
MagmaDNN: Towards High-Performance
Data Analytics and Machine Learning
for Data-Driven Scientific Computing

Daniel Nichols1, Nathalie-Sofia Tomov1, Frank Betancourt1,
Stanimire Tomov1, Kwai Wong1, and Jack Dongarra1,2

1 University of Tennessee, Knoxville TN 37996, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

{dnicho22, ntomov, fbetanco}@vols.utk.edu, tomov@icl.utk.edu,

kwong@utk.edu, dongarra@icl.utk.edu

Abstract. In this paper, we present work towards the development of a
new data analytics and machine learning (ML) framework, called Mag-
maDNN. Our main goal is to provide scalable, high-performance data
analytics and ML solutions for scientific applications running on current
and upcoming heterogeneous many-core GPU-accelerated architectures.
To this end, since many of the functionalities needed are based on stan-
dard linear algebra (LA) routines, we designed MagmaDNN to derive
its performance power from the MAGMA library. The close integration
provides the fundamental (scalable high-performance) LA routines avail-
able in MAGMA as a backend to MagmaDNN. We present some de-
sign issues for performance and scalability that are specific to ML using
Deep Neural Networks (DNN), as well as the MagmaDNN designs to-
wards overcoming them. In particular, MagmaDNN uses well established
HPC techniques from the area of dense LA, including task-based paral-
lelization, DAG representations, scheduling, mixed-precision algorithms,
asynchronous solvers, and autotuned hyperparameter optimization. We
illustrate these techniques and their incorporation and use to outperform
other frameworks, currently available.

Keywords: Machine learning · high-performance DNN · data-driven
scientific computing

1 Introduction

Powered by hardware advances and availability of massive training data, data
analytics and machine learning (ML) research, e.g., using Deep Neural Net-
works (DNN), have exploded in recent years, making major contributions in
applications of computer vision, speech recognition, robotics, natural language
processing, and many others. Many of these are scientific applications, where ac-
celerating the DNN training is a major challenge and a current main bottleneck
to scale the computation on current and up-coming architectures. In this paper,
we present a new data analytics and machine learning framework, called Mag-
maDNN. Our main goal is to provide scalable, high-performance data analytics

2 D. Nichols et al.

and ML solutions for scientific applications running on current, as well as up-
coming heterogeneous many-core GPU-accelerated architectures. To this end, as
much of the functionalities needed are based on standard linear algebra routines,
we designed MagmaDNN to derive its power from the MAGMA library [15].
The close integration provides the fundamental (scalable high-performance) lin-
ear algebra routines available in MAGMA as a backend to MagmaDNN. We
present some design issues for performance and scalability that are specific to
machine learning (ML) using Deep Neural Networks (DNN), as well as the Mag-
maDNN designs towards overcoming them. In particular, MagmaDNN uses well
established HPC techniques from the area of dense linear algebra, including
task-based parallelization, DAG representations, scheduling, mixed-precision al-
gorithms, asynchronous solvers, and autotuning. We illustrate these techniques
and their incorporation and use to outperform other frameworks, currently avail-
able.

2 MagmaDNN design

Many ML and data analytics problems can be cast as linear algebra (LA) prob-
lems, and therefore can be accelerated with familiar algorithms, e.g., BLAS,
linear solvers, eigensolvers, or singular value decomposition (SVD), that are
routinely used in HPC. These LA algorithms are readily available in highly
optimized numerical LA libraries on new architectures, like MAGMA, which is
used by MagmaDNN (see the MagmaDNN software stack illustrated on Fig-
ure 1, Left). Figure 1, Right shows that significant acceleration can be achieved
by using HPC library like MAGMA, e.g., in this case on SVD for square matri-
ces in double precision on two 10 core Intel Haswell E5-2650 v3 CPUs with an
NVIDIA V100 GPU accelerator [7].

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

 MAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
 SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications

0"

20"

40"

60"

80"

100"

120"

5000" 10000" 15000"

MAGMA,2"

MAGMA"

MKL"

EIGEN"S
p

e
e

d
u

p

Matrix sizes

SVD performance speedup

Fig. 1. Left: MagmaDNN software stack. Right: MAGMA backend speedup in accel-
erating fundamental data analytics kernels, e.g., SVD.

