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Abstract—This paper presents a progressive approach for
optimizing the batched LU factorization on graphics processing
units (GPUs). The paper shows that the reliance on level-3 BLAS
routines for performance does not really pay off, and that it is in-
deed important to pay attention to the memory-bound part of the
algorithm, especially when the problem size is very small. In this
context, we develop a size-aware multi-level blocking technique
that utilizes different granularities for kernel fusion according
to the problem size. Qur experiments, which are conducted on a
Tesla V100 GPU, show that the multi-level blocking technique
achieves speedups for single/double precisions that are up to
3.28%/2.69x against the generic LAPACK-style implementation.
It is also up to 8.72x/7.2x faster than the cuBLAS library for
single and double precisions, respectively. The developed solution
is integrated into the open-source MAGMA library.

Index Terms—LU factorization, batch computation, GPU com-
puting

I. INTRODUCTION AND RELATED WORK

Primarily driven by scientific applications, the demand for
high performance batched linear algebra routines has wit-
nessed significant increase in the past five years. Such a
demand was also motivated by the relatively poor performance
of existing solutions for workloads that consist of batches
of small matrices. Such workloads are popular in sparse
direct solvers, tensor contractions, machine learning, quantum
chemistry, and others.

The research community, as well as vendors of high-end
computing systems, have recognized both the need and the
challenge of optimizing batched linear algebra operations. This
is why vendor math libraries, such as MKL [1], cuBLAS [2],
and rocBLAS [3], have recently added some batched BLAS
routines. While the coverage of batched routines varies from
a vendor to another, some operations represent a common
denominator across vendor libraries. As an example, the
batched matrix multiplication routine (i.e., batched GEMM)
exists in all of the aforementioned libraries as probably the
most important operation in dense linear algebra, as well as
deep learning.

Outside the vendor software landscape, there have been
many developments in batched linear algebra across the re-
search community. Some early research shows that scientists,
motivated by lack of coverage of numerical software, have
developed in-house batched routines for their specific needs.
Such developments usually focus on one specific algorithm,

and often target a specific range of sizes that the application
requires. As an example, batched LU factorization has been
used in subsurface transport simulation [4], [5], where the
sizes are assumed to be up to 128 x 128. A batched Cholesky
factorization and the triangular solve (for square sizes up to
100) have also been used to accelerate an alternating least
square (ALS) solver that generates product recommendations
on the basis of implicit feedback datasets [6], [7]. As a result,
open-source libraries, such as MAGMA [8], provide optimized
batched routines for many standard BLAS and LAPACK
operations. The batched GEMM routine is at the core of
many dense linear algebra algorithms, and its optimization
and tuning is crucial for batched routines [9]. In particular,
optimizing batched GEMM for extremely small sizes is very
important in tensor contraction problems [10]-[12]. Other
research efforts targeted batched matrix factorizations [13],
singular-value decomposition (SVD) algorithms [14], and hi-
erarchical matrices [15]. While most of the research efforts
focus on batches of fixed problem size, there have been
some efforts that targeted different problem sizes in the same
batch [16]. We also observe that most of the research efforts
target GPUs, since OpenMP-based solutions tend to deliver a
very good performance on CPUs. However, there have been
some contributions showing that dedicated batched routines on
CPUs are still beneficial [17].

One particular challenge in optimizing batched routines
is the problem size. In the past, performance optimizations
used to target relatively large matrices, where the compute-
bound BLAS operations (e.g., GEMM and triangular solve
[TRSM]) dominate the execution time. However, batched rou-
tines specifically target small problem sizes, where the batched
BLAS routines cannot operate close to the performance peak
of the hardware. In fact, the performance of routines like
batched GEMM can be bound by the memory bandwidth,
especially for very small matrices [12]. In such situations,
components of the algorithm other than batched BLAS become
an important factor in achieving a high performance. As an
example, batched one-sided matrix factorization could become
dominated by the panel factorization step rather than by the
batched rank-k updates. The batched panel factorization is
a memory-bound problem, where data reuse is even more
important for performance. In this regard, designing a single
solution (i.e., GPU kernel) that assumes nothing about the



input size is probably a bad strategy for most batched routines.

