
 
 

Fig 1: SCAIGATE ecosystem. Workflow and Middleware provide an “AI Cloud”, exposing through the Gateway a unified science-as-

a-service plaform backed by high-performance reconfigurable architectures (i.e., FPGAs).  

Abstract— SCAIGATE is an ambitious project to design 

the first AI-centric science gateway based on field-

programmable gate arrays (FPGAs). The goal is to 

democratize access to FPGAs and AI in scientific 

computing and related applications. When completed, 

the project will enable the large-scale deployment and 

use of machine learning models on AI-centric FPGA 

platforms, allowing increased performance-efficiency, 

reduced development effort, and customization at 

unprecedented scale, all while simplifying ease-of-use in 

science domains which were previously AI-lagging. 

SCAIGATE was an incubation project at the Science 

Gateway Community Institute (SGCI) bootcamp held in 

Austin, Texas in 2018.  

 

I.  INTRODUCTION 

Science gateways provide community-based access to 

shared, distributed, advanced technologies and resources 

that support science and engineering research and education 

[1]. These resources, in the form of data, software, high-

performance computing, instrumentation and collaboration 

tools, enable the formation of scientific communities, 

accelerating the discovery process, and engaging citizens in 

the scientific process [2]. In particular, SCAIGATE – 

scientific computing with artificial intelligence gateway – is 

a science gateway which integrates field programmable 

gate-arrays (FPGAs) and artificial intelligence (AI) to 

facilitate machine learning through data preprocessing, 

training and inferencing. SCAIGATE will help 

computational scientists and researchers accelerate their 

data analyses workflows at a fraction of the time and effort 

compared to existing systems. FPGAs are attractive to AI 

because of their real-time processing capability, energy 

efficiency, and reconfigurability to the rapidly evolving AI 

innovations. 

In recent times, AI and deep learning have witnessed 

explosive growth in almost every subject involving data. 

Complex data analyses problems that took prolonged 

periods, or required laborious, manual effort are now being 

tackled through AI and deep learning techniques at 

unprecedented accuracy [3]. Given the massive computing 

demands of these techniques, accelerator platforms – 

graphics processing units (GPUs) in particular – have been 

widely adopted to achieve speedup [4], even when such 

platforms (as compared to FPGA-based platforms) are 

costly, energy-inefficient and not well suited to real-time 

processing of streaming data in mission-critical applications 

(e.g., nanoscience imagery in electron microscopy, satellite 

image analysis in environmental monitoring, to name a 

few). For these reasons, SCAIGATE will be based on an 

FPGA pool, along with open-source software and science 

gateway interface that together support AI-centric science as 
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a service (Fig. 1). 

However, in contrast to mainstream processors, 

including CPUs and GPUs, FPGAs are more difficult to 

program, deploy and manage at large-scales, limiting their 

usage in scientific computing. Therefore, the vision of 

SCAIGATE is to provide a platform for deploying and 

experimenting with FPGA-enabled AI at production scale, 

advancing the capabilities of scientific computing, opening 

opportunities for AI-driven data analyses in a variety of 

science and engineering fields. The mission of SCAIGATE, 

and by extension, SCAIGATE ecosystem, is to greatly 

simplify the combination of FPGAs and AI techniques for 

scientific computing.  

The SCAIGATE ecosystem comprises three 

fundamental components (see Fig. 1): (1) reconfigurable 

hardware, enabling deep learning acceleration with FPGAs; 

(2) system software, consisting of an FPGA middleware and 

a novel workflow management framework to support 

integration with scientific workflows; and (3) gateway, to 

simplify ease-of-use, expose AI services, and extend access 

to community through portals and application programming 

interfaces (APIs). The focus of this paper is on the workflow 

management framework – Cloudorch, aimed at 

orchestrating scientific workflows while seamlessly 

leveraging FPGA-accelerated cloud-based services.  

 

II.  CLOUDORCH  

A major shortcoming of many scientific workflows is 

their limited interoperability, lack of component reusability, 

and curbed portability to new, advanced hardware (e.g., 

FPGAs). By leveraging community support and open-

source software technology, Cloudorch will provide an 

FPGA-accelerated scientific workflow through platform as a 

service (PaaS), allowing scientists more focus on the 

hypothesis-test cycle instead of programming and 

maintaining toolchains, reducing re-invention, and 

accelerating discovery process. Cloudorch also aims to 

support the sharing of data preprocessing techniques, a 

crucial drawback in migrating non-AI based workflows to 

accelerated AI platforms. By abstracting key data 

processing workflows (data preprocessing, deep learning 

training and deep learning inference) as illustrated in Fig 2, 

Cloudorch will provide a scalable, end-to-end workflow, 

allowing users to go quickly from experiments to results. 

Because each Cloudorch component is a set of 

microservices that are loosely-coupled, users can compose 

customized workflows, train or import models, and deploy 

models effortlessly while leveraging FPGA hardware-

acceleration. 

Our previous work proposed a workload-intuitive 

framework, SWIF [5], and FPGA as microservices (FaaM) 

[6] to streamline the deployment of FPGAs in datacenters 

and the cloud, achieving 3x speedup and 40% memory-

footprint savings in Apache Spark [7]. We have also 

benchmarked a variety of FPGA-based platforms, including 

the integrated Xeon-FPGA platform [8] and an Arria-10 

accelerator platform [9].  As test-cases, we ported AlexNet 

deep learning model on three representative computing 

environments (university, cloud, and enterprise):  University 

of Florida’s NOVO-G#; Amazon AWS F1 compute 

instances; and Intel Programmable Accelerator Card (PAC) 

cluster at Dell, respectively, the results which will appear in 

the extended version of this paper.  

 

III.  CONCLUSIONS 

Given the unique benefits of FPGAs (low-latency, 

energy-efficiency and reconfigurability), we have 

researched on ways of combining FPGAs with AI for 

scientific computing. While the initial results are promising, 

future work will be much more impactful through 

collaboration. To extend community access and foster 

scientific and engineering collaborations, we proposed 

SCAIGATE science gateway with the goal of advancing the 

capabilities of scientific computing with respect to AI and 

FPGAs. In particular, we proposed Cloudorch, a 

community-driven effort and framework to support 

scientific workflows with FPGA-based deep learning 

inferencing, while enabling end-to-end composability across 

entire deep learning stack. In the next coming months, we 

anticipate more collaboration with academic and industry 

partners, working closely on applications, tools and novel 

architectures to establish and show-case scientific and 

engineering use-cases of FPGA-accelerated AI at record 

performance, productivity and efficiency.  

 
Fig 2: Cloudorch. Components are decoupled, allowing users to compose 

accelerated scientific workflows. Users can import/deploy models, train new 

models, or improve models on-the-fly by learning the models incrementally. 
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