
Algorithms and Frameworks for Accelerating Security Applications
on HPC Platforms

Xiaodong Yu

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science & Applications

Danfeng (Daphne) Yao, Chair

Michela Becchi

Ali R. Butt

Matthew Hicks

Xinming (Simon) Ou

August 1, 2019

Blacksburg, Virginia

Keywords: Cybersecurity, HPC, GPU, Intrusion Detection, Automata Processor, Android

Program Analysis, Cache Side-Channel Attack

Copyright 2019, Xiaodong Yu

Algorithms and Frameworks for Accelerating Security Applications on HPC
Platforms

Xiaodong Yu

(ABSTRACT)

Typical cybersecurity solutions emphasize on achieving defense functionalities. However, ex-

ecution efficiency and scalability are equally important, especially for real-world deployment.

Straightforward mappings of cybersecurity applications onto HPC platforms may significantly un-

derutilize the HPC devices’ capacities. On the other hand, the sophisticated implementations are

quite difficult: they require both in-depth understandings of cybersecurity domain-specific charac-

teristics and HPC architecture and system model.

In our work, we investigate three sub-areas in cybersecurity, including mobile software security,

network security, and system security. They have the following performance issues, respectively:

1) The flow- and context-sensitive static analysis for the large and complex Android APKs are

incredibly time-consuming. Existing CPU-only frameworks/tools have to set a timeout threshold to

cease the program analysis to trade the precision for performance. 2) Network intrusion detection

systems (NIDS) use automata processing as its searching core and requires line-speed processing.

However, achieving high-speed automata processing is exceptionally difficult in both algorithm

and implementation aspects. 3) It is unclear how the cache configurations impact time-driven

cache side-channel attacks’ performance. This question remains open because it is difficult to

conduct comparative measurement to study the impacts.

In this dissertation, we demonstrate how application-specific characteristics can be leveraged to

optimize implementations on various types of HPC for faster and more scalable cybersecurity exe-

cutions. For example, we present a new GPU-assisted framework and a collection of optimization

strategies for fast Android static data-flow analysis that achieve up to 128X speedups against the

plain GPU implementation. For network intrusion detection systems (IDS), we design and im-

plement an algorithm capable of eliminating the state explosion in out-of-order packet situations,

which reduces up to 400X of the memory overhead. We also present tools for improving the us-

ability of Micron’s Automata Processor. To study the cache configurations’ impact on time-driven

cache side-channel attacks’ performance, we design an approach to conducting comparative mea-

surement. We propose a quantifiable success rate metric to measure the performance of time-driven

cache attacks and utilize the GEM5 platform to emulate the configurable cache.

Algorithms and Frameworks for Accelerating Security Applications on HPC
Platforms

Xiaodong Yu

(GENERAL AUDIENCE ABSTRACT)

Typical cybersecurity solutions emphasize on achieving defense functionalities. However, exe-

cution efficiency and scalability are equally important, especially for the real-world deployment.

Straightforward mappings of applications onto High-Performance Computing (HPC) platforms

may significantly underutilize the HPC devices’ capacities. In this dissertation, we demonstrate

how application-specific characteristics can be leveraged to optimize various types of HPC exe-

cutions for cybersecurity. We investigate several sub-areas, including mobile software security,

network security, and system security. For example, we present a new GPU-assisted framework

and a collection of optimization strategies for fast Android static data-flow analysis that achieve up

to 128X speedups against the unoptimized GPU implementation. For network intrusion detection

systems (IDS), we design and implement an algorithm capable of eliminating the state explosion in

out-of-order packet situations, which reduces up to 400X of the memory overhead. We also present

tools for improving the usability of HPC programming. To study the cache configurations’ impact

on time-driven cache side-channel attacks’ performance, we design an approach to conducting

comparative measurement. We propose a quantifiable success rate metric to measure the perfor-

mance of time-driven cache attacks and utilize the GEM5 platform to emulate the configurable

cache.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Danfeng

(Daphne) Yao. She helps me overcome the huge difficulties during my Ph.D. study, introduces me

to the field of cybersecurity, and shares with me her invaluable knowledge and experience. I have

learned so much from Prof. Yao, such as the research methodologies, presentation and commu-

nication skills, paper reviewing approaches, and scientific writing ability. Without her guidance,

support, and encouragement, it would not be possible for me to complete my Ph.D.

I would like to especially thank Prof. Michela Becchi, who was my Master’s advisor at the Uni-

versity of Missouri and serves as my Ph.D. thesis committee member. She introduces me into the

world of HPC and continuously supports me throughout my Ph.D. study. She not only inspires

and guides me to conduct research but also provides me plenty of great suggestions regarding my

academic and personal lives, and future career.

I also would like to express my sincere gratitude to the committee members, Prof. Ali R. Butt,

Prof. Matthew Hicks, and Prof. Xinming (Simon) Ou, for their insightful comments and valuable

suggestions for my dissertation. I am also very grateful to many other researchers, including my

AMD internship mentor Daniel Lowell, Prof. Kirk W. Cameron, Prof. Wu-chun Feng, and Dr.

Hao Wang, for their guidance on my HPC research.

I have been fortunate to work with and be a friend of my labmates and fellow collaborators:

Sharmin Afrose, Md Salman Ahmed, Dr. Long Cheng, Myles Frantz, Yuan Luo, Sazzadur Ra-

haman, Dr. Ke Tian, Ya Xiao, Xuewen Cui, Dr. Kaixi Hou, Dr. Konstantinos Krommydas, Da

Zhang, Dr. Jing Zhang, Dr. Hao Gong, Dr. Fengguo Wei, Jon Bernard, Tyler Chang, Chandler

Jearls, Dr. Bo Li, Thomas Lux, and Li Xu. It has been a pleasure to get to know many other

friends in our CS department: Dr. Zheng Song, Tong Zhang, Xinwei Fu, Yin Liu, Run Yu, Hang

Hu, Gagandeep Panwar, Yufeng Ma, Xuan Zhang, Shuo Niu/Yanshen Yang couple, Yali Bian/Siyu

Mi couple, Ziqian Song/Mu Xu couple, and so forth. I also would like to thank my friends from

many other areas: Dr. Yumin Dai and Dr. Hao Li/Gehui Liu couple from Dept. of Chemistry, Wei

Cui and Dr. Chuanhui Chen/Zuoping Zhang couple from Dept. of Physics, Xu Dong from Dept.

v

of Biomedical Engineering, Qianzhou Du from Dept. of Business Information Technology, etc. I

appreciate all these friends making my life in Blacksburg rich and colorful. You are my treasures.

My best wishes to all of you for future endeavors.

Finally, I am immensely grateful to my family. My parents, Sanmao Yu and Junhui Song, provide

me unconditional loves and endless supports. Their loves always save me when I was very down

during my Ph.D. study. My love, Wei Xu, is my resource of courage and enthusiasm. Her company

makes it possible for me to go through the tough period of my life.

vi

Contents

1 Introduction 1

1.1 Automata-based Algorithms for Security Applications 2

1.1.1 Regular Expressions & Finite Automata 2

1.1.2 Deep Packet Inspection (DPI) . 3

1.1.2.1 Automata-based Matching Core 4

1.1.2.2 Out-of-order Packets Issue . 4

1.2 Security Application Accelerations on HPC Devices 6

1.2.1 General-purpose Devices . 7

1.2.2 Automata Processor . 8

1.3 Android Program Analysis for Security Vetting 10

1.3.1 Android Program Analysis Tools . 10

1.3.2 High-Performance Android Program Analysis 11

1.4 Cache Side-Channel Attacks . 13

1.4.1 Categories of Cache Side-Channel Attacks 13

1.4.2 Cache Configurations’ Impact . 14

vii

1.5 Dissertation Contributions . 15

1.6 Dissertation Organization . 17

2 Literature Review 18

2.1 Algorithm Optimizations . 18

2.1.1 Finite Automata Optimizations . 18

2.1.2 Algorithms for Out-of-Order Packets in DPI 19

2.2 HPC devices Based Accelerations . 20

2.2.1 GPU . 20

2.2.2 Automata Processor . 21

2.3 Security Vettings for Android . 23

2.3.1 Android Static Analysis Tools . 23

2.3.2 Andorid Data-Flow Graph Constructions 24

2.4 Cache Side-Channel Attacks & Countermeasures 25

2.4.1 Time-Driven Attacks . 25

2.4.2 Access-Driven Attacks . 26

2.4.3 Implementations’ and Systems’ Impacts 26

3 Scalable Automata-based Pattern-Matching Algorithm for Out-of-Order DPI 27

3.1 Introduction . 27

3.2 O3FA Design . 30

3.2.1 O3FA Data Structure . 32

viii

3.3 Optimizations . 34

3.3.1 Index Tags . 35

3.3.2 Compressed Suffix-NFA . 36

3.3.3 Prefix- and Suffix-DFA with State Map 38

3.3.4 Quick Retrieval Table . 40

3.3.5 Functionally Equivalent Packets . 41

3.4 O3FA-based System . 43

3.4.1 O3FA Engine Architecture . 43

3.4.2 O3FA Engine Work Flow . 45

3.4.3 Worst-case Analysis . 46

3.5 Evaluation . 47

3.5.1 Datasets & Streams . 48

3.5.2 Packet Reordering . 48

3.5.3 Experiment Results . 49

3.5.3.1 O3FA Memory Footprint . 49

3.5.3.2 Buffer Size Savings . 50

3.5.3.3 Memory Bandwidth Overhead 53

3.5.3.4 Traversal Overhead . 53

3.6 Conclusions and Future Work . 54

4 Framework for Approximate Pattern Matching on the Automata Processor 56

4.1 Introduction . 56

ix

4.2 Background and Motivations . 59

4.2.1 Automata Processors . 59

4.2.2 Motivations . 60

4.3 Paradigms and Building Blocks in APM . 62

4.3.1 Approximate Pattern Matching on AP . 62

4.3.2 Paradigms in Approximate Pattern Matching 64

4.3.3 Inter-Block Transition Connecting Mechanism 66

4.4 Framework Design . 69

4.4.1 From Building Blocks to Automata . 69

4.4.2 Design Cascadable Macros . 70

4.4.3 Cascadable Macro based Automata Construction Algorithm 75

4.5 Evaluation . 77

4.5.1 Synthetic Patterns . 77

4.5.2 Real-world Dataset . 80

4.6 Conclusions . 85

5 GPU-based Android Program Analysis Framework for Security Vetting 86

5.1 Introduction . 86

5.2 Background Knowledge . 90

5.2.1 Static Analysis for Android Apps . 90

5.2.2 Worklist-based DFG Building Algorithm 91

5.3 Our Plain GPU Implementation . 92

x

5.3.1 Basic Design . 93

5.3.1.1 Using Summary-based Analysis 93

5.3.1.2 Two-level Parallelization . 94

5.3.1.3 Dual-Buffering Data Transfer 94

5.3.2 Performance Analysis . 96

5.3.2.1 Comparison with CPU Counterpart 96

5.3.2.2 Performance Bottlenecks . 97

5.4 The Optimization Designs . 98

5.4.1 Optimization 1: Matrix-based Data Structure for Data-Facts 99

5.4.2 Optimization 2: Memory Access Pattern Based Node Grouping 100

5.4.3 Optimization 3: Worklist Merging . 101

5.5 Framework Evaluation . 102

5.5.1 Overview of GPU Implementation’s Performance 103

5.5.2 Evaluation of Matrix Data Structure Optimization 104

5.5.3 Evaluation of Memory Access Pattern Based Node Grouping Optimization 107

5.5.4 Evaluation of Worklist Merging Optimization 108

5.6 Conclusion . 109

6 Comparative Measurement of Cache Configurations’ Impacts on the Performance of

Cache Timing Side-Channel Attacks 111

6.1 Introduction . 111

6.2 Background . 113

xi

6.2.1 CPU Cache Hierarchy . 114

6.2.2 Bernstein’s Cache Timing Attack . 115

6.2.3 GEM5 Platform . 116

6.3 Measurement Design . 116

6.3.1 Cache Parameters for Configuration . 117

6.3.1.1 Private and Shared Cache Size 118

6.3.1.2 Private and Shared Cache Associativity and Cacheline Size . . . 119

6.3.1.3 Replacement Policies . 119

6.3.1.4 Cache Clusivity . 120

6.3.2 Metric Definition: the Success Rate of an Attack 120

6.4 Measurement Results . 121

6.4.1 Private Caches’ Impacts . 122

6.4.2 Shared Caches’ Impacts . 124

6.4.3 CLS, RPs, and CCs’s Impacts . 125

6.5 Discussion . 126

6.6 Limitations . 127

6.7 Conclusion . 128

7 Conclusion and Future Work 129

7.1 Summaries . 129

7.2 Future Work . 132

7.2.1 High-Performance Network Security . 132

xii

7.2.2 High-Performance Program Security . 132

7.2.3 High-Performance System Security . 133

Bibliography 135

xiii

List of Figures

1.1 (a) NFA and (b) DFA accepting regular expressions a.*bc and bcd. 3

3.1 (a) DFA accepting pattern set {abc.*def , ghk}, (b) prefix-FA, (c) anchored suffix-

FA and (d) unanchored suffix-FA built upon corresponding prefix set, anchored

suffix set and unanchored suffix set. Accepting states are colored gray. 35

3.2 (a) asNFA and (b) csNFA built upon anchored suffix set {bcdca, cdca, dca, ca, a}.