This paper studies the optimization of the batched LU
factorization algorithm. The paper focuses on optimizations
for graphics processing units (GPUs), where data reuse is
more challenging due to the relatively small sizes of fast
memory levels (e.g., caches and shared memories). The paper
shows that the panel factorization becomes such a critical
component for batch routines. We show that there are four
different solutions for such a step in the LU algorithm, each
having its assumptions about the problem size and the level
of data reuse. We call this approach the multi-level blocking
technique, which proves to be significantly faster than a
generic design that assumes nothing about the input size. It
also outperforms the vendor supplied routine by speedups up
to 8.72x/7.2x in single/double precisions on a Tesla V100
GPU. The developed solution has been integrated into the
publicly available MAGMA library.

II. BACKGROUND

This section provides a background about the LU factor-
ization algorithm, and the challenges of optimizing it for a
batch of relatively small matrices. Throughout the paper, we
will be showing experimental results in double precision only,
except for the final performance results in Section IV, which
are reported for single and double precisions.

The LU factorization is one of the most important algo-
rithms in dense linear algebra for solving linear systems of
equations. Its standard implementation in the LAPACK library
can be found in the (GETRF') routine. The algorithm computes
the L and U factors of a general matrix A, such that A =
PxLxU. The matrix P is a permutation matrix which holds
the pivoting information. The factors L and U are unit lower
triangular and upper triangular, respectively. Instead of storing
a permutation matrix P, the standard LAPACK implementation
uses a pivot vector to store the row interchanges performed to
maintain numerical stability.

Almost all factorization algorithms in LAPACK have at
least two different designs. The unblocked design uses exclu-
sively memory-bound building blocks from level-1 and level-
2 BLAS, which makes it, in turn, a memory-bound design.
There are four main steps in performing the unblocked LU
factorization, which are summarized in Algorithm 1 (assuming
double precision). At each iteration, the IDAMAX routine
locates the maximum absolute value across the current column.
The DSWAP step then exchanges the current row with the row
holding the pivot. The third step scales the current column
(DSCAL) and the forth step is a rank-1 update DGER of the
trailing submatrix.

On the other hand, the blocked version of the algorithm is
built to take advantage of the compute-bound routines in level-
3 BLAS, especially matrix multiplication (DGEMM), in order to
achieve high performance. Figure 1 and Algorithm 2 show a
simplified version of the blocked algorithm. At each iteration,
the design follows a panel-update design pattern. The panel
stage uses the unblocked version in Algorithm 1, followed by
performing the row interchanges necessary to the left and right

Algorithm 1: Unblocked LU factorization (DGETF2)
for i=1 to min(M, N) do
piv = IDAMAX( abs(A[i:M,i]) )
ipiv[i] = piv
if abs(A[piv,i]) = O then
| // U is singular, report error.
end
DSWAP: Exchange A[i, /:N] and A[piv, I:N]
DSCAL: A[i+1:M,i] x= (17 A[i,i])
DGER: Ali+1:M,i+1:N] -= Ali+1:M,i]x Ali,i+1:N]

end

of the current panel. The update stage consists of a triangular
solve (DTRSM) followed by a rank-k update (DGEMM). It is
often best practice to replace DGETF2 in Algorithm 2 with
the recursive panel routine (DGETRF2) if large nb is required
for performance. The DGETRF 2 routine further subdivides the
wide panel recursively so that compute bound kernels (TRSM
and GEMM) are used as much as possible.
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Fig. 1. LU factorization scheme

