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Abstract

Simultaneous interpretation, the translation of
speech from one language to another in real-
time, is an inherently difficult and strenuous
task. One of the greatest challenges faced
by interpreters is the accurate translation of
difficult terminology like proper names, num-
bers, or other entities. Intelligent computer-
assisted interpreting (CAI) tools that could an-
alyze the spoken word and detect terms likely
to be untranslated by an interpreter could re-
duce translation error and improve interpreter
performance. In this paper, we propose a task
of predicting which terminology simultaneous
interpreters will leave untranslated, and exam-
ine methods that perform this task using super-
vised sequence taggers. We describe a number
of task-specific features explicitly designed to
indicate when an interpreter may struggle with
translating a word. Experimental results on a
newly-annotated version of the NAIST Simul-
taneous Translation Corpus (Shimizu et al.,
2014) indicate the promise of our proposed
method.!

1 Introduction

Simultaneous interpretation (SI) is the act of trans-
lating speech in real-time with minimal delay, and
is crucial in facilitating international commerce,
government meetings, or judicial settings involv-
ing non-native language speakers (Bendazzoli and
Sandrelli, 2005; Hewitt et al., 1998). However,
SI is a cognitively demanding task that requires
both active listening to the speaker and careful
monitoring of the interpreter’s own output. Even
accomplished interpreters with years of training
can struggle with unfamiliar concepts, fast-paced

Code is available at ht tps: //github.com/nvog/
lost-in-interpretation. Term annotations for the
NAIST Simultaneous Translation Corpus will be provided
upon request after confirmation that you have access to the

corpus, available at https://ahcweb0l.naist. jp/
resource/stc/.

speakers, or memory constraints (Lambert and
Moser-Mercer, 1994; Liu et al., 2004). Human
short-term memory is particularly at odds with the
simultaneous interpreter as he or she must con-
sistently recall and translate specific terminology
uttered by the speaker (Lederer, 1978; Daro and
Fabbro, 1994). Despite psychological findings
that rare words have long access times (Balota and
Chumbley, 1985; Jescheniak and Levelt, 1994;
Griffin and Bock, 1998), listeners expect inter-
preters to quickly understand the source words
and generate accurate translations. Therefore, pro-
fessional simultaneous interpreters often work in
pairs (Mill4dn and Bartrina, 2012); while one inter-
preter performs, the other notes certain challeng-
ing items, such as dates, lists, names, or numbers
(Jones, 2002).

Computers are ideally suited to the task of re-
calling items given their ability to store large
amounts of information, which can be accessed al-
most instantaneously. As a result, there has been
recent interest in developing computer-assisted in-
terpretation (CAI; Plancqueel and Werner; Fantin-
uoli (2016, 2017b)) tools that have the ability to
display glossary terms mentioned by a speaker,
such as names, numbers, and entities, to an inter-
preter in a real-time setting. Such systems have the
potential to reduce cognitive load on interpreters
by allowing them to concentrate on fluent and ac-
curate production of the target message.

These tools rely on automatic speech recogni-
tion (ASR) to transcribe the source speech, and
display terms occurring in a prepared glossary.
While displaying all terminology in a glossary
achieves high recall of terms, it suffers from low
precision. This could potentially have the un-
wanted effect of cognitively overwhelming the in-
terpreter with too many term suggestions (Stew-
art et al., 2018). Thus, an important desideratum
of this technology is to only provide terminology
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Figure 1: The simultaneous interpretation process, which could be augmented by our proposed terminology tagger
embedded in a computer-assisted interpreting interface on the interpreter’s computer. In this system, automatic
speech recognition transcribes the source speech, from which features are extracted, input into the tagger, and term
predictions are displayed on the interface in real-time. Finally, machine translations of the terms can be suggested.

assistance when the interpreter requires it. For
instance, an NLP tool that learns to predict only
terms an interpreter is likely to miss could be inte-
grated into a CAI system, as suggested in Fig. 1.