Accepting states are colored gray. 37

3.3 (a) NFA format and (b) sDFA with states map for unanchored suffix set {.*abc,

.*bcd}. Accepting states are colored gray. 39

3.4 (a) original NFA format, (b) optimized NFA, (c) pDFA with states map for prefix

set {.*abc.*, .*ab, .*a, .*bc, .*b}. Accepting states are colored gray. 40

3.5 (a) csNFA and (b) quick retrieval table for anchored suffix set {bcdca, cdca, dca,

ca, a}. Accepting states are colored gray. Each char. position is a pair of index tag

and offset, i.e., <tag, offset> . 41

3.6 (a) NFA format and (b) pDFA with states map built upon prefix set {.*ab.*, .*a,

.*bc, .*b}. (c) Construction of functionally equivalent packet to packet P2=eabc. . 42

3.7 Overview of the O3FA engine. The blue parts are dataset processing components;

the yellow parts are input packet processing components. 44

xiv

3.8 Packet processing flow chart. Dotted arrows indicate alternative paths if there are

no arrived successor/predecessor packets. 46

3.9 Minimum buffer size requirements for optimized reassembly scheme and O3FA

engine on eight datasets. Note that the vertical coordinate is in logarithmic scale. . 51

4.1 ANML codes for a simple APM AP automaton 61

4.2 AP automaton . 61

4.3 Levenshtein automaton for pattern “object”, allowing up to two errors. A gray

colored state indicates a match with various numbers of errors. 63

4.4 Optimized STE and transition layout for Levenshtein automata for the pattern “ob-

ject” allowing up to two errors. 65

4.5 (a) Four paradigms in APM applications. (b) A building block for Levenshtein

automata having all four paradigms. 65

4.6 Inter-block transition connection mechanism for two-consecutive errors: The right

part shows five cases we consider. The left part shows a part of Levenshtein au-

tomata having six blocks and how the inter-block connections are applied on it. . . 67

4.7 There are four instances that from a three layers four columns cascadable macro.

They are vertically and horizontally cascaded to form a larger AP automaton that

have six layers and eight columns. 74

4.8 Port design layout for a three layers four columns macro. 74

4.9 Construction and compilation time vs. pattern lengths. The highest speedups of

our framework over FU, ANML APIs, SM APIs are highlighted. 79

4.10 Computational time comparison between AP (with three different construction ap-

proaches) and the CPU counterpart. Notice that FU approach can’t support more

than three errors. 83

xv

4.11 Overall time comparison between AP (with three different construction ap-

proaches) and CPU implementation. Notice that FU approach cant support more

than three errors. 84

5.1 The execution time of Amandroid. We analyze 1000 Android APKs. The x-axis

represents APK indices. The APKs are sorted according to the descending order of

Amandroid run time. The y-axis shows the execution time. The blue line indicates

overall run time while the orange line indicates the IDFG construction time. 87

5.2 A sample DFG. Each box is a ICFG node. Blue arrow-lines indicate the ICFG

paths. Each node has a fact set colored in red. 92

5.3 The two-level parallelization. Different methods are processed on different SM.

Each core processes one ICFG node in the current corresponding worklist. 94

5.4 The performance comparison between the plain GPU implementation and the CPU

counterpart. The x-axis represents the APK indices, y-axis indicates the speedups

compared to the CPU performances. the APKs are sorted according to the de-

scending order of GPU implementation’s speedups. 96

5.5 (a) is the straightforward data structure of point-to fact set. (b) is the unified com-

pact point-to fact matrix. 99

5.6 The scheme of node grouping. Three colors indicate three different types of nodes. 100

5.7 An example shows a case that the worklist merging can eliminate redundant pro-

cessing. 101

5.8 The GPU implementation’s performance overview. The x-axis indicates the app

APK IDs while the y-axis indicates performance speedups against the plain GPU

implementation. 104

xvi

5.9 Performance comparisons between the GPU implementation with and without (a)

matrix data structure (mat) optimization; (b) memory access pattern based node

grouping (grp) optimization; (c) worklist merging (mer) optimization. The x-axis

indicates the app APK IDs while the y-axis indicates the speedups against the GPU

implementation without (a) mat, (b) grp, and (c) mer respectively. 105

5.10 Memory footprint comparison between the matrix-based and set-based data struc-

ture for storing the data-facts. The x-axis indicates the app APK IDs while the

y-axis indicates the memory footprint. 107

6.1 A generic cache model. It is a two-level hierarchy: each CPU core has its own

private cache; all cores could access a shared cache through the private cache. . . . 114

6.2 The workflow of Bernstein’s time-driven attack. It consists of two online phases:

(a) profiling phase and (b) attacking phase, and two offline phases: (c) correlating

phase and (d) searching phase. 115

6.3 The success rates of time-driven attacks impacted by different cache parameters.

NP stands for the neighbor processes running on the neighbor CPU core. The x-

axis represents the numbers of encryptions conducted during the attacking phase

(Fig. 6.2(b)). The y-axis indicates the equivalent key lengths (Section 6.3.2). 123

xvii

List of Tables

3.1 Memory footprint of FA kernels (MB) . 50

3.2 Ratio between the number of csNFA states traversed and the number of input char-

acters processed (%) . 53

3.3 O3FA traversal overhead compared to conventional stream reassembly methods (%) 54

4.1 Paradigm sets for common distances . 66

4.2 Inter-block transitions connecting rules for two-consecutive errors 69

4.3 Port design rules according to paradigm . 72

4.4 Dataset Characteristics . 80

4.5 Compilation Profile . 81

5.1 Dataset Characteristics . 103

5.2 Worklist Profiling . 108

6.1 Measurement Environment . 122

xviii

Chapter 1

Introduction

Most traditional cybersecurity solutions emphasize on achieving defense functionalities. The cy-

bersecurity community largely overlooks the importance of execution efficiency and scalability,

especially for real-world deployment. On the other hand, High-Performance Computing (HPC)

devices have been widely used to accelerate a variety of scientific applications. However, straight-

forwardly mapping the cybersecurity applications onto HPC platforms usually may significantly

underutilize the HPC devices’ capacities. Unfortunately, security applications have not drawn

enough attention in HPC community, and sophisticatedly implementing them are quite tricky: they

require both in-depth understandings of cybersecurity domain-specific characteristics and HPC ar-

chitecture and system model.

In this dissertation, we bridge the gap between the cybersecurity and HPC communities from both

algorithm and implementation aspects. We investigate three sub-areas in cybersecurity, including

mobile software security, network security, and system security. We demonstrate how application-

specific characteristics can be leveraged to optimize various types of HPC executions for cyber-

security. For example, For network intrusion detection systems (IDS), we design and implement

an algorithm capable of eliminating the state explosion in out-of-order packet situations, which

reduces up to 400X of the memory overhead. We also present tools for improving the usability of

HPC programming. We present a new GPU-assisted framework and a collection of optimization

1

2

strategies for fast Android static data-flow analysis. To study the cache configurations’ impact

on time-driven cache side-channel attacks’ performance, we design an approach to conducting

comparative measurement.

1.1 Automata-based Algorithms for Security Applications

In this section, we will introduce the regular expressions and their finite automata based repre-

sentation first, and then explain how they can be used as the computational core of deep packet

inspection.

1.1.1 Regular Expressions & Finite Automata

A regular expression, usually abbreviated as regex, is a string of characters that can be used to

create a search pattern. Regex is a powerful tool to parse and compactly store a large amount

of data; it is also essential for efficiently searching given patterns against the input text. Regex’s

syntax complies with the formal language theory. There are two de facto syntax set standards: The

POSIX and the Perl. Each regular expression must consist of literal characters and meta characters.

The meta characters have special meanings and are the keys of regex’s strong expressive power.

Although meta characters are syntax standard specific, most common meta characters are actually

universal. For example, the well-known metacharacter dot-star ”.*”, representing a random text

with arbitrary length, is shared by all syntax standards.

To allow multi-regex search, current approaches implement the regex-set through finite automata

(FA), either in their deterministic or in their non-deterministic form (DFA and NFA, respectively).

In automata-based approaches, the matching operation is equivalent to a FA traversal guided by

the content of the input stream. Worst-case guarantees on the input processing time can be met by

bounding the amount of per character processing.

Being the basic data structure in the regular expression matching engine, the finite automaton must

3

1 2a
b c

5 6
b

c
0

3
remaining
transitions

(b)

d 4

d 7

a: from 1-7
¬a¬b: from 1-4 b: from 2-4

b: from 5-7
1 2a

b c

4 5
b

c
0

3

(a)

d 6

*

*

Figure 1.1: (a) NFA and (b) DFA accepting regular expressions a.*bc and bcd.

be deployable on a reasonably provisioned hardware platform. As the size of pattern-sets and the

expressiveness of individual patterns increase, limiting the size of the automaton becomes chal-

lenging. The exploration space is characterized by a trade-off between the size of the automaton

and the worst-case bound on the amount of per-character processing. NFA and DFAs are at the

two extremes in this exploration space. NFAs have a limited size but can require expensive per-

character processing, whereas DFAs offer limited per-character processing at the cost of a possibly

large automaton. As an example, in Figure 1.1 we show the NFA and DFA accepting regular ex-

pressions a.*bc and bcd (notice that the dot-star metacharacter ”.*” represents any segment with

any length). In the figure, Accepting states are colored gray. The states active after processing

input stream acbc are highlighted using diagonal filling. In the NFA, states 0 and 1 have a self-

loop on any characters of the alphabet. In the DFA, state 1 has incoming transitions on character

b from states 1 to 7, and incoming transitions from states 1 to 4 on any characters other than a

and b (incoming transitions to states 0, 2 and 5 can be read in the same way). As can be seen, the

NFA consists of fewer states (7 against 8), while the DFA leads to less per-character processing (1

versus 4 concurrently active states).

1.1.2 Deep Packet Inspection (DPI)

Deep packet inspection (DPI) is a one of the fundamental networking operations. It inspects and

manages the network traffics. A traditional form of DPI comprises searching the packet payload

against a set of patterns. It then filters the packets by blocking, re-routing, or logging them ac-

cording to the searching results. Compared to the conventional packet filtering examining only

4

packet headers, DPI is an advanced method that can detect the malicious or abnormal contents in

the payloads.

1.1.2.1 Automata-based Matching Core

DPI is most notably known as the core of network intrusion detection systems (NIDS). NIDS is an

essential part of network security device. A NIDS receives and processes packets, and then reports

the possible intrusions. In the signature-based NIDS, every pattern represents a signature of ma-

licious traffic; the payload of incoming packets is inspected against all available signatures, then

a match triggers pre-defined actions on the interested packets. A regular expression can cover a

wide variety of pattern signatures [1, 2, 3]. Because of their expressive power, regular expressions

have been increasingly adopted to express pattern sets in both industry and academia. Accord-

ingly, many well-known open-source NIDS – such as Snort1 and Bro2 – employ automata-based

matching engine as their core; moreover, most major networking companies offer their own NIDS

solutions (e.g., security appliances from Cisco3 and Juniper Networks4) and also use automata-

based matching cores.

In addition to NIDS, emerging applications like content-based networking [4, 5] require inspect-

ing packets at line rate. Their tasks involve regular expression matching hence also demand the

automata-based matching cores.

1.1.2.2 Out-of-order Packets Issue

In real-world scenarios, a network data stream can span multiple packets. Those packets can arrive

at network security devices out of order due to multiple routes, packet retransmission, or NIDS

evasion. This is referred to as packet reordering. Previous work analyzing Internet traffic has

reported that about 2%-5% of packets are affected by reordering [6, 7, 8]. However, these studies
1http://www.snort.org
2http://www.bro-ids.org
3http://www.cisco.com/en/US/products/ps6120/index.html
4http://www.juniper.net/us/en/products-services/security/idp-series

5

have focused on benign traffic; while attackers may intentionally mis-order legitimate traffic to

trigger denial-of-service (DoS) attacks [8]. NIDS face challenges [9] when processing data streams

that span across out-of-order packets, especially when performing regular-expression matching

against traffic containing malicious content located across packets boundaries. In such cases, the

malicious patterns are split and carried by multiple packets; and NIDS cannot detect them by

processing those packets individually.

Several solutions have been proposed to address the problem of processing out-of-order packets

in NIDS. One approach that is widely adopted in current network devices is packet buffering and

stream reassembling [8, 10, 11, 12]. In this case, incoming packets are buffered and packet streams

are reassembled based on the information in the header fields. Regular expression matching is

then performed on the reassembled data stream. This approach is intuitive and easy to implement,

but can be very resource intensive and vulnerable to DoS attacks whereby attackers exhaust the

packet buffer capacity by sending long sequences of out-of-order packets. Recently, researchers

have proposed several new solutions [13, 14, 15] aimed to relieve packet-buffer pressure or even

avoid packet buffering and reassembling. This is done by tracking all possible traversal paths or

leveraging data structures such as suffix trees. While they alleviate the burden of handing out-of-

order packets to some extent, these methods are either applicable only to simple patterns (exact-

match strings or fixed-length patterns), or suffer from bad worst-case properties (and are therefore

still vulnerable to DoS attacks).

In this thesis, we aim to provide a solution that (1) can process out-of-order packets without re-

quiring packet buffering and stream reassembling, (2) relies only on finite automata, and (3) can

handle regular expressions with complex sub-patterns [16]. One of the main challenges in this

design comes from handling regular expressions that include unbounded repetitions of wildcards

and large character sets. This is because these sub-patterns can represent unbounded sets of exact-

match sub-strings which cannot be exhaustively enumerated. Our solution leverages the following

observation: all exact-match strings that match a repetition sub-pattern are functionally equivalent

from the point of view of the regular expression matching engine and interchanging them will not

affect the final matching result. Our proposed solution consists of regular DFAs coupled with a

6

set of supporting FAs either in NFA or DFA form. The supporting FAs are used to detect and

record – using only a few states (typically no more than five) – segments of packets that can poten-

tially be part of a match across packet boundaries. While processing packets out-of-order, those

segments can be dynamically retrieved from the recorded states, and can be then used to resolve

matches across packet boundaries. To be efficient, any automata-based solution requires minimiz-

ing the number of automata, their size, and the number of states that can be active in parallel. Our

proposal includes optimizations aimed to achieve these goals.