Algorithm 2: Blocked LU factorization (DGETRF) for the
matrix in Figure 1
for k=1 to min(M, N) step nb do
panel: DGETF2(Alig:M,jo:j1], ipiv)
swap-left: DLASWP( Alig:M, 1:jol, ipiv )
swap-right: DLASWP( A[ig:M, j1:N], ipiv )
DTRSM: Alig.i1, j1:N] = Lt x Alig:i1, J1:N]
DGEMM: A[ZlM, le] - =
Alir:M, jo:j1]1xAlio i1, j1:N]

end

Perhaps the most important step in optimizing the batched
LU factorization is to make sure that the batched GEMM
routine delivers a relatively high performance for the typical
use cases in the algorithm. The LU factorization requires a
rank-k update of the form C = C — A x B, such that A is
tall and skinny (e.g., m x nb), while B can be either short



and wide (e.g., nb x n), or square (e.g. nb x nb). The former
scenario is the typical use case for the blocked design shown
in Algorithm 2, while the latter one is the typical use case for
the update step in the recursive panel factorization. Figure 2
shows both scenarios. It is important, therefore, to make sure
that the batched GEMM routine is properly tuned for such
cases. The values of m and n are arbitrary (the problem size),
while nb is a design parameter. Typical values are 8, 16, 32,
or 128, depending on the problem size.

We investigate the performance of batched GEMM in
cuBLAS and MAGMA for these use cases. Figure 3 shows
sample results for the selected use cases when nb = 16. It
turns out that the cuBLAS batched GEMM routine does not
always deliver the best performance, especially when B is
small and square. The MAGMA routine scores speedups up
to 1.8z in such cases. This is due to a careful autotuning
that pays attention to such typical use cases [9]. We also
observe that it becomes beneficial to switch to cuBLAS when
the value of nb is larger than 32. As for the batched TRSM
routine, the MAGMA batched TRSM routine is always faster
than cuBLAS. The former leverages the performance of the
batched GEMM routine by utilizing a solve-update pattern,
where the solve part finds the solution of a small triangular
linear system, while the update part calls batched GEMM to
update the remaining “unsolved” part of the right hand sides.
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Fig. 2. Use cases of the batched GEMM routine inside the batched LU
factorization.

The remaining two stages are the swapping routine
(DLASWP), and the batched panel factorization (DGETF2). The
swapping routine is purely memory-bound, and often leads to
non-coalesced memory accesses due to the row interchanges
on the column-major layout of the matrix. We adopt the
“parallel swapping” technique [13] which can avoid non-
coalesced memory writes. Now we are left with the batched
panel factorization, which is the primary focus of the paper.

The panel factorization uses the recursive implementation
(DGETRF2), which in turn calls the unblocked code of Algo-
rithm 1 (DGETF2) when the panel width reaches a stopping
criteria. Perhaps the most challenging part about the LU
panel factorization is pivoting. As Algorithm 1 shows, each
iteration requires finding a pivot across the entire column of
the remaining submatrix. From a software library perspective,
the problem size can be arbitrarily large, even for a batched
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Fig. 3. Batched DGEMM performance for LU factorization with nb = 16,
batchCount = 500, Tesla V100 GPU, CUDA-10.1.

routine. This means that the IDAMAX routine should deal with
arbitrarily large vectors that may not fit into the GPU shared
memory or registers. Such a generic design, though covering
all matrix sizes, will be suboptimal for small sizes from a
performance perspective.

The work done in [13] implements the generic (LAPACK-
style) batched panel factorization, which uses separate routines
for separate computational stages. We profiled the generic
panel design to see how much time is spent during each com-
putational phase. Figure 4 shows the normalized breakdown
of the execution time for different matrix sizes. We identify
five main categories:

1) GEMM: This is the rank-k update in DGETRF2, which is
the recursive blocked shape shown in Figure 1.

2) TRSM: The triangular solve that precedes the rank-k up-
date. Note that this is the “solve-only” component of the
operation. The other component is matrix multiplication,
which is included in the GEMM category.

3) Rank-1 Updates: This category combines the col-
umn scaling and the rank 1 update (DSCAL + DGER).

4) SWAP: This category combines two types of swapping
kernels. The first one is DSWAP, which exchanges two
rows at a time and exists in DGETF2. The second is the
parallel swap version of DLASWP [13].

5) IDAMAX: This is the kernel that performs the pivot
search.