In this paper, we introduce the task of predict-
ing the terminology that simultaneous interpreters
are likely to leave untranslated using only infor-
mation about the source speech and text. We
approach the task by implementing a supervised,
sliding window, SVM-based tagger imbued with
delexicalized features designed to capture whether
words are likely to be missed by an interpreter.
We additionally contribute new manual annota-
tions for untranslated terminology on a seven talk
subset of an existing interpreted TED talk cor-
pus (Shimizu et al., 2014). In experiments on the
newly-annotated data, we find that intelligent term
prediction can increase average precision over the
heuristic baseline by up to 30%.

2  Untranslated Terminology in SI

Before we describe our supervised model to pre-
dict untranslated terminology in SI, we first define
the task and describe how to create annotated data
for model training.

2.1 Defining Untranslated Terminology

Formally, we define untranslated terminology with
respect to a source sentence S, sentence created by
a translator R, and sentence created by an inter-
preter [. Specifically, we define any consecutive
sequence of words s;.;, where 0 < ¢ < N — 1

(inclusive) and ¢+ < 7 < N (exclusive), in source
sentence Sy. that satisfies the following criteria
to be an untranslated term:

e Termhood: It consists of only numbers or
nouns. We specifically focus on numbers or
nouns for two reasons: (1) based on the inter-
pretation literature, these categories contain
items that are most consistently difficult to re-
call (Jones, 2002; Gile, 2009), and (2) these
words tend to have less ambiguity in their
translations than other types of words, mak-
ing it easier to have confidence in the transla-
tions proposed to interpreters.

e Relevance: A translation of s;.;, we denote ¢,
occurs in a sentence-aligned reference trans-
lation R produced by a translator in an of-
fline setting. This indicates that in a time-
unconstrained scenario, the term should be
translated.

o Interpreter Coverage: It is not translated,
literally or non-literally, by the interpreter in
interpreter output /. This may reasonably
allow us to conclude that translation thereof
may have presented a challenge, resulting in
the content not being conveyed.

Importantly, we note that the phrase untrans-
lated terminology entails words that are either
dropped mistakenly, intentionally due to the in-
terpreter deciding they are unnecessary to carry



across the meaning, or mistranslated. We con-
trast this with literal and non-literal term cover-
age, which encompasses words translated in a ver-
batim and a paraphrastic way, respectively.

2.2 Creating Term Annotations

To obtain data with labels that satisfy the pre-
vious definition of untranslated terminology, we
can leverage existing corpora containing sentence-
aligned source, translation, and simultaneous in-
terpretation data. Several of these resources ex-
ist, such as the NAIST Simultaneous Translation
Corpus (STC) (Shimizu et al., 2014) and the Euro-
pean Parliament Translation and Interpreting Cor-
pus (EPTIC) (Bernardini et al., 2016). Next, we
process the source sentences, identifying terms
that satisfy the termhood, relevance, and inter-
preter coverage criteria listed previously.

e Termhood Tests: To check termhood for
each source word in the input, we first part-
of-speech (POS) tag the input, then check the
tag of the word and discard any that are not
nouns or numbers.

¢ Relevance and Interpreter Coverage Tests:
Next, we need to measure relevancy (whether
a corresponding target-language term ap-
pears in translated output), and interpreter
coverage (whether a corresponding term does
not appear in interpreted output). An approx-
imation to this is whether one of the transla-
tions listed in a bilingual dictionary appears
in the translated or interpreted outputs re-
spectively, and as a first pass we identify all
source terms with the corresponding target-
language translations. However, we found
that this automatic method did not suffice to
identify many terms due to lack of dictionary
coverage and also to non-literal translations.
To further improve the accuracy of the an-
notations, we commissioned human transla-
tors to annotate whether a particular source
term is translated literally, non-literally, or
untranslated by the translator or interpreters
(details given in §4).

Once these inclusion criteria are calculated, we
can convert all untranslated terms into an appro-
priate format conducive to training supervised tag-
gers. In this case, we use an IO tagging scheme
(Ramshaw and Marcus, 1999) where all words
corresponding to untranslated terms are assigned
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Figure 2: A source sentence and its corresponding
interpretation. Untranslated terms are surrounded by
brackets and each word in the term is labeled with an
I-tag. The interpreter mistakes the term 40 for 4, and
omits Sierra snowpack.

the label I, and all others are assigned a label O, as
shown in Fig. 2.