MagmaDNN 3

Related to DNNs, MagmaDNN’s design is modular with each component
built on top of each other in increasing levels of abstraction. The core component
is the MemoryManager (2.1), which handles the underlying memory opera-
tions. On top of the MemoryManager, sits 3 other components: Tensor (2.2),
Layer (2.3), and Model (2.4). All of these compose the typical MagmaDNN
program workflow (2.5).

2.1 MemoryManager

Typical deep learning frameworks hide memory from the user in a Python inter-
face. MagmaDNN accomplishes similar abstraction through its MemoryManager
class, which defines and controls memory movement in the framework. Memory is
broken into four types: HOST, DEVICE, MANAGED, and CUDA MANAGED.
The latter two are both managed style memory, which keep track of data on both
the CPU and GPU. CUDA MANAGED uses CUDA’s unified memory. Similar
to unified memory MANAGED keeps track of CPU and GPU data, however it
must be explicitly synchronized.

Memory bugs are common in GPU and especially C/C++ code. The Memo-
ryManager solves this development hurdle for the library user, while still giving
explicit control over memory transactions.

In addition to providing a simple modular interface the MemoryManager pro-
vides a flexible platform for MagmaDNN to optimize memory tasks in training.
In deep learning data sets are typically large and create a memory bandwidth
bottleneck. Several tricks are employed in MagmaDNN such as asynchronous
data prefetching and custom synchronization scheduling. Additionally, the cus-
tomizable nature of the class allows for future work in memory optimization.

2.2 Tensor

At the core of most deep learning frameworks is the tensor: a structure stor-
ing multi-dimensional data. In addition to the tensor itself, essential to deep
learning is also a collection of math functions, which operate on tensors. Mag-
maDNN defines many tensor operations using a combination of its own defini-
tions, MAGMA, and CuDNN [6]. The close relation to linear algebra exposes the
opportunity to use high performance LA packages, such as MAGMA, to use both
the multi-core CPU and GPU devices [15]. Other operations are implemented
using optimized CUDA kernels.

The tensor implementation in MagmaDNN wraps around the MemoryMan-
ager and gives structure to the linear memory. It aims to provide a simple inter-
face for tensor interaction in addition to Pythonic style indexing.

Modern networks are more than just linear transformations and are typically
composed of convolutional and recurrent layers. MagmaDNN provides convolu-
tional support through Batched GEMMs [2], the Winograd algorithm [5], and
FFTs [16,13], but for current performance defaults to CuDNN [6].

4 D. Nichols et al.

2.3 Layer

MagmaDNN provides a simple Layer interface for creating network layers. Each
layer keeps track of its own forward/backward pass function, weight tensor and
bias tensor. Currently MagmaDNN provides seven layer types: Input, Fully Con-
nected, Activation, Conv2D, Pooling2D, Dropout, and Output.

Despite all layers inheriting from a base Layer class they each define their
own set of parameters. The activation layer accepts tanh, sigmoid, and relu

as activation functions and it is simple to define new ones. By all inheriting
from the same Layer superclass it is possible to define custom layers for use in
training.

2.4 Model

MagmaDNN’s Model class defines a typical training routine. This routine will
load new data, forward propagate, backward propagate, and update the net-
work. It calculates and stores simple training metrics such as loss, accuracy, and
training time.

Typical DNN framework users are not concerned with the specifics of network
training routines. Models removes the necessity for end-users to implement their
own training loop.

2.5 Workflow

Figure 2 illustrates the typical kernels that are needed in a DNN. As shown,
the neural network can be organized into L fully-connected ’layers’ (i = 1, ..., L)
with ni nodes (or artificial neurons) per layer that function together to make
a prediction. The connections between layers i � 1 and i are represented by
numerical weights, stored in matrix Wi of size ni ⇥ni�1, and vector bi of length
ni. Thus, if the input values for layer i, given by the values at the ni�1 nodes
of layer i � 1, are represented as a vector ai�1 of size ni�1, the output of layer
i will be a vector of size ni, given by the matrix-vector product Wiai�1 + bi.
As training will be done in parallel for a batch of nb vectors, the input matrices
Ai�1 are of size ni�1 ⇥ nb and the outputs are given by the matrix-matrix
products Zi = WiAi�1 + bi, where “+” adds bi to each of the nb columns of
the resulting matrix. The Forward propagation process, given by steps 0, ..., L,
represents a non-linear hypothesis/prediction function HW,b(X) ⌘ AL for given
inputs of X and fixed weights W, b. The weights must be modified so that the
predictions HW,b(X) become close to given/known outcomes stored in Y . This is
known as a classification problem and is a case of so called supervised learning.
The modification of the weights is defined as a minimization problem on a cost
function J , e.g.,

min
W,b

J(W, b), where J(W, b) = � 1

N

NX

i=1

yi logHW,b(xi)+(1�yi) log(1�HW,b(xi)).