1.2 Security Application Accelerations on HPC Devices

Many security applications require the efficient implementations on the hardware in order to satisfy

the scalability and timeliness requests in the real-life scenarios. Given the broad utilization of regex

matching, there is a high demand of high-speed automata processing.

From an implementation perspective, automata-based regex matching engines can be classified into

two categories: memory-based [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and logic-based [28, 29,

30, 31]. For the former, the FA is stored in memory; for the latter, it is stored in (combinatorial and

sequential) logic. Memory-based implementations can be (and have been) deployed on various

parallel platforms: general purpose multi-core processors, network processors, ASICs, FPGAs,

and GPUs; logic-based implementations typically target FPGAs. Of course, for the logic-based

approaches, updates in the pattern-set require the underlying platform to be reprogrammed. In

a memory-based implementation, design goals are the minimization of the memory size needed

to store the automaton and of the memory bandwidth needed to operate it. Similarly, in a logic-

based implementation the design should aim at minimizing the logic utilization while allowing fast

operation (that is, a high clock frequency).

7

1.2.1 General-purpose Devices

Modern general-purpose HPCs, including CPUs [32, 33, 34, 35, 36, 37], GPUs [38, 39, 40, 41,

42, 43] and Intel’s Xeon Phi [44, 45, 46, 47, 48], have been widely used to accelerate a variety

of scientific applications. In recent years, GPUs gain the popularity due to their massive paral-

lelisms [49, 50, 51, 52, 53, 54, 44, 55, ?]. Most proposals have target NVIDIA GPUs, whose

programmability has greatly improved since the advent of CUDA [56]. The main architectural

traits of these devices can be summarized as follows. NVIDIA GPUs comprise a set of Streaming

Multiprocessors (SMs), each of them containing a set of simple in-order cores. These in-order

cores execute the instructions in a SIMD manner. GPUs have a heterogeneous memory organi-

zation consisting of high latency global memory, low latency read-only constant memory, low-

latency read-write shared memory, and texture memory. GPUs adopting the Fermi architecture,

such as those used in this work, are also equipped with a two-level cache hierarchy. Judicious

use of the memory hierarchy and of the available memory bandwidth is essential to achieve good

performance. With CUDA, the computation is organized in a hierarchical fashion, wherein threads

are grouped into thread blocks. Each thread-block is mapped onto a different SM, while differ-

ent threads in that block are mapped to simple cores and executed in SIMD units, called warps.

Threads within the same block can communicate using shared memory, whereas threads from dif-

ferent thread blocks are fully independent. Therefore, CUDA exposes to the programmer two

degrees of parallelism: fine-grained parallelism within a thread block and coarse-grained paral-

lelism across multiple thread blocks. Branches are allowed on GPU through the use of hardware

masking. In the presence of branch divergence within a warp, both paths of the control flow oper-

ation are in principle executed by all CUDA cores. Therefore, the presence of branch divergence

within a warps leads to core under-utilization and must be minimized to achieve good performance.

8

1.2.2 Automata Processor

Recently, Automata Processor (AP) [57] is introduced by Micron for the non-deterministic FA

(NFA) simulations. Micron AP can perform parallel automata processing within memory arrays

on SDRAM dies by leveraging memory cells to store trigger symbols and simulate NFA state

transitions. The AP includes three kinds of programmable elements : State Transition Elements

(STE), Counter Elements (CE) and Boolean Elements (BE), which implement states/transitions,

counters and logical operators between states, respectively. Each STE includes a 256-bit mask

(one bit per ASCII symbol), and symbols triggering state transitions are associated to states (and

encoded into STEs) rather than to transitions. Transitions between states are then implemented

through a routing matrix consisting of programmable switches, buffers, routing lines, and cross-

point connections. Micron’s current generation of AP board (AP-D480) includes 16 or 32 chips

organized into two to four ranks (8 chips per rank), and its design can scale up to 48 chips. Each AP

chip consists of two half-cores. There are no routes either between half-cores or inter-chips, which

implies that NFA transitions across half-cores and chips are not possible. Programmable elements

are organized in blocks: each block consists of 16 rows, where a row includes eight groups of two

STEs and one special purpose element (CE or BE). Each chip contains a total of 49,152 STEs, 768

CE and 2,304 BE, organized in 192 blocks and equally residing in both half-cores. Current boards

allow up to 6,144 elements per chip to be set as report elements.

AP automata can be described in Automata Network Markup Language (ANML) – an XML-

based language. The ANML is low-level that requires programmers to manipulate STEs and inter-

connections between them. AP SDK provides some high-level APIs e.g., regular expression [58]

and string matching [59] to ease the programming for some applications; however, the lack of

flexibility and customization ability of them would force users to resort to ANML for their own

applications. Programming on AP is still a cumbersome task, requiring considerable developer

expertise on both automata theory and AP architecture.

A more severe problem is the scalability. For reconfigurable devices like AP, a series of costly

processes are needed to generate load-ready binary images. These processes include synthesis,

9

map, place-&-route, post-route physical optimizations, etc., leading to non-negligible configura-

tion time. For a large-scale problem, the situation becomes worse because multi-round reconfigu-

ration might be involved. Most previous research on AP [60, 61, 62, 63, 64, 65, 66, 67] excludes the

configuration cost and only focuses on the computation. Although these studies reported hundreds

or even thousands of fold speedups against the CPU counterparts, the end-to-end time comparison,

including configuration and computation, is not well understood.

We believe a fair comparison has to involve the configuration time, especially when the problem

size is extremely large to exceed the capacity of a single AP board. For example, the claimed

speedups of AP-based DNA string search [68] and motif search [61] can reach up to 3978x and

201x speedup over their CPU counterparts, respectively. In contrast, if their pattern sets are scaling

out and the reconfiguration overhead is included, the speedups will plummet to only 3.8x and

24.7x [69]. In these cases, the configuration time could be very high for three reasons: (1) The

large-scale problem size needs multiple rounds of binary image load and flush. (2) In each round,

once a new binary image is generated, it will use a full compilation process, which time is as high

as several hours. (3) During these processes, the AP device is forced to stall and wait for new

images in an idle status.

In this thesis, we highlight the importance of counting the reconfiguration time towards the overall

AP performance, which would provide a better angle for researchers and developers to identify

essential hardware architecture features. To this end, we propose a framework allowing users

to fully and easily explore AP device capacity and conduct fair comparison to counterpart hard-

ware [70, 71]. It includes a hierarchical approach to automatically generate AP automata and

cascadeable macros to ultimately minimize the reconfiguration cost. Though this framework is

general, in this thesis we focus on Approximate Pattern Matching (APM) for a better demonstra-

tion. Specifically, it takes the types of paradigms, pattern length, and allowed errors as input, and

quickly and automatically generates corresponding optimized ANML APM automata for users to

test the AP performance. During the generation, enabling our cascadeable macros can maximize

the reuse of pre-compiled information and significantly reduce the time on reconfiguration, hence

allows users to conduct performance comparison that is fair to both sides. We evaluate this frame-

10

work using both synthesis and real-world datasets, and conduct end-to-end performance compar-

ison between AP and CPU. We show, even including the multi-round reconfiguration costs, AP

with our framework can achieve up to 461x speedup against CPU counterpart. We also show using

our cascadeable macros can save 39.6x and 17.5x configuration time compared to using non-macro

and conventional macros respectively.

1.3 Android Program Analysis for Security Vetting

In this section, we first introduce how existing tools use the static program analysis to realize the

Android security vetting, and then explain why it is difficult to achieve fast and scalable Android

static analysis on HPC platforms.

1.3.1 Android Program Analysis Tools

Android operating system so far holds 86% smartphone OS market share [72]. End users fre-

quently install and utilize the Android apps for their daily life including many security critical activ-

ities like online bank login, email communication and so on. It has been widely reported the secu-

rity problems, for example, the data leaks, the intent injections, and the API misconfigurations, ex-

ist in the Android devices due to malicious and vulnerable apps [73, 74, 75, 76, 77, 78, 79, 80, 81].

An efficient vetting system for the new and updated Android apps is desired to keep the app store

clean and safe. On the other hand, the Google play store currently has more than 3.5 million5

Android apps available, and around 7K6 new apps are released through play store each day. More-

over, most popular existing apps provide updates weekly or even daily. These huge scales and high

frequencies make the prior entering market app vetting extremely challenging. Bosu et al. [82] ex-

perimentally show that analyzing 110K real-world APPs costs more than 6340 hours, even using

the optimized analysis approaches. Apparently, a fast and scalable implementation is the key to

5https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
6https://www.statista.com/statistics/276703/android-app-releases-worldwide/

11

make app vetting practical.

In recent years, plenty of Android program analysis tools including FlowDroid [83], IccTA [84],

DialDroid [82], and AmanDroid [85] have been proposed. Most of them conduct static analysis

on the Dalvik bytecodes to discover the security problems of Android apps. Static analysis can

provide a comprehensive picture of the APP’s possible behaviors, whereas the dynamic analysis

can only screen the behaviors during the dry run. However, static analysis suffers from the inherent

undecidability of code behaviors; any static analysis method must make a trade-off between the

run-time and the analysis precision. Typically, a 10MB app could take around 30 minutes to be

statically analyzed and is defined as a large-size app. We use one of the state-of-art Android

Static Analysis tools – Amandroid [85] to analyze 1000 random chosen Android APKs. The

blue line in Fig. 5.1 shows the execution time: Amandroid takes up to 38min to analyze a single

APK. Accordingly, many existing analysis tools set the cut-off threshold at 30min for a single app.

However, Google raised the app size limit in the play store to 100MB in 2015, and a majority

of modern commodity apps has dozens of MegaBytes. It is manifest that current Android static

analysis implementations must be accelerated to accommodate the app size growth.

1.3.2 High-Performance Android Program Analysis

Over the past decade, parallel devices become very popular computing platforms and successfully

accelerate a verity of domain applications. More recently, due to the massive parallelism and com-

putational power, Graphic Processing Unit (GPU) stands out and is trendy hardware in general-

purpose parallel computing. It has been broadly adopted in Bioinformatics [49], Biomedical [52],

Natural Language Processing [86] and so on. However, this trend doesn’t draw enough attention

in security community. Only a handful of previous work [87, 88, 89, 90, 91, 92, 93, 94, 95, 96]

implement the program analysis on modern parallel hardware; only three work [87, 90, 95] out

of them leverage the GPU, and all discuss the acceleration of the common pointer analysis algo-

rithm; none of them consider the Android program analysis. On the other hand, straightforward

mapping of an application onto GPU usually is sub-optimal or even under-performs its serial coun-

12

terpart. The additional application-specific tuning is required to achieve optimal performance. For

example, the industrial standard generic GPU sparse matrix-vector multiplication (SpMV) library

cuSPARSE [97] can achieve up to 15X speedups against the CPU version. The CT image re-

construction uses SpMV as its computational core. However, mapping the reconstruction to GPU

by directly calling cuSPARSE achieves only 3X speedups. On the contrary, a fine-grained design

leveraging this application’s domain characteristics can increase the performance to 21-fold against

CPU [52].

In this thesis, we propose a GPU-assisted Android static analysis framework. To our best knowl-

edge, this is the first work attempting to accelerate the Android program analysis on HPC platform.

We find that implementing the IDFG construction on GPU using the generic approaches (i.e., lever-

aging no application-specific characteristics) can largely underutilize the GPU computation capac-

ity. We identify four performance bottlenecks existing in the plain GPU implementations: frequent

dynamic memory allocations, a large number of branch divergences, workload imbalance, and ir-

regular memory access patterns. Accordingly, we exploit the application-specific characteristics

to propose three optimizations that refactor the algorithm to fit the GPU architecture and execu-

tion model. (i) Matrix-based data structure for data-facts. It uses the fixed-size matrix-based

data structure to substitute the dynamic-size set-based data structure to store the data-facts. This

optimization can efficiently avoid dynamic memory allocations. It also can reduce the memory

consumption since it removes the copies of repetitive data-facts. (ii) Memory access based node

grouping. It groups the ICFG nodes based on their memory access patterns. Compared to the

original statement type based node grouping, this optimization can significantly reduce the branch

divergences since it leads to only three groups (while the original grouping yields 17 groups). It can

also maximize memory bandwidth usage. (iii) Worklist merging. This optimization postpones the

processing of worklist’s tail subset to significantly mitigate the workload imbalance issue. It also

can avoid the redundant processings by merging the repetitive nodes in the worklist. We evaluate

the three proposed optimizations using 1000 Android APKs. We find the first and third optimiza-

tions can significantly improve the performance compared to the plain GPU implementation, while

the second optimization can slightly improve the performance. The GPU implementation with all

13

three optimizations can achieve optimal performance; it can achieve up to 128X speedups com-

pared to the optimal performance.

1.4 Cache Side-Channel Attacks

In this section, we will first introduce different types of cache side-channel attacks, and then explain

why it remains unclear about the impact of cache configurations on the performance of time-driven

cache side-channel attacks.

1.4.1 Categories of Cache Side-Channel Attacks

Timing-based cache side-channel attacks have been comprehensively studied since its debut in

1996 [98]. The time information of cache access leaks secret contents, specifically through the

time difference of cache hits and misses. These attacks can be broadly categorized into three types

based on the leakage observation method [99, 100]: (1) access-driven attacks, (2) trace-driven

attacks, (3) and time-driven attacks. The access-driven attacks manipulate specific cache-lines and

observe the access behaviors of cryptographic operations on these cache-lines. The trace-driven

attacks observe the cache hit-miss traces during the encryption/decryption. Different from the

former two, the time-driven attacks simply observe the total execution time of the cryptographic

operations. All types derive the secret contents by analyzing the observation.