3 Predicting Untranslated Terminology

With supervised training data in hand, we can cre-
ate a model for predicting untranslated terminol-
ogy that could potentially be used to provide in-
terpreters with real-time assistance. In this sec-
tion, we outline a couple baseline models, and then
describe an SVM-based tagging model, which we
specifically tailor to untranslated terminology pre-
diction for SI by introducing a number of hand-
crafted features.

3.1 Heuristic Baselines

In order to compare with current methods for term
suggestion in CAl, such as Fantinuoli (2017a), we
first introduce a couple of heuristic baselines.

e Select noun/# POS tag: Our first baseline
recalls all words that meet the termhood re-
quirement from §2. Thus, it will achieve per-
fect recall at the cost of precision, which will
equal the percentage of I-tags in the data.

e Optimal frequency threshold: To increase
precision over this naive baseline, we also
experiment with a baseline that has a fre-
quency threshold, and only output words that
are rarer than this frequency threshold in a
large web corpus, with the motivation that
rarer words are more likely to be difficult for
translators to recall and be left untranslated.

3.2 SVM-based Tagging Model

While these baselines are simple and intuitive,
we argue that there are a large number of other
features that indicate whether an interpreter is
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Figure 3: Our tagging model at prediction time. A sliding window SVM, informed by a task-specific feature
function ¢ with access to the POS tags, source speech timing (in seconds), and other information, predicts whether
or not words matching the termhood constraint (in blue) are likely to be left untranslated in SI.

likely to leave a term untranslated. We thus de-
fine these features, and resort to machine-learned
classifiers to integrate them and improve perfor-
mance. State-of-the-art sequence tagging mod-
els process sequences in both directions prior to
making a globally normalized prediction for each
item in the sequence (Huang et al., 2015; Ma
and Hovy, 2016). However, the streaming, real-
time nature of simultaneous interpretation con-
strains our model to sequentially process data from
left-to-right and make local, monotonic predic-
tions (as noted in Oda et al. (2014); Grissom II
et al. (2014), among others). Therefore, we
use a sliding-window, linear support vector ma-
chine (SVM) classifier (Cortes and Vapnik, 1995;
Joachims, 1998) that uses only local features of
the history to make independent predictions, as de-
picted in Fig. 3.> Formally, given a sequence of
source words with their side information (such as
timings or POS tags) S = so.n, we slide a win-
dow W of size k incrementally across .S, extract-
ing features ¢(s;_g11.5+1) from s; and its k& — 1
predecessors.

Since our definition of terminology only allows
for nouns and numbers, we restrict prediction to
words of the corresponding POS tags Q = {CD,
NN, NNS, NNP, NNPS} using the Stanford POS
tagger (Toutanova et al., 2003). That is, we assign
a POS tag p; to each word from s; and only extract
features/predict using the classifier if p; € @Q; oth-
erwise we always assign the Outside tag. This dis-

>We also experimented with a unidirectional LSTM tag-

ger (Hochreiter and Schmidhuber, 1997; Graves, 2012), but
found it ineffective on our small amount of annotated data.

allows words that are of other POS tags from being
classified as untranslated terminology and greatly
reduces the class imbalance issue when training
the classifier.?

3.3 Task-specific Features

Due to the fact that only a small amount of human-
interpreted human-annotated data can be created
for this task, it is imperative that we give the
model the precise information it needs to gener-
alize well. To this end, we propose multiple task-
specific, non-lexical features to inform the classi-
fier about certain patterns that may indicate termi-
nology likely to be left untranslated.

e Elapsed time: As discussed in §1, Sl is a
cognitively demanding task. Interpreters of-
ten work in pairs and usually swap between
active duty and notetaking roles every 15-20
minutes (Lambert and Moser-Mercer, 1994).
Towards the end of talks or long sentences,
an interpreter may become fatigued or face
working memory issues—especially if work-
ing alone. Thus, we monitor the number of
minutes elapsed in the talk and the index of
the word in the talk/current sentence to in-
form the classifier.