MagmaDNN 5

This is solved by a batch SGD that uses a batch of nb training examples at a
time. The derivatives of J with respect to the weights (W and b) are derived over
the layers using the chain rule for di↵erentiating compositions of functions. They
are computed then by the backward propagation steps L+1, ..., 2L, and used to
modify their respective weights Wi, bi during the iterative training process for
each layer i as:

Wi = Wi � �dWi, bi = bi � �dbi,

where � is a hyperparameter referred to as learning rate. The �1, ...,�L functions
are the activation functions for the di↵erent layers of the network, and �0 are
their derivatives. The “.*” notation is for point-wise multiplication. The case
of nb = 1 is the standard (synchronous) SGD. As illustrated, the main kernels
are GEMMs, other BLAS, simple auxiliary LA kernels, and various activation
functions, which are accelerated using the MAGMA backend.

 . . .

Back

propagation

Forward

propagation

.

.

.

1

13

.

.

.

1

2

n1

.

.

.

1

2

nL-1

 . . .

input layer

hidden layer 1 hidden layer L-1

output
layer L

W1

WL

n1xM

1xnL-1

Training
data

matrix
X

size MxN

Outputs
Y

(size 1x nb)

M

N

1

N

Z1 = W1 A0 + b1
A1 = σ1 (Z1)

A0 = X

ZL-1 = WL-1 AL-2 + bL-1
AL-1 = σL-1 (ZL-1)

ZL = WL AL-1+ bL
AL = σL (ZL)

dZL = AL - Y
dWL = dZL ATL-1 / nb
dbL = np.sum(dZL, axis=1, keepdims =True)/nb

dZ1 = WT
2 dZ2 .* σ’1(Z1)

dW1 = dZ1 AT0 / nb
db1 = np.sum(dZ1, axis=1, keepdims =True)/nb

 . . .

 . . .

 . . .

0) 1) L-1) L)

L+1) 2L)

nb

Fig. 2. Typical DNN computational kernels (Left) and MagmaDNN workflow (Right).

MagmaDNN is capable of many di↵erent workflows, however it is designed
towards the linear one depicted in Figure 2, Right. Each level of the workflow is
supported by some functionality in MagmaDNN, however, currently the Train
Model step is the focus of development.

3 Hyperparameter optimization

MagmaDNN uses a Random and/or Exhaustive Grid Search technique to opti-
mize hyperparameters. The routine is modular and able to add new dimensions
to the search space. In grid search, a parameter server sends a parameter set to
each node, where the model is trained according to its received parameters. The
parameter server, or master, in turn receives the training time, accuracy, and
loss associate with each parameter set. Using some objective function, typically
a combination of training duration and accuracy, the optimization routine gives
the optimal training parameters. Grid search can be run to exhaustively search

6 D. Nichols et al.

a range of parameters (with a given step size). MagmaDNN provides the full
search capability as one option. However, this is often too large to be feasible.
For these reasons grid search can be ran using random sampling until some ac-
curacy threshold is met. We use the openDIEL framework [17], described next,
to run the hyperparameter search in parallel.

3.1 openDIEL Framework Design Overview

The openDIEL system consists of a library that contains all of the function
needed to manage modules. Typically, a main driver file is created which contains
all of the needed function calls to set up the main MPI communicator that the
IEL library uses, set up necessary modules for tuple space communication, and
calling the user defined modules.

The main way that users interact with the system is through a configuration
file. There are two major components of the openDIEL system: the executive
library, and the communication library (see Figure 3).

Fig. 3. openDIEL architecture: (A) GUI launcher creates a configuration file for the
workflow, and executive will read this file to set up workflows; (B) After initial con-
figuration, executive starts all modules; (C) The modules have access to the commu-
nication library, and directly communicate or utilize tuple space communication.