Time-driven attacks are the primary type in the early age of side-channel attacks. In the last

decade, access-driven attacks, for example, the notorious meltdown attack [101], gain popu-

larity.They have a higher resolution and lower noises, hence require fewer measurements than

time-driven attacks. Fine-grained variants of access-driven attack have been proposed, includ-

ing PRIME+PROBE [102], FLUSH+RELOAD [103], and FLUSH+FLUSH [104]. However, all

access-driven attacks require that the attacker’s process have access to specific cache addresses that

shared by the victim’s process.

14

Recently, some proposals leverage new hardware technologies to defend the access-driven attacks.

For example, the CATalyst [105] exploits Intel’s Cache Allocation Technology (CAT) (CAT iso-

lates shared cache space for victim’s process) to physically revoke the accessibility of attacker’s

process. Given the attackers’ access privilege is not an assurance, studying time-driven attacks are

still worthwhile since they demand no adversary’s intervention during the observations.

1.4.2 Cache Configurations’ Impact

Researchers have been speculating that cache configurations can impact the performances of time-

driven side-channel attacks [106, 107, 108]. For example, intuitively, a bigger cache size would

make the attacks on AES more difficult, as it can hold a larger portion of the precomputed S-box

lookup table in the cache. However, we are not aware of any previous work that provides exper-

imental data to demonstrate how cache configuration parameters influence time-driven attacks. It

is extremely challenging to conduct performance comparisons under the same system with differ-

ent cache configurations, as none of the existing CPU products provide configurable caches. This

challenge prevents the experimental study about the impact of cache parameters on time-driven

attacks.

In this dissertation, we overcome the aforementioned difficulty and conduct a comprehensive study

on how cache configurations impact the success rates of time-driven attacks [109]. We leverage a

modular platform – GEM5 [110] to measure the performances of time-driven attacks under various

cache configurations. GEM5 is one of the most popular cycle-accurate full-system emulators in the

computer-system architecture community [111, 112]. We leverage GEM5 to emulate the X86 64

system with a configurable cache.

In our work, we measure the performance of Bernstein’s cache timing attack on AES [106]. Bern-

stein’s attack is one of the most classic time-driven attacks and still feasible on model proces-

sors [113, 114]. To make its performance comparable, we propose a new metric to quantify the

its success rate. In the measurement, we run Bernstein’s attacks on GEM5 instances with different

15

cache configurations and provide systematic experimental data to describe the correlation of cache

parameters and the attack’s performance.

1.5 Dissertation Contributions

In this thesis, our scientific contributions can be summarized as the follows:

• We present O3FA, a new finite automata-based DPI engine to perform regular-expression

matching on out-of-order packets in real-time, i.e., without requiring flow reassembly.

• We propose several optimizations to improve the average and worst-case behavior of the

O3FA engine, and we analyze how the packet ordering affects the buffer size.

• We evaluate our O3FA engine on various real-world and synthetic datasets. Our results show

that our design is very efficient in practice. The O3FA engine requires 20x-4000x less buffer

space than conventional buffering & reassembling-based solutions, with only 0.0007%-5%

traversal overhead.

• We highlight the importance of counting the reconfiguration time towards the overall AP

performance, especially the for large-scale and/or frequently updated datasets.

• We provide a framework for users to easily and fairly conduct performance comparison

between AP and its counterparts. It uses a hierarchical approach to automatically generate

AP automata and cascadeable macros to ultimately minimize reconfiguration costs.

• We evaluate our framework with AP using both synthesis and real-world datasets, and

conduct end-to-end performance comparison (configuration+computation) between AP and

CPU. Even including the configuration cost, AP can still achieves hundreds of times speedup

against its counterparts.

16

• We propose a GPU-assisted framework for static program analysis based Android security

vetting. It constructs Data-Flow Graphs using GPU and can support multiple vetting tasks

by adding lightweight plugins onto the DFGs.

• We identify four performance bottlenecks in the plain GPU implementation: frequent

dynamic memory allocations, large number of branch divergences, workload imbalance,

and irregular memory access patterns. To breakthrough the bottlenecks, we leverage the

application-specific characteristics to propose three fine-grained optimizations, including

matrix-based data structure for data-facts, memory access based node grouping, and worklist

merging.

• We evaluate the efficacy of proposed optimizations using 1000 Android APKs. The first and

third optimizations can significantly improve the performance compared to the plain GPU

implementation while the second one can slightly improve the performance. The optimal

GPU implementation can achieve up to 128X speedups against the plain GPU implementa-

tion.

• We use the GEM5 platform to investigate the cache configurations’ impacts on time-driven

cache side-channel attacks. We configure the GEM5’s cache through seven parameters:

Private Cache Sizes, Private Cache Associativity, Shared Cache Sizes, Shared Cache Asso-

ciativity, Cacheline Sizes, Replacement Policy, and Clusivity.

• We extend the traditional success-fail binary metric to make the cache timing side-channel

attacks’ performances comparable. We define the equivalent key length (EKL) to describe

the success rates of the attacks under a certain cache configuration.

• We systematically measure and analyze each cache parameter’s influence on the attacks’

success rate. Based on the measurement results, we find the private cache is the key to

the success rates; the 8KB, 16-way private cache can achieve the optimal balance between

the security and the cost. Although the shared cache’s impacts are trivial, running neighbor

processes can significantly increase the success rates of the attacks. The replacement policies

17

and cache clusivity also have impacts on the attacks’ performances: Random replacement

leads to the highest success rates while the LFU/LSU leads to the lowest; the exclusive

policy makes the attacks harder to succeed compared to the inclusive policy. We then use

these findings to enhance both the cache side-channel attacks and defenses and strengthen

future systems.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present state-of-the-art

existing works that relate to our targeted problems and some background knowledge required

to understand the proposals in this dissertation. In Chapter 3 and 4, we present our work for

high-performance network security. In Chapter 3, we introduce the O3FA engine, a new regular

expression-based DPI architecture that can handle out-of-order packets on the fly without requir-

ing packet buffering and stream reassembly. In Chapter 4, we address the programmability and

scalability issues in the emerging Micron’s Automata Processors, and accordingly propose the

ROBOTOMATA framework that contains a hierarchical code auto-generating approach and the

cascadeable macros. In Chapter 5, we present our contribution to high-performance mobile soft-

ware security. We propose an Android security vetting framework that uses the highly optimized

GPU-based DFG construction as the core. In Chapter 6, we present the work for high-performance

system security. We design a comparative measurement to systematically study how cache con-

figurations impact the success rates of time-driven cache attacks. Finally, Chapter 7 conclude my

dissertation work.

Chapter 2

Literature Review

2.1 Algorithm Optimizations

In this section, we will present the existing work related to finite automata optimization and the

out-of-order packet DPI respectively.

2.1.1 Finite Automata Optimizations

NFAs have a limited size but can require expensive per-character processing, whereas DFAs offer

limited per-character processing but suffer from the well-known state explosion problem. Each

DFA state corresponds to a set of NFA states that can be simultaneously active [115]. Therefore,

given an N-state NFA, the functionally equivalent DFA may potentially have up to 2N states. This

state explosion problem may limit the DFAs ability to handle large and complex sets of regular

expressions (typically those that include bounded and unbounded repetitions of wildcards or large

character sets). Existing proposals targeting DFA-based solutions have focused on two aspects: (i)

designing compression schemes aimed at minimizing the DFA memory footprint; and (ii) devising

new automata to alternate DFAs in case of state explosion. Alphabet reduction [116, 21, 117, 118],

run-length encoding [116], default transition compression [21, 17], state merging [20] and delta-

18

19

FAs [119] fall in the first category, while multiple-DFAs [116, 120], hybrid-FAs [20], history-

based-FAs [19], XFAs [23], counting-FAs [22], and JFAs [26] fall in the second one. All these

solutions, however, have been designed to operate on reassembled packet streams.

2.1.2 Algorithms for Out-of-Order Packets in DPI

The classic approach to tackle the packet reordering problem is to buffer the received data packets,

reorder them, and finally reassemble the packet stream (or packet flow). Dharmapurikar et al., [8]

proposed a system to buffer and reorder packets. Their system consists of a packet analyzer, an

out-of-order packet processing unit and a buffer manager, and mitigates the risk of denial of service

attacks by forcing attackers to use multiple attacking hosts. However, the system is still vulnerable

to attacks exhausting the buffer capacity. Similar packet buffering and stream reassembly solutions

have also been proposed and adopted in the industry (e.g. Cisco [10], Nortel Networks [11], and

Netrake [12]).

Despite its widespread adoption, this buffering and reassembling approach is vulnerable to De-

nial of Service attacks whereby attackers exhaust the buffer capacity by sending long sequences

of out-of-order packets. There have been a handful of proposals attempting to reduce these risks

by avoiding packet buffering and stream reassembly. Varghese et al., [121] proposed Split-Detect.

This system splits the signatures of malicious traffic into pieces, performs deep packet inspec-

tion on these sub-signatures, and diverts the TCP packets for reassembly from the fast path to the

slow path upon detection of any of these sub-signatures. Split-Detect can achieve up to 90% stor-

age requirement reduction compared to conventional NIDS. However, rather than avoiding stream

reassembly, it offloads it to the slow path. In addition, Split-Detect is restricted to exact-match

signatures and patterns with a fixed length. Our proposal works also on arbitrarily sized patterns.

Johnson et al., [15] proposed a DFA-based solution that, for each packet, performs parallel traver-

sals from each and all DFA states. This proposal is based on the observation that, since the initial

DFA state is unknown when processing an out-of-order packet, any DFA state must be considered

a potential initial state. A post-processing step will then be performed to reconstruct valid traver-

20

sals at packet boundaries. Although this scheme may be effective in the presence of non-malicious

traffic (where the traversal is limited to a few DFA states), it does not provide a good worst-case

bound, and it may involve a large amount of post-processing. More recently, Chen et al., [14]

proposed AC-Suffix-Tree. This scheme avoids packet buffering and stream reassembly by com-

bining an Aho-Corasick DFA with a suffix tree. Zhang et al., [13] proposed On-Line Reassembly

(OLR), a scheme that stores patterns in a DAWG. Both these solutions, however, apply only to

exact-match patterns and are unable to handle regular expressions, which are more common in

real-world applications. Our scheme does not suffer from this limitation.

2.2 HPC devices Based Accelerations

Previous work has focused on accelerating regular expression matching on a variety of parallel

architectures: general purpose multi-core processors [20, 21, 29, 19, 18, 120, 23, 26], network

processors [122, 123, 124], FPGAs [28, 125, 126, 30], ASIC- [116, 17, 127] and TCAM- [128, 129,

130] based systems. In all these proposals, particular attention has been paid to providing efficient

logic- and memory-based representations of the underlying automata (namely, DFAs, NFAs and

equivalent abstractions).

2.2.1 GPU

Recent work [131] has considered exploiting the GPUs massive hardware parallelism and high-

bandwidth memory system in order to implement high-throughput networking operations. In par-

ticular, a handful of proposals [132, 133, 134, 27, 25, 50, 51] have looked at accelerating regular

expression matching on GPU platforms. Most of these proposals use the coarse-grained block-

level parallelism offered by these devices to support packet- (or flow-) level parallelism intrinsic in

networking applications.

Gnort [132, 133], proposed by Vasiliadis et al, represents an effort to port Snort IDS to GPUs.

21

To avoid dealing with the state explosion problem, the authors process on GPU only a portion of

the dataset consisting of regular expressions that can be compiled into a DFA, leaving the rest in

NFA form on CPU for separate processing. As a result, this proposal speeds up the average case,

but does not address malicious and worst case traffic. Gnort represents the DFA on GPU memory

uncompressed, and exploits parallelism only at the packet level (i.e., it does not leverage any kind

of data structure parallelism to further speed up the operation).

Smith et al [134] ported their XFA proposed data structure [23] to GPUs, and compared the per-

formance achieved by an XFA and a DFA-based solution on datasets consisting of 31-96 regular

expressions. They showed that a G80 GPU can achieve a 10-11X speedup over a Pentium 4, and

that, because of the more regular nature of the underlying computation, on GPU platforms DFAs

are slightly preferable to XFAs. It must be noted that the XFA solution is suited to specific classes

of regular expressions: those that can be broken into non-overlapping sub-patterns separated by

.* terms. However, these automata cannot be directly applied to regular expressions containing

overlapping sub-patterns or [ˆc1..ck]⇤ terms followed by sub-pattern containing any of the c1, ..., ck

characters.

More recently, Cascarano et al [27] proposed iNFAnt, a NFA-based regex matching engine on

GPUs. Since state explosion occurs only when converting NFAs to DFAs, iNFAnt is the first

solution that can be easily applied to rule-sets of arbitrary size and complexity. In fact, this work

is, to our knowledge, the only GPU-oriented proposal which presents an evaluation on large, real-

world datasets (from 120 to 543 regular expressions). The main disadvantage of iNFAnt is its

unpredictable performance and its poor worst-case behavior.

2.2.2 Automata Processor

Recent studies have revealed Micron AP can improve performance for many applications from

data mining [135, 60], machine learning [62], bioinformatics [61], intrusion detection [63, 136],

graph analysis [64], and so on[137, 65, 138, 139, 67]. Among them, FU [140], SM APIs [59], and

22

RAPID [69] are highly related with this work.

Tracy et al. [140] propose a functional unit (FU) approach to accelerate APM problems. They

decompose a Levenshtein automata to 8 FUs, then represent FUs in ANML and pre-compile&save

them as macros. This approach can benefit all Levenshtein automata by reducing place-

ment&routing overhead to some extent. However, it still requires significant inter-instance routing

and compiling time for large-scale automata as shown in our experiments.

