical Methods in
Natural Language Processing, 2017, pp. 2021-2031.

[4

=

T. Mishra and S. Bangalore, “Qme!: A speech-based question-
answering system on mobile devices,” in Human Language Tech-
nologies:, 2010, pp. 55-63.

A. Leuski, R. Patel, D. Traum, and B. Kennedy, “Building effec-
tive question answering characters,” in Proceedings of the Annual
SIGDIAL Meeting on Discourse and Dialogue, 2009, pp. 18-27.

M. Sperber, G. Neubig, J. Niehues, and A. Waibel, “Neural lattice-
to-sequence models for uncertain inputs,” in Proceedings of the
Association for Computational Linguistics, 2017.

V. Peddinti, G. Chen, V. Manohar, T. Ko, D. Povey, and S. Khudan-
pur, “Jhu aspire system: Robust Ivesr with tdnns, ivector adaptation
and rnn-1ms,” in Automatic Speech Recognition and Understanding
(ASRU), IEEE Workshop on, 2015, pp. 539-546.

C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource
for the next generations of speech-to-text,” in Proceedings of the
Language Resources and Evaluation Conference, 2004.

[5

=

[6

=

[7

—

[8

[t}

[9]1 P. Michel and G. Neubig, “Mtnt: A testbed for machine translation
of noisy text,” in Proceedings of Empirical Methods in Natural
Language Processing, 2018.

[10] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both break
neural machine translation,” in Proceedings of the International
Conference on Learning Representations, 2017.

[11] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech en-
hancement with generative adversarial networks for robust speech
recognition,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2018, pp. 5024-5028.

[12] C.-H. Lee, S.-M. Wang, H.-C. Chang, and H.-Y. Lee, “Odsqa:
Open-domain spoken question answering dataset,” in 2018 IEEE
Spoken Language Technology Workshop (SLT). 1EEE, 2018, pp.
949-956.

[13] I. Yamada, R. Tamaki, H. Shindo, and Y. Takefuji, “Studio Ou-
sia’s quiz bowl question answering system,” in NIPS Competition:
Building Intelligent Systems, 2018, pp. 181-194.

[14] M. Dunn, L. Sagun, M. Higgins, V. U. Giiney, V. Cirik, and K. Cho,
“Searchqa: A new Q&A dataset augmented with context from a
search engine,” CoRR, vol. abs/1704.05179, 2017.

[15] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the International Conference of Ma-
chine Learning, 2003.

[16] S. Robertson, H. Zaragoza et al., “The probabilistic relevance
framework: Bm25 and beyond,” Foundations and Trends in Infor-
mation Retrieval, vol. 3, no. 4, pp. 333-389, 2009.

https://github.com/DenisPeskov/QBASR
https://github.com/DenisPeskov/QBASR

[17]

(18]

[19]

[20]

[21]

[22]

[23]

D. Povey, A. Ghoshal, G. Boulianne, N. Goel, M. Hannemann,
Y. Qian, P. Schwarz, and G. Stemmer, “The Kaldi speech recogni-
tion toolkit,” in IEEE Workshop on Automatic Speech Recognition
and Understanding, 2011.

M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep
unordered composition rivals syntactic methods for text classi-
fication,” in Proceedings of the Association for Computational
Linguistics, 2015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” in Conference on Neural Information
Processing Systems: Autodiff Workshop: The Future of Gradient-
based Machine Learning Software and Techniques, 2017.

F. Wessel and H. Ney, “Unsupervised training of acoustic models
for large vocabulary continuous speech recognition,” IEEE Trans-
actions on Speech and Audio Processing, vol. 13, no. 1, pp. 23-31,
2004.

H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature
learning for audio classification using convolutional deep belief
networks,” in Proceedings of Advances in Neural Information
Processing Systems, 2009, pp. 1096—1104.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method
for automatic evaluation of machine translation,” in Proceedings of
the Association for Computational Linguistics, 2002, pp. 311-318.

C. E. Shannon, “A mathematical theory of communication,” Bell
system technical journal, vol. 27, no. 3, pp. 379-423, 1948.

Human BLEU Scores

ASR

=
N B

=
o

Frequency, by Speaker
[e0]
IR

W oo~y U, WNHFH O

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized BLEU Score

0.8

Figure 2: A comparison of BLEU score distributions across hu-
man speakers (color-coded) to our artificial method, visualized
by the step line. The distributions of BLEU scores are simi-
lar, with human data being slightly lower, justifying our weak
supervision training approach.