Configuration File Information about how modules communicate and rely
on one another is contained in a configuration file. The configuration file defines
what resources the modules requires, such as the number of cores, and number of
GPUs required by the module. After defining the modules themselves, a section
of the file subsequently defines the manner in which groups of modules depend
on one another, how many iterations need to run, amongst other characteristics.

MagmaDNN 7

Communication Library The communication library is essentially a wrapper
around various MPI calls, and is responsible for managing both tuple space
and direct communication between modules. This is done by creating a main
MPI COMM WORLD communicator in which all of the modules run, and then
subdividing this main communicator at the level of single modules. If there are
multiple concurrent copies of the same module running at the same time, the
module sub-communicator is further subdivided between the copies [17].

Two di↵erent methods of communication are provided by an API: tuple space
communication, and direct module-to-module communication. With tuple space
communication, a tuple server module is used that allows modules to concur-
rently send data to and receive data from a shared associative array. Modules
can use this form of communication to send and receive data from the tuple
space respectively. Each module that puts data into the tuple space can issue
a non-blocking (IEL tput) function call, and provide a tag for the data placed
in the tuple space. The receiving module can use a blocking (IEL tget) function
call to retrieve the data with the specified tag.

Fig. 4. Distributed tuple server model: (A) Client data is distributed across an array
of tuple servers; (B) Metadata for the distributed data is stored in a metadata server;
(C) When data is to be retrieved, first the metadata is retrieved, and (D) the data
itself is retrieved from the distributed array of tuple servers. The received data is then
reconstructed and returned to the requesting client.

The tuple space can also be distributed across a number of di↵erent modules,
essentially providing a way to store and retrieve data in a distributed manner.
The functions IEL dist tget and IEL dist tget utilize this multiple tuple server
model. The IEL dist tget function will take a pointer to data and a string to tag
the data, and distribute it amongst an array of tuple servers. Information about
the distribution of the data is stored on a meta-data server. The IEL dist tget
function will retrieve the data by querying the meta-data server, which returns
the locations of the servers holding the data, the data servers are queried, and
the stored data is reconstructed.

8 D. Nichols et al.

Executive Library The executive library is the other major part of the library
responsible for starting job and managing dependencies. When a job starts, the
executive will read in a workflow configuration file, and then based on this file,
the executive will create a dependency graph of the specified workflow, and then
start modules based on the graph. Typically, a module is included in openDIEL
by linking a library against a driver file, and function pointers are provided to
the executive so that they can be called with the appropriate arguments [17].
Executables can also be run by calling fork() and exec() in an MPI process,
but limits the ability of the module to use the inter-modular communication
provided by openDIEL.

Typical Usage Typically, all of the needed functions are called in a main
driver file. This driver file will call MPI init, and then it will call openDIEL
member function IELAddModule, which will take a pointer to the function in the
linked library for the module. This will be used later to start the module in the
workflow. For modules that are executables, a model that calls fork() and exec()
on the proper arguments is started for each serial module. After this setup, the
main IELExecutive() member function is called. This function will split up the
MPI COMM WORLD communicator into the appropriate subcommunicators,
resolve dependencies from the configuration file, and then start modules.

3.2 Grid Engine

One of the goals of the framework is to not only provide facilities for hyperparam-
eter optimization and search, but also to allow for users to readily use existing
libraries to perform these tasks. One such implementation is a grid search engine
that uses the openDIEL tuple space communication to distribute parameters to
worker processes in an exhaustive search of a specified parameter space, collect
the results, and report the best parameters found.

The module consists of a master process that chooses hyperparameters, and a
set of processes that receive the hyperparameters. The master process first selects
a set of parameters, distributes them to the workers via the tuple space, and waits
for the group to finish. The group of worker processes receive the parameters,
train, and report their results to the trainer via tuple space communication.
These results are then gathered by the master process, and then the next group
of processes is started on the next batch of parameters.

4 Performance results

4.1 MNIST Test

Since its introduction by Lecun et. al. [11] the MNIST data set has become
a standard for learning and training neural networks. The data set consists of
60000 images of handwritten digits that are 28x28 pixels in size.