Programming on AP with ANML demands expertises of both automata structures and AP archi-

tecture. Therefore, String Matching (SM) APIs [59] are introduced recently to provide high-level

abstracts for APM. Taking user-provided patterns and distances, SM APIs can generate binary

images accordingly. However, if either the given distance or the pattern length doesn’t fit any tem-

plate in the library of SM APIs, it is necessary to construct automata and place-and-route them

from scratch during the compilation. As shown in our experiments, SM APIs cannot support some

large-scale problem sizes.

Angstadt et al. [69] propose RAPID, a high-level programming model for AP. RAPID bypasses

the pre-compiled macros; instead, RAPID places and routes a small repetitive portion of the whole

program, saves it as a small binary image, and loads this portion as many times as need on the AP

board. However, this scheme may underperform pre-compiling strategy in the case that the desired

pattern is large and its pattern lengths vary, because the repetitive portion of program is usually

smaller than a macro. Another drawback of this method is losing the flexibility of cascadable

macros once the portion of program is saved as a binary image which can be only loaded and

executed.

Wadden et al . [141] propose ANMLZoo, a benchmark suite for automata processors. It has a sub-

set targeting on APM, and explores how different distance types, error numbers and pattern lengths

affect fan-in/fan-out of each STE then further affect configuration complexity. However, it doesn’t

fully explore the AP’s capacity since doesn’t leverage any pre-compiled information. Moreover,

users still need to manually manipulate the AP automata when extending the benchmarks.

23

2.3 Security Vettings for Android

In this section, we will introduce the existing Android static program analysis tools first, and then

describe how the current solutions construct the Android programs’ data-flow graphs.

2.3.1 Android Static Analysis Tools

Android security nowadays is one of the most crucial and popular subareas in software secu-

rity [142, 143, 144, 145, 146, 147]. A bunch of tools has been proposed for applying the static

analysis on Android security problems. FlowDroid [83] first builds a call graph based on Spark/-

Soot [148] by performing a flow-insensitive points-to analysis. It then uses IFDS [149] to conducts

the taint and on-demand alias analysis based on the call graph. IFDS is flow- and context-sensitive;

however, the call graph building is flow-insensitive hence could degrade the precision of IFDS

analysis. Moreover, FlowDroid does not text- and flow-sensitively calculate all objects’ alias or

points-to information due to computational cost concerns [150]. Epicc [151] adopts IDE frame-

work to compute Android Intent call parameters. It models the intent data structure explicitly in

the flow functions. Epicc only uses the results of Intent parameter analysis to resolve some spe-

cific cases of Intent call and does not perform the inter-component data-flow analysis. IccTA [84]

extends FlowDroid by adopting IC3 [152] Intent resolution engine. IccTA can track data flows

through regular Intent calls and returns but cannot through remote procedure call (RPC). On the

contrary, DroidSafe [153] tracks both Intent and RPC calls but cannot track data flows through

stateful ICC nor inter-app analysis. DialDroid [82] is a scalable and accurate tool designed for

inter-app Inter-Component Communication (ICC) analyses. It makes a balance of the data-flow

analysis accuracy and run-time cost.

Each of the above tools is built to perform one or several specific kinds of static analysis and is not

flexible to extend the capability. On the other hand, Amandroid [85] provides generic support to

multiple Android static analyses. It builds the DFG and DDG then adds low-cost plugins to realize

various specific analyses. Amandroid calculates all objects’ points-to information in a context-

24

and flow-sensitive way. Although this boosts the precision, it drastically increases the computation

burdens [154].

2.3.2 Andorid Data-Flow Graph Constructions

The DFG is constructed through Inter-procedural Data-flow Analysis. Data-flow analysis is con-

ducted using iterative algorithms. The conventional iterative search algorithm visits each ICFG

node once in one iteration and keeps iterating until no further changes occur to the data-flow

sets [155]. This approach has a regular computation pattern hence can leverage the well-studied

depth-first and breadth-first search (BFS/DFS) [156, 157, 158, 159, 160, 161, 162] to efficiently

visit the CFG in each iteration. However, it has large redundancy and slow convergence due

to the fixed full workload in each iteration. Worklist algorithm is an alternative that dynami-

cally updates the worklist after each node visiting. Inter-procedural, finite, distributive subset

(IFDS) [149] and its extension inter-procedural distributed environment transformers (IDE) [163]

are two well-known conceptual frameworks using the worklist algorithm as the core. Some op-

timizations [164, 165, 166] have been proposed to algorithmically improve the IFDS efficiency.

Recently, two mature IFDS/IDE implementations gain massive popularity. IBM releases T.J. Wat-

son Libraries for Analysis (WALA) implementing the IFDS [167]. Heros [168] provides IFDS/IDE

solver on top of Soot [169]. Although the worklist algorithm algorithmically outperforms the con-

ventional algorithm, it still potentially requires high computational cost due to a large number

of iterations. Even worse, the dynamic update of worklist makes the computation pattern pretty

irregular and extremely hard to be parallelized.

All works mentioned above target only on executing the analyses on sequential platforms. The

literature on executing static analyses on modern parallel platforms is sparse. Among them, only

several works use GPUs. Prabhu et al. [87] accelerate the 0-CFA, a higher-order control-flow

analysis algorithm, with GPU. They leverage the sparse-matrix to optimize CFG data structures

and achieves 72X speedups over CPU version. Mendez-Lojo et al. [90] accelerate the Andersen-

style inclusion-based point-to analysis on GPU. They treat the analysis as a graph modification and

25

traversal problem and focus on providing general insights about implementing graph algorithms on

GPU. Su et al. [95] also implement the Andersen’s inclusion-based pointer analysis. Their design

has the similar idea to [90] and proposes several techniques to further optimize the implementation.

They claim their work can achieve 46% speedup against [90]. Each of above three work targets

only on one specific type of analysis and the design is generally not applicable to other static

analyses. Moreover, none of them associates the algorithm with specific language or file type;

significant application-specific tuning may be required when applying their algorithms to analyze

real-world cases.

2.4 Cache Side-Channel Attacks & Countermeasures

In this section, we will introduce the related work with the time-driven and access-driven cache

attacks respectively, and then present the work studying the implementations’ and system’s impacts

on the cache attacks.

2.4.1 Time-Driven Attacks

Bernstein’s attack [106] is one of the most classical practical implementations of time-driven at-

tacks. It is elaborated in Section 6.2.2. Bonneau and Mironov [107] proposed a finer-grained

time attack. They observed the time variations caused by cache-collisions happened during table

lookups of encryption. This attack requires less computational cost but is more difficult to measure.

Tiri et al. [100] proposed an analytic model for time-driven attacks that can estimate the strengths

of the symmetric key cryptosystems. Brumley and Hakala [108] proposed a timing template attack.

They combined vector quantization and the hidden Markov model to build a tool to automatically

analyze the cache-timing data. Brumley and Tuveri [113] described the timing attack vulnerability

in OpenSSL implementation and approved that the time-driven attack on a remote server is feasi-

ble. Wang et al. [170] proposed CacheD, a software examining technique that leverages symbolic

execution to identify potential cache time differences at each program point.

26

2.4.2 Access-Driven Attacks

Yarom et al. [103] presented FLUSH + RELOAD attack. This attack targets LLC and can recover

the keys even if the processes are not co-located in the same core. Liu et al. [102] implemented the

PRIME + PROBE attack also targeting on the LLC. This attack is cross-core, cross-VM, and works

on multiple versions of GnuPG without relying on weaknesses of OS or VM. Irazoqui et al. [171]

introduced another variation of PRIME+PROBE attack. Their attack is a fine-grain cross-core

LLC attack. It needs no deduplication and OS configuration changes hence is quite viable. Gruss

et al. [172] proposed the access-driven template attack on shared inclusive LLC. It automatically

profiles and exploits cache leakage of any programs without requiring prior knowledge of specific

software and system information. Gras et al. [173] proposed TLBleed that attacks the page-table

caches (TLB) to bypass the hardware cache side-channel protections.

2.4.3 Implementations’ and Systems’ Impacts

To our best knowledge, our work is the first systematic and experimental study of the cache con-

figurations’ impacts on the cache attacks’ performances. The most relevant existing work we are

aware of was done by Mantel et al [174]. Although the crypto algorithms are strong, careless

implementations and misuses can make the ciphers vulnerable [175, 176]. Mantel et al. systemati-

cally studied how different AES implementations influence the vulnerability to cache side-channel

attacks. They leveraged the CacheAudit static analyzer [177] to check the leakage bounds of differ-

ent AES implementations. In [174], only one cache parameter (PCS) was considered. Moreover,

its results are still counted as the theoretical expectations since CacheAudit is a program-analysis-

based tool that calculates the leakage bounds without any actual executions.

Chapter 3

Scalable Automata-based Pattern-Matching

Algorithm for Out-of-Order DPI

3.1 Introduction

Regular expression matching is a core task in deep packet inspection (DPI), which is a fundamental

networking operation. A traditional form of DPI comprises searching the packet payload against

a set of patterns. Network intrusion detection systems (NIDS) are an essential part of network

security devices. A NIDS receives and processes packets, and then reports the possible intrusions.

Some well-known open-source NIDS - such as Snort1 and Bro2 - employ DPI as their core; most

major networking companies offer their own NIDS solutions (e.g., security appliances from Cisco3

and Juniper Networks4). In NIDS, every pattern represents a signature of malicious traffic; thus,

the DPI engine of a NIDS inspects the incoming packets payloads against all available signatures,

and triggers pre-defined actions if a match is detected. A regular expression can cover a wide

variety of pattern signatures [1, 2, 3]. Because of their expressive power, regular expressions have

1http://www.snort.org
2http://www.bro-ids.org
3http://www.cisco.com/en/US/products/ps6120/index.html
4http://www.juniper.net/us/en/products-services/security/idp-series

27

28

been increasingly adopted to express pattern sets in both industry and academia. To allow multi-

pattern search, current NIDS mostly represent the pattern-set through finite automata (FA)[115],

either in their deterministic or in their non-deterministic form (DFA and NFA, respectively).

A large body of research has focused on developing efficient regular expression matching engines.

For memory-centric solutions, where the automaton is stored in memory, DFA-based approaches

are more popular than NFA-based ones, because of their predictable memory bandwidth require-

ments. This is due to a simple fact: processing an input character involves only one DFA state

traversal, which can be translated into a deterministic number of memory accesses. However, this

attractive property comes at the cost of potentially large memory space requirements. As a matter

of fact, DFAs constructed from large and complex sets of regular expressions may suffer from the

state explosion problem, making the storage requirements prohibitively large. State explosion can

take place during DFA generation when the corresponding regular expressions have repetitions of

wildcards and/or large character sets. Several variants of DFA [116, 120, 20, 19, 23, 22, 26] have

been proposed to address this problem, and limit the effects of state explosion with varying degree.

In real-world scenarios, a network data stream can span multiple packets. Those packets can arrive

at network security devices out of order due to multiple routes, packet retransmission, or NIDS

evasion. This is referred to as packet reordering. Previous work analyzing Internet traffic has

reported that about 2%-5% of packets are affected by reordering [6, 7, 8]. However, these studies

have focused on benign traffic; while attackers may intentionally mis-order legitimate traffic to

trigger denial-of-service (DoS) attacks [8]. NIDS face challenges [9] when processing data streams

that span across out-of-order packets, especially when performing regular-expression matching

against traffic containing malicious content located across packets boundaries. In such cases, the

malicious patterns are split and carried by multiple packets; and NIDS cannot detect them by

processing those packets individually.

Several solutions have been proposed to address the problem of processing out-of-order packets

in NIDS. One approach that is widely adopted in current network devices is packet buffering and

stream reassembling [8, 10, 11, 12]. In this case, incoming packets are buffered and packet streams

29

are reassembled based on the information in the header fields. Regular expression matching is

then performed on the reassembled data stream. This approach is intuitive and easy to implement,

but can be very resource intensive and vulnerable to DoS attacks whereby attackers exhaust the

packet buffer capacity by sending long sequences of out-of-order packets. Recently, researchers

have proposed several new solutions [13, 14, 15] aimed to relieve packet-buffer pressure or even

avoid packet buffering and reassembling. This is done by tracking all possible traversal paths or

leveraging data structures such as suffix trees. While they alleviate the burden of handing out-of-

order packets to some extent, these methods are either applicable only to simple patterns (exact-

match strings or fixed-length patterns), or suffer from bad worst-case properties (and are therefore

still vulnerable to DoS attacks).

In this work, we aim to provide a solution that (1) can process out-of-order packets without re-

quiring packet buffering and stream reassembling, (2) relies only on finite automata, and (3) can

handle regular expressions with complex sub-patterns. One of the main challenges in this de-

sign comes from handling regular expressions that include unbounded repetitions of wildcards and

large character sets. This is because these sub-patterns can represent unbounded sets of exact-

match sub-strings which cannot be exhaustively enumerated. Our solution leverages the following

observation: all exact-match strings that match a repetition sub-pattern are functionally equivalent

from the point of view of the regular expression matching engine and interchanging them will not

affect the final matching result. Our proposed solution consists of regular DFAs coupled with a set

of supporting FAs either in NFA or DFA form. The supporting FAs are used to detect and record –

using only a few states (typically no more than five) – segments of packets that can potentially be

part of a match across packet boundaries. While processing packets out-of-order, those segments

can be dynamically retrieved from the recorded states, and can be then used to resolve matches

across packet boundaries. To be efficient, any automata-based solution requires minimizing the

number of automata, their size, and the number of states that can be active in parallel. Our pro-

posal includes optimizations aimed to achieve these goals. Our contributions can be summarized

as follows:

30

• We present O3FA, a new finite automata-based DPI engine to perform regular-expression

matching on out-of-order packets in real-time, i.e., without requiring flow reassembly.