Word timing: We intuit that a presenter’s
quick speaking rate can cause the simultane-
ous interpreter to potentially drop some ter-
minology. We obtain word timing informa-

3We note that a streaming POS tagger would have to be
used in a real-time setting, as in (Oda et al., 2015).



tion from the source speech via forced align-
ment tools (Ochshorn and Hawkins, 2016;
Povey et al., 2011). The feature function ex-
tracts both the number of words in the past m
seconds and the time deltas between the cur-
rent word and previous words in the window.

e Word frequency: We anticipate that inter-
preters often leave rarer source words un-
translated because they are probably more
difficult to recall from memory. On the other
hand, we would expect loan words, words
adopted from a foreign language with lit-
tle or no modification, to be easier to rec-
ognize and translate for an interpreter. We
extract the binned unigram frequency of the
current source word from the large monolin-
gual Google Web 1T Ngrams corpus (Brants
and Franz, 2006). We define a loan word
as an English word with a Katakana transla-
tion in the bilingual dictionaries (eij; Breen,
2004).

e Word characteristics and syntactic fea-
tures: We extract the number of characters
and number of syllables in the word, as deter-
mined by lookup in the CMU Pronunciation
dictionary (Weide, 1998). Numbers are con-
verted to their word form prior to dictionary
lookup. Generally, we expect longer words,
both by character and syllable count, to rep-
resent more technical or marked vocabulary,
which may be challenging to translate. Ad-
ditionally, we syntactically inform the model
with POS tags and regular expression pat-
terns for numerals.

These features are extracted via sliding a win-
dow over the sentence, as displayed in Fig. 3 and
discussed in §3.2. Thus, we also utilize previous
information from the window when predicting for
the current word. This previous information in-
cludes past predictions, word characteristics and
syntax, and source speech timing.

4 Experimental Annotation and Analysis

In this section, we detail our application of the
term annotation procedure in §2 to an SI corpus
and analyze our results.

4.1 Annotation of NAIST STC

For SI data, we use a seven-talk, manually-aligned
subset of the English-to-Japanese NAIST STC

(Shimizu et al., 2014), which consists of source
subtitle transcripts, En—Ja offline translations,
and interpretations of English TED talk videos
from professional simultaneous interpreters with
1, 4, and 15 years of experience, who are dubbed
B-rank, A-rank, and S-rank*. TED talks offer a
unique and challenging format for simultaneous
interpreters because the speakers typically talk in-
depth about a single topic, and such there are many
new terms that are difficult for an interpreter to
process consistently and reliably. The prevalence
of this difficult terminology presents an interesting
testbed for our proposed method.

First, we use the Stanford POS Tagger
(Toutanova et al., 2003) on the source subtitle tran-
scripts to identify word chunks with a POS tag in
{CD, NN, NNS, NNP, NNPS}, discarding words
with other tags. After performing word segmen-
tation on the Japanese data using KyTea (Neubig
et al., 2011), we automatically detect for trans-
lation coverage between the source subtitles, SI,
and translator transcripts with a string-matching
program, according to the relevance and coverage
tests from §2. The En<>Ja EIJIRO (2.1m entries)
(eij) and EDICT (393k entries) (Breen, 2004) bilin-
gual dictionaries are combined to provide term
translations. Additionally, we construct individual
dictionaries for each TED talk with key acronyms,
proper names, and other exclusive terms (e.g., UN-
ESCO, CO2, conflict-free, Pareto-improving) to
increase this automatic coverage. Nouns are lem-
matized prior to lookup in the bilingual dictionary,
and we discard any remaining closed-class func-
tion words.

While this automatic process is satisfactory for
identifying if a translated term occurs in the trans-
lator’s or interpreters’ transcripts (relevancy), it is
inadequate for verifying the terms that occur in the
translator’s transcript, but nof the interpreters’ out-
puts (interpreter coverage). Therefore, we com-
missioned seven professional translators to review
and annotate those source terms that could not
be marked as translated by the automatic process
as either translated, untranslated, or non-literally
translated in each target sentence. Lastly, we add
I-tags to each word in the untranslated terms and
O-tags to the words in literally and non-literally
translated terms.