Figure 4 shows that compute-bound kernels (GEMM+TRSM)
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Fig. 4. Percentage time spent in different stages of the batched LU panel
factorization. Results are shown for 500 square matrices on a Tesla V100
GPU (CUDA 10.1).

dominate the execution time for large matrices. Such a con-
tribution diminishes consistently as the matrix size becomes
smaller. For matrices of size 50 and 100, more than 80%
and 70% of the total time is spent in memory-bound kernels,
respectively. This means that even a carefully tuned and opti-
mized level-3 batched BLAS routine may not be of the greatest
importance for batched linear algebra algorithms, especially
on very small sizes. In this work, we look at optimization
techniques that can take advantage of small matrix sizes in
the panel factorization stage. Such techniques assume that part
of the matrix is small enough to be cached in fast memory
levels, so that several computational stages are executed on
such memory levels in a single context. This indeed leads to
customized kernels that fuse two or more computational steps
from the panel factorization, which deviates from the legacy
LAPACK-style implementation. However, the final outcome is
usually a significant gain in performance due to the increased
data reuse.

III. MULTI-LEVEL BLOCKING

In addition to the generic design discussed in the previous
section, we discuss three different blocking levels that control
the granularity of cached data, and the level of kernel fusion.
More specifically, we recognize “column blocking,” “panel
blocking,” and “matrix blocking.” Some of those designs have
been addressed in previous papers, which will be pointed out

when they are discussed.

A. Column Blocking

This is the least restricted level of blocking, as it can apply
to a relatively wide range of sizes. In this design, we assume
that a column of the matrix is cached in shared memory while
it is being updated and then factorized. The design uses a left-
looking scheme which reorders the steps of Algorithm 1 so
that DGER is the first step in each iteration (except for the
first column). The column is first read into shared memory.
The rank-1 update adds all the necessary accumulations to the

cached column, which is then followed by a pivot search, a
swap of two rows, a scaling operation, and a write back to
the GPU global memory. All these operations are fused into a
single kernel, which clearly saves unnecessary memory traffic
regarding the current column.

In terms of limitations, our design assumes that one thread
block performs the column factorization, such that a single
thread is responsible for a single element of the column.
It turns out that such a design is currently limited by the
maximum number of threads in a single CUDA thread block,
which is currently 1024. Shared memory is not a bottleneck
for this kernel, since a thread block uses at most 15% or less
of the available shared memory.

Figure 5 shows the performance improvements of column
blocking against the generic (no blocking) design. We show
the performance of the recursive panel factorization only. The
performance gains vary between 10% and 40%. It is clear that
the smaller the matrix, the larger the speedup, since memory
traffic savings become more important. We notice that the
asymptotic performance does not yield any gains. The reason
is that column blocking saves memory traffic for only one
column, which means that other dominant operations, like
the rank-1 updates, do not really benefit from this blocking
level. Another reason is that, as the column becomes larger,
the shared memory requirements per thread block may limit
the ability of the CUDA runtime to schedule many thread
blocks on the same multiprocessor. This also explains the
performance drops encountered in the performance graph of
the column-blocking kernel.
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Fig. 5. Performance of column blocking vs. no blocking. Results are shown
for 500 matrices on a Tesla V100 GPU (CUDA 10.1).

B. Panel Blocking

Assuming even smaller sizes, the m X nb panel may fit
entirely in shared memory or registers. In such a case, all
the computational stages of the DGETF2 routine are fused
into one kernel. This yields an optimal memory traffic for
the panel (but not for the whole matrix), since it is read and
written exactly once. In our design, we cache the entire panel
in the register file. Using m threads per thread block, each
thread holds a complete row of the panel of length nb. To
ensure proper loop unrolling by the compiler for the main



loop in Algorithm 1, the number of columns of the panel is
assumed to be a compile-time parameter that is passed through
C++ templates. Thanks to the recursive panel factorization
technique, we can instantiate few kernel instances, in our case
for nb € [1 : 32]. The kernel makes use of a lazy pivoting
technique [18], which delays all the row interchanges at the
very end of the kernel before writing the factorized panel to
the global memory of the GPU.