MagmaDNN 9

2 4 6 8 10 12 14

10

20

30

40

50

60

70

Layers

T
im

e
(s
)

MLP Time Comparison on MNIST

MagmaDNN
TensorFlow
PyTorch

Theano GPU
Theano CPU

0"

1"

2"

3"

4"

5"

6"

7"

1" 2" 3" 4" 5" 6" 7" 8"

ASGD"Peak"

MagmaDNN"

S
p

e
e

d
u

p

Number of GPUs

Fig. 5. Left: Time comparisons of MagmaDNN training to other popular frameworks
on a single GPU. Right: Scalability and MagmaDNN SGD speedup and peak asyn-
chronous SGD (ASGD) speedup vs. TensorFlow SGD training.

As a baseline test MagmaDNN was compared to Tensorflow, PyTorch, and
Theano (see Figure 5, Left) on a dense network using the MNIST data set.
The layers were increased with each test to show how each framework scaled
in training time. A learning rate of ⌘ = 0.05, a weight decay of ↵ = 0.001 and
activation function sigmoid were used in training the network. Data was loaded
into the network with a batch size of 100 samples and ran for 5 epochs. The tests
were conducted on an Intel Xeon X560 processor alongside an Nvidia 1050 Ti
GPU card. Theano was also run on CPU only to give reference to the speedups
gained by using GPUs.

From the above test MagmaDNN was the fastest at each data point. It ran
approximately 6.8⇥ faster than TensorFlow, and 17.8⇥ faster than Theano-CPU.
The performance results shown are averaged over five runs.

4.2 Scaling

Despite being the fastest MagmaDNN scaled the second fastest in terms of train-
ing time. PyTorch, being the fastest scaling, performed poorly on the small data
set, but did not gain much training time as the network size increased.

Framework � time / � layer

MagmaDNN 0.6197
TensorFlow 1.7524

Theano (GPU) 1.5271
Theano (CPU) 12.5071

PyTorch -0.08
Table 1. Change in Training Time with Number of Layers

10 D. Nichols et al.

Due to the computational size of deep networks much e↵ort has been put
into distribution strategies. Parallelization introduces speed increases, but can
also hurt convergence.

As evinced by Figure 5, GPUs provide a significant performance boost in
training deep networks. Thus making full use of the GPU is vital for a new deep
learning framework.

Even with the advent of GPUs in training, they are still insu�cient for train-
ing larger networks (such as ResNet-50 or DenseNet) in a reasonable amount of
time. These large networks typically train on vast data sets causing memory
transferring to bottle neck the training. One solution to this problem is to use
minibatches. Batches reduce the total number cudaMemcpy calls. Using batches
also introduces additional optimization complexity by creating a new hyperpa-
rameter batch size.

In addition to adding new hyperparameters, using large batch sizes can also
hinder the convergence of the network. In order to combat the poor convergence,
tricks such as growing batch sizes [12], warm-up [8], or layer-wise adaptive rate
scaling (LARS) [18] must be used. In practice these tricks are often successful,
but only raise the batch size barrier [3]. Using these techniques and various
others You et al. were able to train AlexNet in 11 minutes on the ImageNet-1k
data set [19].

All of the above techniques are typical to modern deep learning approaches,
however, they do not address multi-node training. DNN parallelization can also
be implemented to accelerate training, while retaining convergence.

The most common of these techniques is Data-Parallelism (see Figure 6).
Older implementations of data parallelism use a master-worker model (see Figure
6, Left) for averaging weights. In this model weights are sent from a master node
to N worker nodes. Let wj be the weights of the j-th worker node. Each node
computes the gradient rwj and sends it back to the master node. Once the
master node has received the gradients from each worker it calculates w
w� ⌘/N

PN
j=1 rwj , the average weight, and broadcasts w back to each worker.

Modern implementations, as well as MagmaDNN’s implementation, remove the
Master node and average the gradients using AllReduce. Any CUDA-aware
MPI implementation can perform this operation, however, Nvidia’s NCCL has
in general a much faster ncclAllReduce between GPU nodes. Data parallelism
is a typical method used in scaling deep learning and it has shown promising
results [9][4].

While providing significant speed ups, data parallelism also provides some
drawbacks. In the Allreduce approach nodes that finish training early sit idle
while waiting on others. This creates ”lulls” where more work could be done. To
address this issue some parallel trainers utilize Model-Parallelism. Here models
are partitioned across nodes and trained in parallel. This approach can quickly
fill up device memory, thus restricting itself to smaller models and/or batch sizes.

