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Abstract

This paper describes and illustrates new features of the NIMBLE computing
environment (de Valpine et al., 2017) that enable simulation-based inference for
general nonparametric Bayesian mixture models.

1 Introduction

The introduction of Markov chain Monte Carlo (MCMC) algorithms in the statistical literature
(Gelfand & Smith, 1990) revolutionized the discipline by enabling the application of Bayesian
methods to increasingly complex models. Approaches such as Gibbs sampling, random walk
Metropolis-Hastings or Hamiltonian Monte Carlo provide general templates to derive algorithms
that are applicable to large classes of statistical models. However, because of their generality, the
application of these templates to specific problems can be time-consuming, as they require tedious
model-specific derivations to specialize them to particular problems. This issue is compounded
in the case of algorithms for nonparametric Bayesian models, which require careful bookeeping
and the manipulation of infinite dimensional objects. This often means that only practicioners with
specialized training in statistics and/or machine learning are able to succesfully apply non-parametric
Bayesian methods in their work.

The challenge of enabling a more general audience to use Bayesian models has been traditionally
tackled in two distinct ways. Starting with WinBUGS (Sturtz et al., 2005), a number of software
packages have been introduced to enable automated inference for general statistical models. Examples
include OpenBUGS (Lunn et al., 2009), JAGS (Plummer et al., 2003), Stan (Carpenter et al., 2017),
Edward (Tran et al., 2017) and Turing (Ge et al., 2018). In particular, both Eward and Turing
provide support for nonparametric Bayesian models. This type of software combines a probabilistic
programming language that allows users to specify general hierarchical models, with a system that
assigns inferential algorithms from among a few options following simple rules. A key shortcoming
of this approach is that it usually restricts the type of algorithms that can be used for any specific
model, potentially leading to suboptimal choices. An alternative approach involves the design of
specialized packages that focus on very specific models and their associated algorithms. Examples
of packages for fitting nonparametric Bayesian models include DPpackage (Jara et al., 2011),
BNPdensity (Barrios et al., 2017), and msBP (Canale et al., 2017) for the R environment (R Core
Team, 2018), Bnpy (Hughes & Sudderth, 2014) for Python (Van Rossum et al., 2007), and BNP.jl
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(Trapp, 2015) for Julia (Bezanson et al., 2012). This type of packages usually provide very efficient
algorithms, but at the cost of severely limiting the ability of the user to modify the model structure as
well as the kind of algorithm that is used to fit the model.

2 Nonparametric mixtures in NIMBLE

NIMBLE (de Valpine et al., 2017), short for Numerical Inference for statistical Models using Bayesian
and Likelihood Estimation, is a system for building and sharing analysis methods for statistical models
built on top of the R statistical software. It aims to provide the user as much flexibility as possible,
both in terms of model specification as well as in terms of the computational algorithm to be employed
for inference, while preserving user-friendly interfaces. While NIMBLE provides support for both
frequentist and Bayesian inference, in this document we focus on its ability to enable simulation-based
posterior Bayesian inference.

NIMBLE involves a declarative model-language that is a dialect of the BUGS language. The
language allows various parametrizations of distributions in the declaration of the model, as well
as user-defined distributions and functions. Additionally, the sampler assignment can be highly
customized by the user, including by incorporating user-defined sampling algorithms. This high
degree of customizability is one of NIMBLE’s distinct features, making it not only a great tool for
black-box implementation of various statistical models, but also an excellent platform for research in
computational methods for statistical models. Another distinct feature of NIMBLE is that it includes a
compiler that is used on model definitions and algorithms to generate and compile C++ code in order
to speed up computation. You can find more details about NIMBLE at https://r-nimble.org.

We have recently added support for BNP mixture modeling to NIMBLE (see Section 10 of the NIM-
BLE manual at https://r-nimble.org/manuals/NimbleUserManual.pdf). The cur-
rent implementation provides support for hierarchical models involving Dirichlet process (DP)
mixture priors (Ferguson, 1973, 1974; Lo, 1984; Escobar, 1994; Escobar & West, 1995). The
simplest such model is

yi | θi, φ
ind∼ ψ(yi | θi, φ), θi | G

ind∼ G, G | α,Hη ∼ DP (α,Hη), i = 1, . . . , n, (1)
where ψ(· | θ, φ) is a suitable kernel that depends on random effects θ and fixed effects φ. α is
the concentration parameter of the Dirichlet process prior, and Hη is a parametric base distribution
indexed by the vector of parameters η. More sophisticated versions of the model include additional
levels in the hierarchy, such as priors for the hyperparameters φ, α and η.