• We propose several optimizations to improve the average and worst-case behavior of the

O3FA engine, and we analyze how the packet ordering affects the buffer size.

• We evaluate our O3FA engine on various real-world and synthetic datasets. Our results show

that our design is very efficient in practice. The O3FA engine requires 20x-4000x less buffer

space than conventional buffering & reassembling-based solutions, with only 0.0007%-5%

traversal overhead.

3.2 O3FA Design

In this section, we present our solution for performing regular expression matching on out-of-

order packets without requiring prior stream reassembly. The main challenge in this problem is the

handling of matches across packet boundaries. At the high level, our proposed solution couples

one or more DFAs with supporting-FAs. The DFAs allow us to find matches within a packet. The

supporting-FAs are used to detect and record segments of packets that can potentially be part of

a match across packet boundaries. While processing packets out-of-order, these segments can be

dynamically retrieved from the state information collected on the supporting-FAs, and they can

subsequently be concatenated to the incoming packet in order to handle cross-packet matches.

To have an intuition of this idea, consider matching input stream cabcdeab against pattern b.*cde.

Let us assume that this input stream spans across two packets: P1=cabc and P2=deab. We can

observe that pattern b.*cde is matched across packet boundaries (the match starts in P1 and ends in

P2; the segments of P1 and P2 involved in the match are underlined). If we use a DFA, this match

will be detected only if packets P1 and P2 are processed in order. If the packets are processed out-of-

order, we will need a way to detect that segment de of P2 and segment bc of P1 are partial matches

(specifically, they match the suffix and the prefix of the considered patterns, respectively). We will

then use this information to reconstruct the match. Our proposed supporting-FA will serve this

31

purpose. We note that, because b.*cde is neither an exact-match string nor a fixed-length pattern,

it cannot be handled by previous approaches such as SplitDetect [121], AC-Suffix-Tree [14] and

ORL [13].

Because we are concerned about patterns with variable length, we focus on regular expressions

containing repetitions of characters (e.g., c+ and c*), character sets (e.g, [ci-cj]*) and wildcards

(.*). We note that regular expressions without these features can be handled by traditional meth-

ods. For example, a regular expression containing a non-repeated character set [ci-cj] can be

transformed by exhaustive enumeration into a set of exact-match patterns. For readability and in

the interest of space, the remaining description focuses on the more general case (wildcard repeti-

tions); however, our solution is applicable to all kinds of repetitions.

A central question in the O3FA design is the following: how can we identify the minimal packet

segments that must be recorded in order to handle cross-packet matches? We note that excessively

long segments would pose pressure on the required packet buffer and on the amount of process-

ing involved in the matching operation, thus leading to inefficiencies. Our design leverages the

following observations.

Observation 1: If a regular expression R is matched across a set of packets P1, .., PN, then the

suffix of P1 must match a prefix of R and the prefix of PN must match a suffix of R.

Observation 2: Given a regular expression R in the form sp1.*sp2 and an input stream I contain-

ing a matching segment of the form M1M*M2, where M1 matches sp1 and M2 matches sp2, any

modifications to I that substitutes M* with a shorter segment will not affect the match outcome.

According to Observation 1, O3FA must detect segments of incoming packets that match any

suffixes/prefixes of the considered regular expressions. These segments are recorded by storing the

corresponding matching states information, and they can be dynamically retrieved and properly

concatenated with later-arrival packets to detect cross-boundary matching. For example, while

matching regular expression b.*cde on packets P1=caba, P2=dcac and P3=dead that arrive in order

P3!P1!P2, we first detect that segment de in P3 matches suffix de, and then that segment ba in

P1 matches prefix b.*. When P2 arrives, we retrieve those segments and concatenate them with P2,

32

then conduct regular expression matching on badcacde and detect the cross-boundary matching of

b.*cde. In general, prefix b.* can match arbitrarily long strings, which may span across any number

of intermediate packets. However, according to Observation 2, in order to reconstruct the match it

is sufficient to record the shortest segment of the input stream that matches the regular expression

with the wildcard repetition. In the considered example, rather than recording segment ba of packet

P1, we can simply record segment b. In addition, if a regular expression p.*s is matched across a set

of packets P1, .., PN such that the suffix of P1 matches p and the prefix of PN matches s, recording

the intermediate packets P2, .., PN-1 will not be necessary for matching purposes.

The design is complicated by the fact that multiple regular expressions would require recording

multiple segments, possibly leading to inefficiencies. In section 3.3 we propose a mechanism

(that we call Functionally Equivalent Packets) to combine segments related to different regular

expressions. As we will discuss, this method leverages the overlap between different segments.

3.2.1 O3FA Data Structure

We now discuss the design of O3FA, a composite automata-based solution that implements the

scheme described above. As mentioned, O3FA consists of two components:

• One or more regular DFAs used to perform regular expression matching and constructed

based on the given regular expression set. Any automata optimization techniques [116, 120,

20, 19, 23, 22, 26, 21, 17, 119, 178] can be applied to these DFAs.

• Supporting-FAs used to detect and record significant segments of incoming packets. Ac-

cording to the above discussion, supporting-FAs should be constructed to detect segments

matching regular expressions prefixes and suffixes, and can therefore be of two kinds: prefix-

FAs and suffix-FAs. These automata can be in either NFA or in DFA form.

In order to build the prefix- and suffix-FAs, we split the regular expressions at the positions of the

repetition sub-patterns. For example, regular expression abc.*def .*ghk will be broken down into

33

three sub-patterns: .*abc.*, .*def .* and .*ghk.* (the .* before abc is due to the fact that the original

regular expression is unanchored, that is, it can be matched at any position of the input stream).

This breakdown is possible because the supporting-FAs are used to record packet segments, and

not to perform pattern matching; the short packet segments recorded by breaking down the regular

expressions into sub-patterns will be concatenated into larger segments during processing. This

breakdown allows significantly simplifying the supporting automata: by allowing dot-star terms

to appear only at the beginning or at the end of each pattern, it will avoid state explosion when

representing the supporting-FAs in DFA form. The full prefix and suffix sets corresponding to the

given sub-patterns are: {.*abc.*, .*abc, .*ab, .*a, .*def .*, .*def , .*de, .*d, .*ghk, .*gh, .*g} and

{.*abc.*, abc.*, bc.*, c.*, .*def .*, def .*, ef .*, f .*, .*ghk, ghk, hk, k}, respectively. However,

some simplifications are possible. First, since the suffixes must be matched at the beginning of

packets (Observation 1) and can end anywhere within a packet, the ”.*” at the end of each suffix is

redundant. Second, patterns that are common to prefix and suffix sets (e.g. .*abc, .*def , .*ghk) can

be removed from the prefix set (these patterns would lead to the detection of the same segments5).

Third, sub-patterns that are covered by more general patterns belonging to the same set (e.g. abc

is a special case of .*abc) can also be eliminated. After these simplifications, the prefix and suffix

sets used to build the prefix- and suffix-FA will be {.*abc.*, .*ab, .*a, .*def .*, .*de, .*d, .*gh,

.*g} and {.*abc, bc, c, .*def , ef , f , .*ghk, hk, k}, respectively. Note that the suffix set contains

both anchored and unanchored patterns (the latter start by ”.*”). These two groups of patterns can

be compiled in two different suffix-FAs (i.e., an anchored and an unanchored suffix-FA) to allow

space optimizations when representing the automata in DFA form.

During processing, upon a match within a supporting-FA, the corresponding accepting state must

be recorded, and it will then be used to retrieve the packet segments to be concatenated to the

current input packet. This ”extended” input packet will then be processed by the ”regular” DFA.

However, some matches that occur within the supporting-FAs can be discarded, thus diminishing

the amount of information that must be recorded to reconstruct relevant packet segments. First,

5The reason why these patterns are removed by the prefix set will become apparent later. Specifically, since all
prefix matches in the middle of packets can be discarded, keeping these patterns in the suffix set ensures that they will
be detected by the suffix-FA.

34

since prefixes need to be matched only at the end of packets (Observation 1), all prefix matches

occurring in the middle of any packets can be discarded. Second, if multiple anchored suffixes of

a regular expression are matched, only the longest one must be recorded (shorter suffixes will be

subsumed by it).

Figure 3.1 shows an example on regular expression set {abc.*def , ghk}, both patterns are unan-

chored (that is, they can be matched at any position of the input stream). The prefix set, anchored

suffix set and unanchored suffix set are {.*abc.*, .*ab, .*a, .*de, .*d, .*gh, .*g}, {bc, c, ef , f ,

hk, k} and {.*abc, .*def , .*ghk}, respectively. Figure 3.1 (a)-(d) show the resulting regular DFA,

prefix-FA, anchored suffix-FA and unanchored suffix-FA; all supporting-FAs are left in NFA form.

We assume three input packets: P1=bhab, P2=cegh and P3=adef , with the arriving order being

P3!P1!P2. After P3 is processed, the matching state sets of regular DFA and anchored suffix-FA

are empty; the unanchored suffix-FA matching states is 6; the prefix-FA matching states are {8, 9};

since those matches do not happen at the tail of P3, they will be discarded. Then, we process P1; the

matching state sets of regular DFA, anchored suffix-FA and unanchored suffix-FA are empty; the

prefix-FA matching states are {5, 6}; since only matching state 5 is active at the end of P1 process-

ing, this sole prefix-FA state will be recorded. When P2 arrives, we should first check the recorded

information of its previously processed neighbor packets (i.e., predecessor P1 and successor P3):

P1 has a recorded prefix-FA state 5; the retrieved segment is ab and should be concatenated to P2 as

a prefix. P3 has a recorded unanchored suffix-FA state 6; the retrieved segment is def and should

be concatenated to P2 as a suffix. Then, the modified P2 is abceghdef ; after it is processed with

the regular DFA, the matching of the pattern abc.*def will be reported.

3.3 Optimizations

Our basic O3FA design has two limitations: it can lead to false positives (that is, it may report

invalid matches) and it can suffer from inefficiencies during processing. In this section, we describe

a mechanism - called Index Tags - to avoid false positives, and a suitable format for the supporting-

35

(a)

1 2
a

b c

12 13
g h

0

3
remaining
transitions
from 1,2,12-14 d 6 e 7

f
8

k 14

g

9 h k 11

b 5a 4

a: from 1,2,12-14

a: from 4-11

remaining
transitions
from 4-11

10

c

g: from 1,2,12-14
g: from 4-11

d: from 4-11

1 2

a

b c

0

3

*

4a
b 5

a 6

7
d e 8

10

g
h 11

d
9g

12

*

0

1b
c 2

c 3

4
e f 5

7

h
k 8

f
6k

9

1 2a
b c

0

3
*

4 5d e f 6

7 8
g

h k 9

(b)

(c) (d)

Figure 3.1: (a) DFA accepting pattern set {abc.*def , ghk}, (b) prefix-FA, (c) anchored suffix-FA and (d)
unanchored suffix-FA built upon corresponding prefix set, anchored suffix set and unanchored suffix set.
Accepting states are colored gray.

FAs and two auxiliary data structures to improve the matching speed.

3.3.1 Index Tags

Our initial O3FA engine design may report false positives in the presence of multiple regular ex-

pressions. For example, consider a dataset with two regular expressions: {bc.*d, acd}. Two input

packets P1:caaba and P2:cabdc are received out of order (P2!P1). Obviously, no matches should

be reported on the corresponding input stream caabacabdc. However, in our basic O3FA design,

the anchored suffix-FA will detect the segment cabd of P2 that matches suffix c.*d of the first pat-

tern; when P1 arrives, segment cd will be retrieved and concatenated to P1 as a suffix, leading to

the extended packet caabacd. Processing this packet with the regular DFA will lead to the false

match acd to be reported.

To understand the root cause of this problem, we make the following observation.

Observation 3: Let R be a set of regular expressions, R’ a proper subset of R, and r a regular

36

expression belonging to R but not to R’. Let S be the set of segments of the input packets that

match any prefix or suffix of regular expressions in R’. If there exists at least a segment in S that

also matches a prefix or suffix of regular expression r, then a false positive can be reported during

processing.

In the example above, let R be {bc.*d, acd}, and R’ be {bc.*d}. We observe that segment cd of P2

matches pattern bc.*d in R’ as well as pattern acd that belongs to R but not to R’. This fact leads to

the false positive indicated above.

Based on this observation, in order to eliminate false positives, we must correlate the matched

suffixes and prefixes with the corresponding regular expressions. To this end, we assign an index

tag to each regular expression, and associate these index tags to the corresponding accepting states

within regular and supporting FAs. During processing, we store the index tags associated to all

traversed supporting-FA accepting states in a tag list. When the regular DFA reports a match, if

the index tag of the matched regular expression is in the tag list, then the match is valid; otherwise,

it is a false positive. Consider the example above; let tag1 and tag2 be the index tags of patterns

bc.*d and acd, correspondingly. When the prefix cabd of P2 is detected to match suffix c.*d of the

first pattern, tag1 is pushed in the tag list. After the extended packet caabacd is processed against

the regular DFA, the match of pattern acd will be discarded as false positive, since the index tag

tag2 is not in the tag list.

3.3.2 Compressed Suffix-NFA

As mentioned above, the supporting-FAs may be represented either in NFA or in DFA form. We

recall that NFAs are compact but may suffer from multiple concurrent state activations, which may

negatively affect the processing time. On the other hand, DFAs have the benefit of a single state

activation for each input character at the cost of a potentially large number of states, affecting the

memory space required to encode the automaton. In this section, we point out the most effective

representation for each of the supporting-FAs.

37

We recall that, in our O3FA design, the anchored suffix set contains only exact-match patterns.