Layer-Parallelism aims to solve the idle processor issue by pipelining network
layers, computing layers in parallel as soon as possible. Layer parallelism o↵ers

MagmaDNN 11

Fig. 6. Master-Worker Reduce (Left) and Ring AllReduce (Right).

some performance benefits and is used in practice [10][1], but creates irregular
transfer rates between processors [3].

As each distribution strategy o↵ers unique solutions and drawbacks the best
strategy is Hybrid-Parallelism, which combines each of the previous in some
custom manner to exploit the parallel nature of a specific model. However, this
makes hybrid parallelism model specific and non generalizable.

MagmaDNN makes use of MAGMA to exploit best fine-grained parallel prac-
tices. CUDA and CuDNN are additionally utilized to exploit the highly parallel
GPU architectures. Other fine-grained acceleration is currently not within the
projects scope.

Techniques such as data parallelism and distributed training with CUDA-
aware MPI are included in MagmaDNN to employ course-grained parallelism.

MPI is utilized to distribute networks across nodes in MagmaDNN using
Allreduce to implement data parallelism. Despite MPI not being fault-tolerant
training is typically not hindered due to the large number of samples trained on
and the resilience of deep networks.

Figure 5, Right shows the speedup of MagmaDNN’s SGD training vs. Tensor-
Flow train- ing on a system with up to 8 V100 GPUs. In this case MagmaDNN
outperforms TensorFlow by about 50%. Shown also is a comparison to a peak
performance of an asynchronous SGD. The large speedups illustrate the high
potential that asynchronous methods have for accelerating the computation.

4.3 Hyperparameter optimizations

We tested the hyperparameter optimization framework on a number of applica-
tions. Most notably, we used it as a proof of concept in the design, evaluation,
and optimization of DNN architectures of increasing depth. For example, when
applied to heart disease diagnosis [14], the hyperparameter optimization led to
the discovery of a novel five layer DNN architecture that yields best prediction
accuracy (using the publicly available Cleveland data set of medical information
and a predefined search space), e.g., yielding 99% accuracy and 0.98 Matthews

12 D. Nichols et al.

correlation coe�cient (MCC), significantly outperforming currently published
research in the area [14].

5 Conclusions and future directions

As the availability of exaflop computing capabilities approaches, deep learning
continues to be far from utilizing the entirety of available computing power.
Thus, it is crucial to continue and pursue distribution strategies and techniques
for training deep networks on clusters and supercomputers.

MagmaDNN, due to its HPC MAGMA backend and initial speed, shows
potential in becoming a tool for future deep learning applications. Its native
C++ interface allows easier integration with existing C and fortran scientific
codes. However, MagmaDNN currently lacks the arsenal of features present in
other popular frameworks due to its infancy.

MagmaDNN aims to continue to add the necessary features for a full deep
learning suite, while maintaining a fast scalable interface. Future development
will focus on performance enhancements in distributed training, while provid-
ing a modular framework that allows for customization and tuning. Interfaces
and ease of use are also very important, and to be able to compete with other
frameworks, we are considering adding Python APIs to MagmaDNN.

6 Availability

MagmaDNN is currently developed and supported by the Innovative Comput-
ing Laboratory (ICL) and Joint Institute for Computer Science (JICS) at the
University of Tennessee, Knoxville and Oak Ridge National Laboratory. Source
code, documentation, tutorials, and licensing can all be found on the project’s
homepage3.

Acknowledgments

This work was conducted at the Joint Institute for Computational Sciences
(JICS) and the Innovative Computing Laboratory (ICL). This work is spon-
sored by the National Science Foundation (NSF), through NSF REU Award
#1659502, with additional Support from the University of Tennessee, Knoxville
(UTK), the National Institute for Computational Sciences (NICS), and NSF
Awards #1740250 and #1709069. This work used the Extreme Science and En-
gineering Discovery Environment (XSEDE), which is supported by NSF grant
#ACI-1548562. Computational Resources are available through a XSEDE edu-
cation allocation awards TG-ASC170031 and TG-ASC190013. In addition, the
computing work was also performed on technical workstations donated by the BP
High Performance Computing Team, as well as on GPUs donated by NVIDIA.