A. Further Data Analysis

One potential concern with the synthetically-generated dataset
is that ASR systems might be either better or worse at recog-
nizing text-to-speech(TTS) speech. If the ASR system is trained
on human data, then it might be an out-of-domain sample, or
there might be systematic pronunciation issues that lower ASR
accuracy. Alternatively, TTS-generated speech might prove more
regular or cleaner than human speech, so an ASR system may
produce a higher transcription accuracy on this data. Thus, we
determine the distributional overlap between the ASR output on
both the synthetic and natural data.

We compare BLEU scores between the gold standard
data and the decoded data for between the human and synthetic
data variations. By using BLEU scores, which capture n-gram
overlap between the target and source text, we can compare the
variance in ASR between the two datasets. Figure [illustrates
this variance. Additionally, Figure 3] shows the comparison of
Word Error Rate (WER). Human data has more instances of
higher WER and lower BLEU scores than the auto-generated
data on the same questions; however, the two sources of speech
data generally follow a similar distribution and our results are
comparable in accuracy to our synthetic data. Therefore, we
conclude that our method serves as a good approximation for the
task, which allows weak supervision to work.

B. Negative Results

Alternative methods were applied to mitigate ASR-induced
noise in the course of experimentation, including noisy channel
techniques typically used in Information Retrieval and lattice-
structured Recurrent Neural Networks. For completeness, we
discuss the results of these two experiments in this section. While
neither method provided an improvement on the question answer-
ing task, their discussion might prove useful for future research.

B.1. Noisy Channel Expansion

In both Information Retrieval and NLP it is often useful to
model processes that induce noise using Shannon’s noisy chan-
nel model [23]. We know the answer would be predictable if
we had access to certain words in the original question. The
noisy channel model allows us to reconstruct the original data as
cleanly as possible by modeling the process by which noise was

Human WER Scores

ASR —‘

o
N

=
o

o 00

IS

Frequency, by Speaker
O 00N U WNHEO

N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized WER Score

o

o

<)
|-

Figure 3: Similarly a comparison of WER score distributions
across human speakers (color-coded) to our artificial method,
visualized by the step line. The distributions of WER scores are
similar as well. Speakers are color-coded. The background step
line is the WER of the automatic TTS approach.

induced, in this case the trip from text to speech and back to text.
‘We propose two forms of query expansion based on this model,
both of which are typically used in Cross Language Information
Retrieval.

The first model uses IBM Model 3 to generate an alignment
table between the corrupted ASR data and the original text data.
The alignment table serves as the underlying corruption model
which we are aiming to reverse. We use our training data a
second time and generate possible word candidates that were
missed during decoding.

The second model uses a more robust version of the same
Information Retrieval technique looks at two-way translations
between ASR and original data based on (Xu, 2008). Whereas the
first model included many junk translations—stop-words such
as “unk” or “the” would be mapped to a long tail of meaningful
words—this version does not suffer from this problem: even if
“the” maps to “Monte”, “Monte” does not map back to “the”.

In both cases, the reconstructed data was used to train the
DAN model. That neither was able to improve over the confi-
dence modeling DAN indicates that the errors made by the ASR
system were likely not recoverable with the translation models
we used. This is unsurprising, as many low-frequency impor-
tant words were mapped to a handful of high-frequency terms,
collapsing the space and preventing simple recoverability.

B.2. Lattice-Structured RNN

The confidence models are not calculate on a full lattice, and
hence cannot not reconstruct alternate paths in situations with
low confidences. A more complex model can ingest the entire
lattice, and not the top word prediction. The lattice can update
multiple words needed, as their relationships are preserved. “Leo
Patrick” can now be reinterpreted as “Cleopatra”, as the lattice
relationship allows alternate paths to be explored. The confi-
dence values provide additional value about what path to follow
within a lattice.
We produce three variations:

1. A “lattice” LSTM that consumes the full lattice by lin-
earizing the graphs with a topological sort and feeding it
through a normal LSTM.

2. A lattice LSTM without confidences. This network only
sees the word vectors when consuming the lattice struc-
ture.

3. A lattice LSTM with confidences integrated as features.
The confidences are concatenated to the word vector in-
puts.

This sequence demonstrates the gain from each part of the
model. The first tests the benefit of additional data. The second
tests the benefit of the structure of this data. The third tests the
importance of the confidence of each item in the data.

Unfortunately, none of these experiments outperformed the
confidence augmented DAN. These may be due to instability or
training issues, however.

	 Introduction
	 Spoken question answering datasets
	 Why qa is challenging for asr

	 Mitigating noise
	 ir baseline
	 Forced decoding
	 Confidence augmented dan

	 Results
	 Qualitative Analysis & Human Data
	 Discussion & Future Work

	 Conclusion
	 Acknowledgments
	 References
	 Further Data Analysis
	 Negative Results
	 Noisy Channel Expansion
	 Lattice-Structured RNN