*{B, A, S}-rank is the Japanese equivalent to {C, B, A}-
rank on the international scale.



trans. non-lit. raw untrans.
T/1 # % # % # %
T 2213 80 158 6 401 14
B 1,134 41 92 3 1,546 56
A 1,151 42 114 4 1,507 54
S 1,531 55 170 6 1,071 39

Table 1: Translated, non-literally translated, and raw
untranslated term annotations obtained in the annota-
tion process using the NAIST STC for (T)ranslator, and
{B,A,S}-rank SI. Note that these raw untranslated term
figures are directly from the annotation process, prior to
filtering based off of the term relevancy constraint from
2.

4.2 Annotation Analysis

Table 1 displays the term coverage annotation
statistics for the translators and interpreters. Since
translators performed in an offline setting without
time constraints, they were able to translate the
largest number of source terms into the target lan-
guage, with 80% being literally translated, and 6%
being non-literally translated. On the other hand,
interpreters tend to leave many source terms un-
covered in their translations. The A-rank and B-
rank interpreters achieve roughly the same level of
term coverage, with the A-rank being only slightly
more effective than B-rank at translating terms lit-
erally and non-literally. This is in contrast with
Shimizu et al. (2014)’s automatic analysis of trans-
lation quality on a three-talk subset, in which A-
rank has slightly higher translation error rate and
lower BLEU score (Papineni et al., 2002) than the
B-rank interpreter. The most experienced S-rank
interpreter leaves 17% fewer terms than B-rank
uncovered in the translations. More interestingly,
the number of non-literally translated terms also
correlates with experience-level. In fact, the S-
rank interpreter actually exceeds the translator in
the number of non-literal translations produced.
Non-literal translations can occur when the inter-
preter fully comprehended the source expression,
but chose to generate it in a way that better fit the
translation in terms of fluency.

In Table 2, we show the number of terms left
untranslated by each interpreter rank after process-
ing our annotations for the relevancy constraint of
§2. Since the number of per-word I-tags is only
slightly higher than the number of untranslated
terms, most such terms consist of only a single

% 1-tag of

SI # untrans. terms all noun/#
B-rank 1,256 10.8 454
A-rank 1,206 10.4 43.6
S-rank 812 7.0 29.6

Table 2: Final untranslated term count and number of I-
tags after filtering based off of the relevancy constraint
(§2). That is, only the raw untranslated source terms
that appear in the translator’s transcript are truly con-
sidered untranslated.

Figure 4: Untranslated term overlap between inter-
preters.

word of about 6.5 average characters for all ranks.
Capitalized terms (i.e., named entities/locations)
constitute about 14% of B-rank, 13% of A-rank,
and 15% of S-rank terms. Numbers represent
about 5% of untranslated terms for each rank.

The untranslated term overlap between inter-
preters is visualized in Fig. 4. Most difficult
terms are shared amongst interpreter ranks as only
23.2% (B), 22.1% (A), and 11.7% (S) of terms are
unique for each interpreter. We show a sampling
of some unique noun terms on the outside of the
Venn diagram, along with the untranslated terms
shared among all ranks in the center. Among these
unique terms, capitalized terms make up 19% of
B-rank/S-rank, but only 13% of A-rank. 7.4% of
S-rank’s unique terms are numbers compared with
about 5% for the other two ranks.

5 Term Prediction Experiments

5.1 Experimental Setting

We design our experiments to evaluate both the
effectiveness of a system to predict untranslated
terminology in simultaneous interpretation and the
usefulness of our features given the small amount



AP

Method B A S

Select noun/# POS tag 454 43.6 29.6
Optimal freq threshold 49.7 48.1 32.9
SVM (all features) 58.9 535 39.1
— elapsed time 58.8 53.0 38.8
— word timing 582 532 385
— word freq 594 525 39.1
— characteristic/syntax  59.3 55.1 42.5

Table 3: Average precision score cross-validation re-
sults with feature ablation for the untranslated term
class on test data. Optimal word frequency threshold
is determined on dev set of each fold. Evaluation per-
formed on a word-level. Highest numbers per column
are bolded. Each setting is statistically significant at
p < 0.05 by paired bootstrap (Koehn, 2004).

of aligned and labeled training data we possess.