3 https://bitbucket.org/icl/magmadnn/

MagmaDNN 13

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A.,
Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan,
V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. CoRR abs/1603.04467 (2016), http://arxiv.org/abs/1603.04467

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Performance, design, and
autotuning of batched GEMM for gpus. In: High Performance Computing - 31st In-
ternational Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-
23, 2016, Proceedings. pp. 21–38 (2016). https://doi.org/10.1007/978-3-319-41321-
1 2, https://doi.org/10.1007/978-3-319-41321-1_2

3. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. CoRR abs/1802.09941 (2018), http://arxiv.

org/abs/1802.09941

4. Chen, J., Monga, R., Bengio, S., Józefowicz, R.: Revisiting distributed synchronous
SGD. CoRR abs/1604.00981 (2016), http://arxiv.org/abs/1604.00981

5. Chen, S., Gessinger, A., Tomov, S.: Design and Acceleration of Convolutional
Neural Networks on Modern Architectures. Tech. rep., Joint Institute for Com-
putational Sciences (JICS), UTK (2018), 2018 Summer Research Experiences for
Undergraduate (REU), Knoxville, TN, 2018.

6. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catan-
zaro, B., Shelhamer, E.: cudnn: E�cient primitives for deep learning. CoRR
abs/1410.0759 (2014), http://arxiv.org/abs/1410.0759

7. Gates, M., Tomov, S., Dongarra, J.: Accelerating the svd two stage bidiagonal
reduction and divide and conquer using gpus. Parallel Computing 74, 3 – 18
(2018). https://doi.org/https://doi.org/10.1016/j.parco.2017.10.004, http://www.
sciencedirect.com/science/article/pii/S0167819117301758, parallel Matrix
Algorithms and Applications (PMAA’16)

8. Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A.,
Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: training imagenet in
1 hour. CoRR abs/1706.02677 (2017), http://arxiv.org/abs/1706.02677

9. Iandola, F.N., Ashraf, K., Moskewicz, M.W., Keutzer, K.: Fireca↵e: near-
linear acceleration of deep neural network training on compute clusters. CoRR
abs/1511.00175 (2015), http://arxiv.org/abs/1511.00175

10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadar-
rama, S., Darrell, T.: Ca↵e: Convolutional architecture for fast feature embedding.
CoRR abs/1408.5093 (2014), http://arxiv.org/abs/1408.5093

11. Lecun, Y., Bottou, L., Bengio, Y., Ha↵ner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov 1998).
https://doi.org/10.1109/5.726791

12. Smith, S.L., Kindermans, P., Le, Q.V.: Don’t decay the learning rate, increase the
batch size. CoRR abs/1711.00489 (2017), http://arxiv.org/abs/1711.00489

13. Sorna, A., Cheng, X., D’Azevedo, E., Wong, K., Tomov, S.: Optimizing the
fast fourier transform using mixed precision on tensor core hardware. In: 2018
IEEE 25th International Conference on High Performance Computing Workshops
(HiPCW). pp. 3–7 (Dec 2018). https://doi.org/10.1109/HiPCW.2018.8634417

14 D. Nichols et al.

14. Tomov, N., Tomov, S.: On deep neural networks for detecting heart disease. CoRR
abs/1808.07168 (2018), http://arxiv.org/abs/1808.07168

15. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hy-
brid gpu accelerated manycore systems. Parallel Computing 36(5), 232 – 240
(2010). https://doi.org/https://doi.org/10.1016/j.parco.2009.12.005, http://www.
sciencedirect.com/science/article/pii/S0167819109001276, parallel Matrix
Algorithms and Applications

16. Tomov, S., Haidar, A., Ayala, A., Schultz, D., Dongarra, J.: Design and Imple-
mentation for FFT-ECP on Distributed Accelerated Systems. ECP WBS 2.3.3.09
Milestone Report FFT-ECP ST-MS-10-1410, Innovative Computing Laboratory,
University of Tennessee (April 2019), revision 04-2019

17. Wong, K., Brown, L., Coan, J., White, D.: Distributive interoperable executive
library (diel) for systems of multiphysics simulation. In: 2014 15th International
Conference on Parallel and Distributed Computing, Applications and Technologies.
pp. 49–55. IEEE (2014)

18. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32k for imagenet
training. CoRR abs/1708.03888 (2017), http://arxiv.org/abs/1708.03888

19. You, Y., Zhang, Z., Hsieh, C., Demmel, J.: 100-epoch imagenet training with
alexnet in 24 minutes. CoRR abs/1709.05011 (2017), http://arxiv.org/abs/
1709.05011