Our implementation of models involving DP mixtures uses the Chinese Restaurant Process (CRP)
representation (Blackwell & MacQueen, 1973; Pitman, 1995, 1996). Introducing a vector of auxiliary
variables z = (z1, . . . , zn) that indicate which component of the mixture generated each observation,
and integrating over the random measure G, the model in (1) can be rewritten as

yi | zi, φ, θ̃1, θ̃2, · · ·
ind∼ ψ(yi | θ̃zi , φ), z | α ∼ CRP(α), θ̃j | η

iid∼ Hη, i = 1, . . . , n, (2)
where CRP(α) denotes the CRP distribution with concentration parameter α, with probability mass
function

p(z | α) =
Γ(α)

Γ(α+ n)
αK(z)

∏
k

Γ (mk(z)) , (3)

where K(z) ≤ n is the number of unique values in the vector z, and mk(z) is the number of times
the k-th unique value appears in z.

Alternatively, DP mixture models can be specified in NIMBLE using a (truncated) stick-breaking
representation of the random distribution G (Sethuraman, 1994):

yi | ξi, v, θ?1 , θ?2 , . . .
ind∼ ψ(yi | θ?ξi , φ), Pr(ξi = l | v) = vl

∏
m<l

(1− vm), i = 1, . . . , n, (4)

where vl | α
iid∼ Beta(1, α) for l = 1, . . . , L− 1 and vL = 1, while θ?l

iid∼ Hη for l = 1, . . . , L.

Each of the two representations leads to a different default choice for the MCMC algorithm. Formu-
lations based on the CRP representation use a collapsed Gibbs sampler (Neal, 2000). Specifically,
either algorithm 2 or algorithm 8 from (Neal, 2000) is used depending on whether ψ and H form
a conjugate pair or not. When the truncated stick-breaking representation is used, a blocked Gibbs
sampler is used (Ishwaran & James, 2001, 2002).
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Fi g ur e 1: L eft: P ost eri or distri b uti o n of t h e eff e ct of A v a n di a o n MI. Ri g ht: N o n p ar a m etri c esti m at e
of t h e r a n d o m eff e cts distri b uti o n

3 Ill ust r ati o n

We ill ustr at e t h e us e of NI M B L E f or fitti n g n o n p ar a m etri c m o d els i n t h e c o nt e xt of a m et a- a n al ysis
of t h e si d e eff e cts of a f or m erl y v er y p o p ul ar dr u g f or di a b et es c all e d A v a n di a. H er e w e o nl y
pr es e nt t h e m ai n hi g hli h gts, a f ull d es cri pti o n of t h e c o d e us e d f or t his e x a m pl e c a n b e f o u n d o n t h e
o nli n e s u pl e m e nt ar y m at eri als. T h e q u esti o n of i nt er est is w h et h er A v a n di a us e i n cr e as es t h e ris k of
m y o c ar di al i nf ar cti o n ( h e art att a c k). T h er e ar e 4 8 st u di es (t h e 4 9t h st u d y i n t h e d at a fil e is diff er e nt
i n s o m e w a ys a n d e x cl u d e d h er e), e a c h wit h tr e at m e nt a n d c o ntr ol ar ms. T h e d at a c orr es p o n ds t o
f o ur v e ct ors: n a n d x c o nt ai n, r es p e cti v el y, t h e t ot al n u m b er of p ati e nts a n d t h e n u m b er s uff eri n g
fr o m m y o c ar di al i nf ar cti o ns i n t h e c o ntr ol gr o u p of e a c h st u d y, w hil e v e ct ors m a n d y c o nt ai n si mil ar
i nf or m ati o n f or p ati e nts r e c ei vi n g t h e dr u g A v a n di a. T h e m o d el f or t h e d at a t a k es t h e f or m

x i | θ, γ i ∼ Bi n n i ,
1

1 + e x p { − γ i }
, yi | θ, γ i ∼ Bi n m i ,

1

1 + e x p { − (θ + γ i )}
,

f or i = 1 , . . . , 4 9 . T h e r a n d o m eff e cts γ 1 , . . . , γJ f oll o w a Diri c hl et pr o c ess mi xt ur e wit h G a ussi a n
k er n els a n d a pr o d u ct of G a ussi a n a n d i n v ers e g a m m a b as e distri b uti o ns. T h e p ar a m et er θ ( w hi c h is
t h e fi x e d eff e ct q u a ntif yi n g t h e diff er e n c e i n ris k b et w e e n t h e c o ntr ol a n d tr e at m e nt ar ms) is gi v e n a
fl at pri or. T h e f oll o wi n g n i m b l e C o d e f u n cti o n pr o vi d es t h e s p e ci fi c ati o n of t h e m o d el usi n g t h e
C R P r e pr es e nt ati o n of t h e m o d el:

c o d e B N P < - n i m b l e C o d e ( {
f o r ( i i n 1 : I ) {

y [ i ] ~ d b i n ( s i z e = m [ i ] , p r o b = q [ i ] ) # a v a n d i a M I s
x [ i ] ~ d b i n ( s i z e = n [ i ] , p r o b = p [ i ] ) # c o n t r o l M I s
q [ i ] < - e x p i t ( t h e t a + g a m m a [ i ] ) # A v a n d i a l o g - o d d s
p [ i ] < - e x p i t ( g a m m a [ i ] ) # c o n t r o l l o g - o d d s
g a m m a [ i ] ~ d n o r m ( m u [ i ] , v a r = t a u [ i ] )
m u [ i ] < - m u T i l d e [ x i [ i ] ]
t a u [ i ] < - t a u T i l d e [ x i [ i ] ]
m u T i l d e [ i ] ~ d n o r m ( m u 0 , s d = s d 0 )
t a u T i l d e [ i ] ~ d i n v g a m m a ( a 0 , b 0 ) }

x i [ 1 : I ] ~ d C R P ( a l p h a , s i z e = I )
a l p h a ~ d g a m m a ( 1 , 1 )
m u 0 ~ d f l a t ( )
s d 0 ~ d u n i f ( 0 , 1 0 0 )
a 0 ~ d u n i f ( 0 , 1 0 0 )
b 0 ~ d u n i f ( 0 , 1 0 0 )
t h e t a ~ d f l a t ( ) } )
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Most of the model specification above uses standard NIMBLE distributions. The main addition
is the function dCRP, which assigns the CRP prior in (3) to the vector of indicators xi. Model
compilation and execution then proceeds in the same way as for any other NIMBLE model. Since the
CRP representation of a nonparametric mixture model integrates out the random mixing measure,
general inferences for the distribution of the random effects is not directly available from the MCMC
output. To address this gap we have implemented the sampling approach described in Gelfand &
Kottas (2002) in the function getSamplesDPmeasure(). This function takes as its argument
a compiled or uncompiled MCMC object, and generates samples for the weights and atoms of (a
truncated version of) the underlying random measure.

Using the code presented in the online supplement we generate Figures 1. Note that the posterior for
θ is a unimodal, symmetric distribution centered around 0.3 and with little mass on negative values.
This suggests that there is a positive overall difference in risk between the treatment and control
arms, i.e., that Avandia may increase the risk of myocardial infarction. The random effect distribution
is readily estimated using the getSamplesDPmeasure() function, and while it shows little
evidence of non-normality, doing the nonparametric analysis has ensured robustness to the random
effect specification.

The same model can also be estimated using a truncated stick-breaking representation:

codeBNP <- nimbleCode({
for(i in 1:I) {

y[i] ~ dbin(size = m[i], prob = q[i]) # avandia MIs
x[i] ~ dbin(size = n[i], prob = p[i]) # control MIs
q[i] <- expit(theta + gamma[i]) # Avandia log-odds
p[i] <- expit(gamma[i]) # control log-odds
gamma[i] ~ dnorm(mu[i], var = tau[i])
xi[i] ~ dcat(w[1:L])
mu[i] <- muTilde[xi[i]]
tau[i] <- tauTilde[xi[i]]
muTilde[i] ~ dnorm(mu0, sd = sd0)
tauTilde[i] ~ dinvgamma(a0, b0)}

w[1:L] <- stick_breaking(v[1:(L-1)])
for(i in 1:(L-1)){

v[i] ~ dbeta(1, alpha)}
alpha ~ dgamma(1, 1)
mu0 ~ dflat()
sd0 ~ dunif(0, 100)
a0 ~ dunif(0, 100)
b0 ~ dunif(0, 100)
theta ~ dflat()})

The function stick_breaking() builds the stick breaking weights from the stick-breaking ratios
contained in the vector v. Note that the construction is general and does not depend on the fact that
the stick-breaking ratios are Beta distributed. Hence, the function allows for the implementation of
more general stick-breaking priors.

4 Future work

We are currently working to extend NIMBLE to accommodate more general nonparametric priors
and their associated species sampling models (e.g., Poisson-Dirichlet process, normalized random
measures), as well as models for collections of distributions (e.g., hierarchical Dirichlet processes).
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