We perform leave-one-out cross-validation us-
ing five of the seven TED talks as the training set,
one as the development set, and one as the test set.
Hyperparameters (SVM’s penalty term, the num-
ber of bins for the word frequency feature=9, and
sliding window size=8) are tuned on the dev. fold
and the best model, determined by average pre-
cision score, is used for the test fold predictions.
Both training and predictions are performed on a
sentence-level. During training, we weight the two
classes inversely proportional to their frequencies
in the training data to ensure that the majority O-
tag does not dominate the I-tag.

5.2 Results and Analysis

Since we are ultimately interested in the precision
and recall trade-off among the methods, we evalu-
ate our results using precision-recall curves in Fig.
5 and the average precision (AP) scores in Table
3. AP’ summarizes the precision-recall curve by
calculating the weighted mean of the precisions at
each threshold, where the weights are equal to the
increase in recall from the previous threshold. If
the method is embedded in a CAI system, then the
user could theoretically adjust the precision-recall
threshold to balance helpful term suggestions with
cognitive load.

Overall, we tend to see that all methods per-
form best when tested on data from the B-rank

SWe compute AP using the scikit-learn implementation
(Pedregosa et al., 2011).

in the last 5 years we ’ve added
70000000 tons of co2 every
24 hours 25000000 tons every
day to the oceans

Select POS

in the last 5 years we "ve added
70000000 tons of co2 every
25000000 tons every

to the oceans

Optimal freq

in the last 5 years we "ve added
70000000 tons of co2 every
hours 25000000 tons every

to the oceans

SVM

Table 4: B-rank output from our model contrasted with
baselines. Type I errors are in red, type II errors in

, and correctly tagged untranslated terminology
in blue.

interpreter, and observe a decline in performance
across all methods with an increase in interpreter
experience. We believe that this is due to a de-
crease in the number of untranslated terminology
as experience increases (i.e., class imbalance) cou-
pled with the difficulty of predicting such exclu-
sive word occurrences from only source speech
and textual cues. Ablation results in Table 3 show
that not all of the features are able to improve
classifier performance for all interpreters. While
the elapsed time and word timing features tend
to cause a degradation in performance when re-
moved, ablating the word frequency and character-
istic/syntax features can actually improve average
precision score. Word frequency, which is a recall-
based feature, seems to be more helpful for B- and
S-rank interpreters because it is challenging to re-
call the smaller number of untranslated terms from
the data. Although the characteristic/syntax fea-
tures are also recall-based, we see a decline in per-
formance for them across all interpreter ranks be-
cause they are simply too noisy. When ablating
the uninformative features for each rank, the SVM
is able to increase AP vs. the optimal word fre-
quency baseline by about 20%, 15%, and 30% for
the B, A, and S-rank interpreters, respectively.

In Table 4, we show an example taken from
the first test fold with results from each of the
three methods. The SVM’s increased precision is
able to greatly reduce the number of false posi-
tives, which we argue could overwhelm the inter-
preter if left unfiltered and shown on a CAI sys-
tem. Nevertheless, one of the most apparent false
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Figure 5: Precision-recall curves for each interpreter rank.

positive errors that still occurs with our method is
on units following numbers, such as the word tons
in the example. Also, because our model priori-
tizes avoiding this type I error, it is more suscepti-
ble to type Il errors, such as ignoring untranslated
terms 24 and day. A user study with our method
embedded in a CAI would reveal the true costs of
these different errors, but we leave this to future
work.

6 Conclusion and Future Work

In this paper, we introduce the task of automati-
cally predicting terminology likely to be left un-
translated in simultaneous interpretation, create
annotated data from the NAIST ST corpus, and
propose a sliding window, SVM-based tagger with
task-specific features to perform predictions.

We plan to assess the effectiveness of our ap-
proach in the near future by integrating it in a
heads-up display CAI system and performing a
user study. In this study, we hope to discover the
ideal precision and recall tradeoff point regarding
cognitive load in CAI terminology assistance and
use this feedback to adjust the model.

Other future work could examine the effective-
ness of the approach in the opposite direction
(Japanese to English) or on other language pairs.
Additionally, speech features could be extracted
from the source or interpreter audio to reduce the
dependence on a strong ASR system.
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