Figure 6 shows significant performance improvements for
panel blocking vs. column blocking. The speedups range
between 1.5x and 4.8x. The oscillatory behavior of the panel
blocking kernel is due to the occupancy of the kernel, which
worsens as the panel gets bigger, which in turn reduces the
number of concurrent factorizations per multiprocessor. The
performance drops are more dramatic than column blocking
since the memory requirements are O(m x nb), unlike the
O(m) memory requirement for column blocking. In terms of
limitations, the panel-blocking kernel covers a smaller range
of panel heights, and is limited by the capacity of the register
file. Considering double precision as an example, the largest
panel possible is 512 x 32.

300 T T T T
panel blocking -

column blocking - 2.0x

50

0 100 200 300 400 500
Number of Rows (#columns = 32)

Fig. 6. Performance of panel blocking vs. column blocking. Results are shown
for 500 matrices on a Tesla V100 GPU (CUDA 10.1).

C. Matrix Blocking

The final level of blocking deals with tiny matrices that can
be fully cached throughout the whole factorization process.
Since the LU factorization algorithm mostly deals with square
matrices for solving linear systems, we consider only square
tiny matrices. Such a kernels has been discussed in a previous
effort [18], [19], and it ensures an optimal memory traffic for
each matrix. The difference between this kernel and the panel-
blocking kernel is that the former assumes square matrices,
which makes it possible to have an unrolled code for the pivot
search. The latter does not precompile information about the
panel height, and so the pivot search is done through a generic
CUDA device routine. Figure 7 shows that the matrix-blocking
kernel is on average twice as fast as the panel blocking kernel.
In terms of limitations, this kernel is limited by the size of the
register file, and is considered only for sizes less than or equal
to a warp (i.e., 32).
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Fig. 7. Performance of matrix blocking vs. panel blocking. Results are shown
for 500 matrices on a Tesla V100 GPU (CUDA 10.1).

IV. FINAL PERFORMANCE RESULTS

Figures 8 and 9 show the final performance results for
the optimized batched LU factorization, for single and dou-
ble precisions, respectively. The “magma-optimized” solution
represents the combined implementation for all four designs
(three levels of blocking + no blocking). Its performance is
compared against the generic “no blocking” design, as well
as against the vendor routine from the cuBLAS library. As
expected, the improvements made by the magma-optimized
routine are more significant for small sizes. In fact, as the
problem size gets smaller, the performance gains grow from
1.6% up to 3.28x for single precision, and from 1.7% to
2.69x for double precision. These numbers do not include the
tiny sizes (e.g., at 32), where we observe a 21.1x speedup in
single precision, and a 22.65x speedup in double precision.
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Fig. 8. Final performance of the batched LU factorization (single precision).
Results are shown for 500 matrices on a Tesla V100 GPU (CUDA 10.1).

Such performance gains are due to the specialized kernels
that can take advantage of the small panel sizes, and improve
the data reuse accordingly. The magma-optimized routine is
also significantly faster than cuBLAS, scoring speedups that
range between 1.11x and 8.72Xx in single precision, and
between 1.78x and 7.22x in double precision. The main
reason behind such huge speedups against cuBLAS is that



the latter does not use any level-3 BLAS routines, according
to our profiling results.
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Fig. 9. Final performance of the batched LU factorization (double precision).
Results are shown for 500 matrices on a Tesla V100 GPU (CUDA 10.1).

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that batch routines often require
a set of different designs that target different size ranges.
Each design has its own assumptions about the granularity
of blocking, kernel fusion, and data reuse. Having a solution
that is size-aware is often superior to a unified design that
does not consider special optimizations for small sizes. By
applying this methodology to the batched LU factorization
problem, we show that a multi-level blocking scheme is up
to 3.28x/2.69x faster than the unified “generic” design, and
is up to 8.72x/7.2x faster than the cuBLAS library for
single/double precisions. Future directions would target similar
design strategies for other linear algebra algorithms, such as
the QR factorization and SVD problems.
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