An NFA containing only anchored exact-match patterns can have only one active state. Thus, the

anchored suffix-FA can be left in NFA form without loss in processing efficiency. We denote this

automaton as anchored suffix-NFA (asNFA).

The anchored suffix set can have a large amount of redundancy due to the nature of suffixes. An

n-character pattern can lead to n-1 suffixes, with every two adjacent suffixes differing in only one

character. This creates compression opportunities for asNFA. We propose a compressed suffix-

NFA (csNFA) representation, which reduces both the asNFA size and bandwidth requirements.

Specifically, given the nature of the suffixes of any given pattern, we merge the asNFA states and

transitions starting from the tail states. Figure 3.2 shows an example. Figure 3.2(a) is the asNFA

built upon anchor suffix set {bcdca, cdca, dca, ca, a}; Figure 3.2(b) is the corresponding csNFA. In

this example, the compression reduces the number of NFA states from sixteen to six and removes

six transitions.

0

1 2 3 4b
c d c a

6 7 8c
d c a

13
c

a
a

10 11d c a

5

9

12

14

15

0 1 2 3 4b c d c a
c

c
a

d

5

(a) (b)

Figure 3.2: (a) asNFA and (b) csNFA built upon anchored suffix set {bcdca, cdca, dca, ca, a}. Accepting
states are colored gray.

While more compact, csNFA requires a more elaborate segments retrieval procedure. In an asNFA,

segments retrieval can be done by simply tracking back from the recorded matching states to the

entry state. However, in the optimized csNFA, this straightforward approach does not work since

the backtracking may lead to ambiguity at some states. To address this problem, during csNFA

traversal we identify all states that are active after the processing of the first input character and

assign state pair <start state, end state> to each active state, where start states are these active

38

states and end states are last states of the traversed paths originating from them. Only state pairs

<start state, end state> such that end states are accepting states are significant; moreover, as

we discussed in Section 3.2, only the state pair representing the longest matching path needs to

be recorded. The matched segment can then be retrieved by tracing the csNFA matching path

using the recorded state pair. Since the anchored suffix set includes only exact-match patterns, the

start states set has a limited size and the active paths are expected to go dead after the processing

of a small number of input characters, reducing the amount of processing. Our experiments in

Section 3.5 confirm the efficiency of this proposed compression scheme.

As an example, we consider the csNFA of Figure 3.2(b) and input cadc. csNFA processes the

first input as {0}�c!{2,4}; we assign state pairs to both active states and track the traversal:

{2}�a!{?}, {4}�a!{5}. Since the first path goes dead and the second path reaches the tail

state of the csNFA, the traversal leads to two state pairs: <2,2> and <4,5>. Since only state 5

is an accepting state and <4,5> matches the longest segment, only state pair <4,5> needs to be

recorded. State pair <4,5> should then be back-traced as 5�a!4�c!0, leading to the retrieval

of segment ca.

3.3.3 Prefix- and Suffix-DFA with State Map

We recall that all patterns in the prefix set and unanchored suffix set are unanchored (that is, they

may be matched at any position of the input stream). Since their entry state is always active (poten-

tially leading to the concurrent activation of multiple NFA branches), NFAs accepting unanchored

patterns tend to have multiple concurrent active states, which negatively affect the processing time.

By requiring a single state activation for each input character processed, a DFA representation

guarantees minimal processing time, potentially at the cost of a larger memory requirement. How-

ever, we recall that patterns in the prefix and suffix sets do not have wildcard repetitions, and thus

do not lead to significant state explosion. Thus, the DFA format is suitable for both prefix- and

unanchored suffix-FAs; we denote these automata as prefix-DFA (pDFA) and suffix-DFA (sDFA).

39

1 2a b c

4 5
b c d0

3

6

*

1 2a
b c

5 6
b

c

d

0

3 4

d

a: from 1-6

b: from 2-6

remaining
transitions

(a) (b)

DFA state 1 2 3 4 5 6

NFA states 1 2 3 6 4 5

Figure 3.3: (a) NFA format and (b) sDFA with states map for unanchored suffix set {.*abc, .*bcd}. Accept-
ing states are colored gray.

The number of states in a DFA can be minimized through a well-known procedure [115]. In

addition, as discussed in Section 3.2, all prefix matches occurring in the middle of packets can

be ignored. This allows further optimizations to the prefix-DFA. Specifically, all accepting states

that do not present a self-loop can be made non-accepting, and all self-loops can be removed from

the remaining accepting states. This simplification can both reduce the size of the prefix-DFA and

simplify the processing (by making a filtering step to remove non-terminal matches unnecessary).

The use of a DFA representation for these automata, however, has a drawback: it complicates

the retrieval of the matching input segments. Since there may be multiple paths leading to the

same DFA state, it is not possible to retrieve the input segment solely based on the recorded DFA

state. To tackle this problem, we propose using a state map, which maps the pDFA/sDFA states

to the corresponding NFA states; segment retrieval can then be done by back-tracing NFA paths.

Since pDFA and sDFA do not suffer from state explosion, the size of this state map is contained.

One DFA state may map to multiple NFA states; in those cases, however, only the NFA state that

leads to the longest retrieved segment needs to be included in the state map, allowing a one-to-one

mapping.

We illustrate this design through an example. Let us consider pattern .*abc.*bcd. The cor-

responding unanchored suffix and prefix sets are {.*abc, .*bcd} and {.*abc.*, .*ab, .*a, .*bc,

.*b}, respectively. The corresponding automata are shown in Figure 3.3 and 3.4. Specifi-

40

DFA state 1 2 3 4 5

NFA states 1 2 3 7 8

1 2

a

b c

4 5

b

b

a0

3

*

6

7 8

9

a

b
c

1 2a b c

7 8
b c0

3*

1 2a
b c

4 5
b

c
0

3

a: from 1-5

b: from 2-5

remaining
transitions

(a) (c)

(b)

*

Figure 3.4: (a) original NFA format, (b) optimized NFA, (c) pDFA with states map for prefix set {.*abc.*,
.*ab, .*a, .*bc, .*b}. Accepting states are colored gray.

cally, Figure 3.3 (a) and (b) show the unanchored suffix-NFA and the sDFA and state map, re-

spectively. Figure 3.4 (a), (b) and (c) show the prefix-NFA, the reduced prefix-NFA obtained

by applying the optimizations discussed above, and the resulting pDFA and state map, respec-

tively. Suppose that the input packet is bcdbabcdcb. The traversal of pDFA in Figure 3.4 (c)

is: 0�b!4�c!5�d!0�b!4�a!1�b!2�c!3�d!0�c!0�b!4. The traversed accepting

state (state 3) and the final active state (state 4) must be recorded. To retrieve the input segments,

we first map those states to NFA states 3 and 7 by looking up the state map, and then back-trace

along the NFA. This operation leads to the retrieval of segments abc and b. Segment retrieval on

the sDFA is performed using the same procedure.

3.3.4 Quick Retrieval Table

Retrieving input segments by back-tracing along NFA paths can be inefficient. To improve effi-

ciency, we propose the use of a quick retrieval table, which maps the NFA states directly to portions

of regular expressions. This table allows retrieving input segments without back-tracing. A quick

retrieval table lookup returns an offset in the relevant regular expression; the input segment can

then be extracted directly from the regular expression. This data structure is particularly beneficial

41

NFA
state

1 2 3 4 5

char.
position

<1,2> <1,3> <1,4> <1,5> <1,6>

0 1 2 3 4b c d c a
c

c
a

d

5

Index Tag:1 RegEx: abcdca(a) (b)

Figure 3.5: (a) csNFA and (b) quick retrieval table for anchored suffix set {bcdca, cdca, dca, ca, a}.
Accepting states are colored gray. Each char. position is a pair of index tag and offset, i.e., <tag, offset>

in the case of long segments.

As an example, consider regular expression abcdca. The anchored suffix set and corresponding

csNFA are the same as for the example in Section 3.3.2. Figure 3.5 (a) shows the csNFA and

Figure 3.5 (b) shows the quick retrieval table, which stores <index˙tag, offset> pairs. We recall

that index tags point to regular expressions. If the recorded state pair is <4, 5>, for example, a

lookup in the quick retrieval table will return index tag tag1 corresponding to pattern abcdca, and

start- and end- offsets 5 and 6, respectively. This will result in retrieving segment ca.

3.3.5 Functionally Equivalent Packets

Any incoming packet may contain multiple segments that match a prefix or a suffix. For exam-

ple, the sample packet in Section 3.3.3 contains two segments that match two different prefixes.

All these segments should be recorded and retrieved properly, and all retrieved segments should

be processed with the current input packet. A simple approach is to sequentially concatenate the

segments retrieved to the current packet and process all modified current packets. For example,

supposing the current packet is efgh, using the same example of Section 3.3.3, then two retrieved

segments are abc and b, and the two corresponding concatenated current packets abcefgh and

befgh should be processed serially. This solution can be highly inefficient. However, concurrently

concatenating all retrieved segments to the current packet is not straightforward, since many seg-

ments may have overlaps. Our proposed solution is the Functionally Equivalent Packet (FEP),

which has the main idea that we construct an alternate packet based on all retrieved segments then

42

DFA state 1 2 3 4

NFA state 1 2 3 4

1 2a
b

3 4
b c0

a: from 1-4

b: from 2-4

remaining
transitions

(b)

1 2a b

3 4
b c0

*(a) <2, 3>
States map

NFA states 2
retrieving

<4, 4>

prefix ab

States map
NFA states 4

retrieving
prefix bc

empty string

filled string

FEP:

a b c

offset 3 offset 4

abc

filling filling

shrinking

(c)

Figure 3.6: (a) NFA format and (b) pDFA with states map built upon prefix set {.*ab.*, .*a, .*bc, .*b}. (c)
Construction of functionally equivalent packet to packet P2=eabc.

deal with the alternate packet instead of segments. Such an alternate packet contains all effective

information (i.e., all detected segments) of the original packet and thus is functionally equivalent

to the original one.

Consider the example RegEx ab.*bcd; the prefix set is {.*ab.*, .*a, .*bc, .*b}. Figure 3.6 (a) and

(b) are the NFA format and pDFA with a states map for this prefix set. Supposing the input packets

are P1=afab, P2=eabc and P3=defg, there is obviously only one matching of ab.*bcd across all

three packets. Two pDFA states 2 and 4 are recorded after packet P2 is processed, representing

two detected segments that match prefixes .*ab.* and .*bc. The retrieved alternate segments are

ab and bc. Directly concatenating both segments to P3 as abbcdefg can cause a false-positive

matching. Our FEP design needs only one change that recording <state, offset> pairs instead of

only matched states; the offset is the offset of matched segments last character in the packet. When

retrieving segments, all retrieved alternate segments will be filled into an empty string, filling

positions accord to their offsets; then, the filled string will be shrunken to get FEP. Figure 3.6 (c)

shows the construction of FEP to P2. <2, 3> and <4, 4> are two recorded <state, offset> pairs.

The alternate FEP of P2 is abc; substituting P2 by FEP in the data stream as afababcdefg will not

affect the matching results.

43

3.4 O3FA-based System

In this Section, we provide the O3FA engine, which is a completed system based upon the O3FA

design and can perform regular expression matching on out-of-order packets. We also provide

worst-case analysis in this section.

3.4.1 O3FA Engine Architecture

Our O3FA engine consists of four major components:

• Regular Expression Parser

• Finite-automata Kernel

• States Buffer

• Functionally Equivalent Packet Constructor

Regular Expression Parser (RegEx Parser) is for preprocessing the regular expression set as well

as building the corresponding prefix set and anchored/unanchored suffix set. Finite-automata Ker-

nel (FA Kernel) is the operational core of the O3FA engine consisting of both regular DFA and

supporting-FAs. States Buffer is the buffer to store automata states generated by FA Kernel. Func-

tionally Equivalent Packet Constructor (FEP Constructor) is the component for constructing FEPs

by properly querying stored information in States Buffer.

Figure 3.7 is the schematic diagram of the O3FA engine architecture. The blue-colored compo-

nents are components involved in the regular expression dataset processing; the yellow-colored

components are components involved in the input packet processing. Notice that FA Kernel is

involved in both processing, since it is built in dataset processing and should be used for packet

processing. The blue arrows show the dataset processing flow, while the yellow dotted-line arrows

show the packet processing flow.

44

RegEx dataset input packets

RegEx
Parser

FA
Kernel

States
Buffer

FEP
Constructor

Figure 3.7: Overview of the O3FA engine. The blue parts are dataset processing components; the yellow
parts are input packet processing components.

RegEx Parser: This component works offline. It breaks regular expressions as described in

Section 3.2, and it generates a corresponding prefix set and anchored/unanchored suffix set for

supporting-FA construction.

FA Kernel: FA Kernel is the operational core of the O3FA engine. It takes outputs from RegEx

Parser and builds regular DFA and supporting-FAs following the O3FA design. According to

discussions in Sections 3.2 and 3.3, FA Kernel specifically consists of regular DFA (rDFA),

compressed suffix-NFA (csNFA), prefix-DFA (pDFA) and suffix-DFA (sDFA). This O3FA con-

struction works offline.

Once the O3FA is built, FA Kernel keeps processing packets online. It interacts with States Buffer

and FEP Constructor by getting FEPs from FEP Constructor and storing proper matching informa-

tion to States Buffer. The matching procedures are discussed in previous sections.

States Buffer: The States Buffer is an auxiliary component to assist both FA Kernel and FEP

Constructor. It stores the matching state information generated by FA Kernel and can be queried

by FEP Constructor to provide information for FEP construction.

As discussed in Section 3.3, States Buffer will store final states of regular DFAs and state pairs

<start state, end state> generated by csNFA as well as <state, offset> pairs generated by pDFA

and sDFA. Specifically, States Buffer will create an entry with packet ID for each arriving packet;

if the current packet has neither an arrived predecessor nor successor, it will be directly processed

in FA Kernel, and its entry will store the generated matching state information; if the current packet

has an arrived predecessor/successor, then FEP Constructor will query the predecessor/successors

45

entry in States Buffer, and it will construct FEPs of arrived predecessor/successor packets based

upon stored information in the entry. The FEP will be concatenated with the current packet, and the

modified packet will be processed in FA Kernel; then, the matching state information will be stored

in the current packets entry, and the corresponding predecessor/successor entry can be empty since

all of the predecessor/successors information is already contained in the current packets entry.

Intuitively, the States Buffer will have a much smaller size than the packet buffer in general, since

several state pairs can represent a whole packet, and States Buffer entries may be dynamically

clear during matching. Experimental data in the evaluation section will support this inference.

Worst-case discussion will also be provided in a later section.

FEP Constructor: The FEP constructor uses state information provided by the State Buffer to

reconstruct functionally equivalent packets, as described in Section 3.3.5.

3.4.2 O3FA Engine Work Flow

The O3FA engine can keep processing the incoming packets once the O3FA in FA Kernel is built.

For each current packet, the processing procedure should follow the below steps:

1) For any current packet, first check States Buffer to look up its arrived predecessor/successor.

If you find it, go to step 2; otherwise, go to step 3.

2) FEP Constructor queries States Buffer and constructs FEP based upon the predecessor/-

successor buffer entry; then, it concatenates FEP with the current packet and outputs the

concatenated packet to FA Kernel.

3) FA Kernel processes the current packet (concatenated packet), generates <start˙state,

end˙state>/<state, offset> state pairs and writes them to States Buffer.

4) States Buffer creates an entry for the current packet and stores state pairs generated by FA

Kernel in it. If the current packet has an arrived predecessor/successor, then predecessor/-

successors entries can be empty, and pointers can be added from those empty entries to the

46

current packets entry for lookup purposes.

Figure 3.8 shows the flow chart of packet processing, following the same rule of the above steps.

check pre/suc

Current packet

arrived
predecessor/
successor?

query pre/suc
buffer entry

concatenated
packet

Y
N

Y
if N

functionally
equivalent
packet

matching? report
intrusion

if Y

FA Kernel

States Buffer

Functionally Equivalent Packet
(FEP) Constructor

matching
states info

Figure 3.8: Packet processing flow chart. Dotted arrows indicate alternative paths if there are no arrived
successor/predecessor packets.

3.4.3 Worst-case Analysis

Two aspects can affect the capacity of our proposed O3FA engine. One is States Buffers size: A

larger buffer size means more vulnerability to a denial of service attack; the other is the traversal

overhead, which is caused by FEP. A longer FEP means more overhead, since the concatenated

packets will be longer than the actual current packet. In this section, we will provide worst-case

analysis for these two aspects.

Each non-empty States Buffer entry will store one packet ID, several rDFA final states (equal to

47

rDFA number in multi-DFA case), one <start˙state, end˙state> pair and multiple <state, offset>

pairs. The first three have firm and tiny sizes, while the last one has an indefinite size, since we

cannot bind the numbers of segments in a packet that matches the prefix and unanchored suffix.

Our evaluation shows, in practice, these two numbers are also very small. However, in theory, they

could be large enough. To provide an upper-boundary, we set a threshold of buffer entry size: If

the actual entry size is less than the threshold, then states will still be stored in the entry; otherwise,

the whole data packet will be stored instead. This ensures our O3FA engine will never be worse

than the regular packet buffering scheme in the memory requirement. Later, our evaluation shows,

in practice, the numbers of <state, offset> pairs are very small; thus, the entry sizes are always far

less than the threshold.

Similarly, the FEP length is indefinite; however, it will not exceed the length of a regular packet.

Thus, the upper-boundary of the traversal overhead for each current packet should be the length of

the packet payload. The evaluation section will also show that the FEPs are very small compared

to the current packets, in practice.

3.5 Evaluation

In this section, we provide experimental data to show the feasibility of our O3FA engine design.

Specifically, our experiments are designed to analyze the following aspects: (i) O3FAmemory foot-

print on reasonably large and complex regular expression sets; (ii) savings in buffer size require-

ments of O3FA engine compared to traditional flow reassembly schemes; (iii) memory bandwidth

overhead of supporting-FAs; and (iv) O3FA traversal efficiency.

48

3.5.1 Datasets & Streams

In our experiments, we use two real world and six synthetic datasets. The real world datasets

contain backdoor and spyware rules from the widely used Snort NIDS6 (snapshot from December

2011), and they include 176 and 304 regular expressions, respectively. The synthetic datasets have

been generated through the synthetic regular expression generator7 [179] using tokens extracted

from the backdoor rules. Each synthetic dataset contains 500 regular expressions. The synthetic

dot-star* datasets contain a varying fraction of dot-star sub-patterns (5%, 10% and 20%); in the

synthetic range* datasets 50% and 100% of the patterns include character sets; finally, the synthetic

exact-match dataset contains only exact-matching strings.

For each dataset, we generate 16 synthetic traces using the traffic trace generator7 [179]. This tool

allows for generating traces that simulate various amount of malicious activity. This can be realized

by tuning parameter pM , which indicates the probability of malicious traffic. In addition, to allow

randomization, a probabilistic seed parameter can be used to configure the trace generation. In our

experiments, we use four probabilistic seeds and four pM values: 0.35, 0.55, 0.75 and 0.95, i.e., 16

traces in total for each dataset. All traces have a 1 MB size. Each of the data points below has been

obtained by averaging the results reported on four simulations, each using a different probabilistic

seed.

3.5.2 Packet Reordering

To simulate out-of-order packet arrival, we break each synthetic stream down into multiple packets

and reorder these packets. Packet reordering is driven by two parameters: the out-of-order degree k

and the stride s. Parameter k indicates the minimum number of arrived packets that are needed for

partial stream reconstruction; parameter s indicates the maximum stride between two consecutive

packets within each group of k packets.

6https://www.snort.org/
7http://regex.wustl.edu/

49

For example, let us assume a stream consisting of eight packets: P1 to P8. If we set k=2 and

s=1, then packets are reordered as P2!P1! P4!P3! P6!P5! P8!P7; if we set k=4 and s=1,

then packets are reordered as P4!P3! P2!P1!P8! P7!P6!P5; if we set k=4 and s=2, the

packets order will be P4!P2! P3!P1! P8!P6! P7!P5. Obviously, k=1 and s=1 implies

natural ordering, while k=(number of packets) and s=1 leads to reverse ordering (in the example,

from P8 down to P1).

This packets reordering scheme allows us to characterize how the packet order affects the per-

formance of the O3FA engine, and to compare the O3FA engine with the traditional input stream

reassembly method. In our experiments, we break each 1MB stream into 16 packets, each having

the 64KB standard TCP packet size. We reorder packets of each stream using three parameter

settings: k=2/s=1, k=4/s=1 and k=4/s=2.

3.5.3 Experiment Results

We first present the experiment results regarding the finite automata kernel’s and the state buffer’s

memory consumptions respectively, and then show the evaluation results about the overhead of

memory bandwidth and state traversal in last two subsections.

3.5.3.1 O3FA Memory Footprint

First, we evaluate the memory footprint of the O3FA supporting each of the considered datasets.

The backdoor, spyware and dotstar* datasets include sub-patterns (e.g. dot-stars) leading to state

explosion. To limit state explosion, for these datasets we break the regular DFA into multiple

DFAs [120] (the number of DFA ranges from 8 to 15). Due to their simplicity, the exact-match

and range* datasets can be supported by a single regular DFA. The total number of regular DFA

states ranges from 9k to 254k across the considered datasets. We recall that the supporting-FAs are

of three kinds: compressed suffix-NFA (csNFA), prefix-DFA (pDFA) and suffix-DFA (sDFA). As

discussed in Section 4, none of the supporting-FAs suffers from state explosion, leading to rela-

50

Table 3.1: Memory footprint of FA kernels (MB)

Dataset FA Kernel
Regular multi-DFAs Supporting-FAs

Backdoor 60 0.62
Spyware 56 1.35
Dotstar.05 26 3.58
Dotstar.1 60 3.12
Dotstar.2 100 2.76
Range.5 5.6 2.43
Range1 5.8 2.05
Exact-match 4.7 1.92

tively small automata. The number of csNFA, sDFA and pDFA states ranges from 2k to 13k, from

1k to 13k and from 1k to 9k, respectively. Range* datasets have larger supporting-FA sizes. This

is because all character sets must be exhaustively enumerated before constructing the supporting-

FAs, resulting in large prefix and suffix sets. The number of transitions of the csNFA ranges from

5k to 27k. To achieve memory space efficiency, we apply defaulttransition compression [21] to

DFAs. Table 3.1 shows the estimated memory footprint of the resulting O3FA (we assume 32-

bit transitions). As can be seen, O3FA requires about 100MB memory space in the worst case,

which does not put pressure to commodity systems. In addition, because supporting-FAs do not

suffer from state explosion, their size is in all cases limited, and their memory space overhead is

negligible in case of complex datasets including dot-star terms.

3.5.3.2 Buffer Size Savings

Figure 3.9 shows the maximum buffer size requirement comparison between the O3FA engine

and a traditional flow reassembly scheme [12]. The O3FA engine uses the state buffer described in

Section 3.4, while the flow reassembly scheme uses a packet buffer. The optimized flow reassembly

scheme reassembles a partial stream once the buffered packets allow it and then processes that

partial stream and flushes the corresponding packet buffer entries. For each value of pM , we

average the results reported using four probabilistic seeds. In the charts, the six bars represent

51

opt. reassembly scheme k=2,s=1 O3FA engine k=2, s=1

opt. reassembly scheme k=4,s=1 O3FA engine k=4, s=1

opt. reassembly scheme k=4,s=2 O3FA engine k=4, s=2

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Backdoor

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Spyware

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Dotstar0.05

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Dotstar0.1

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Dotstar0.2

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Range0.5

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Range1

0

1

2

3

4

5

6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

 b
uf

fe
r

siz
e(

By
te

s)

Exact-Match

Figure 3.9: Minimum buffer size requirements for optimized reassembly scheme and O3FA engine on eight
datasets. Note that the vertical coordinate is in logarithmic scale.

52

combinations of the two considered packet processing schemes and the three reordered packet

sequences (k=2/s=1, k=4/s=1, and k=4/s=2). In all cases, we report the logarithmic value of the

buffer size.

Overall, the O3FA engine with state buffer achieves 20x-4000x less buffer size requirement than

does the optimized flow reassembly scheme with packet buffer. We can also see how the packet

order and malicious traffic probability affect the buffer size: (i) as could be expected, the degree

of packet reordering k affects the packet buffer size, while s does not, and the buffer size has a

linear relationship with k ; (ii) k has a minor effect on the state buffer size, while s has a major

effect on it; (iii) pM has a major effect on the state buffer size: a higher pM leads to a larger buffer

requirement.

These effects can be explained as follow. First, since the considered flow reassembly scheme

flushes the packet buffer entries after partial stream reconstruction, the packet buffer size is affected

only by the minimum number of packets required for partial reassembly, which is controlled by

parameter k ; on the other hand, the size of the state buffer is affected by the number and size of

non-empty buffer entries, which are related to the detected segments and the arrived predecessors/-

successors. The former is affected by pM , while the latter is affected by the stride parameter s.

Specifically, k=2 and k=4 lead to two and four packets being buffered before partial reassembly,

while s does not affect this number; thus, k=4/s=1 and k=4/s=2 lead to the same packet buffer

size, and to twice the packet buffer size than the k=2/s=1 case. However, s affects the arrival

order of the predecessor/successor of the current packet, thus affecting the size of the state buffer.

s=1 and s=2 lead to two and three entries required (one for previous groups of k packets, the

others for packets out of current k packets having neither a predecessor nor a successor), respec-

tively; thus, k=2/s=1 and k=4/s=1 lead approximately to the same state buffer size requirement,

while k=4/s=2 leads approximately to a 1.5x larger state buffer. Because a higher probability of

malicious traffic leads to the possible detection of more packet segments by supporting-FAs, re-

sulting in more matching state information being stored in buffer entries, a larger pM can lead to

an increased state buffer size requirement.

53

Table 3.2: Ratio between the number of csNFA states traversed and the number of input characters processed
(%)

Dataset k=2, s=1 k=4, s=1 k=4, s=2
P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

Backdoor 151 212 292 367 364 354 462 1060 151 212 292 367
Spyware 619 1051 1220 1349 1215 2037 2295 1944 619 1051 1220 1349
Dotstar.05 844 879 1230 2722 1818 1462 1591 4118 844 879 1230 2722
Dotstar.1 552 750 1106 2737 1184 1242 1784 4168 552 750 1106 2737
Dotstar.2 381 641 1198 3122 557 1167 1894 3798 381 641 1198 3122
Range.5 1021 1065 2276 2347 1929 1956 3658 4018 1021 1065 2276 2347
Range1 669 1238 2287 4118 1780 2003 3481 7266 669 1238 2287 4118
E-M 410 658 1531 3293 1476 1463 2055 4587 410 658 1531 3293

3.5.3.3 Memory Bandwidth Overhead

While in traditional solutions the memory bandwidth requirement of the regular expression match-

ing engine is dominated by the processing of the regular DFAs, O3FA engines have a memory

bandwidth overhead due to the processing of supporting-FAs. In particular, while DFA compo-

nents add a single state traversal (or memory access) per input character, NFA components can

potentially have a more significant effect on the memory bandwidth requirement. Table 3.2 shows

the ratio between the number of csNFA states traversed and the number of input characters pro-

cessed. As can be seen, this ratio is generally small (well below 1), leading to limited memory

bandwidth overhead. This small number of NFA state activations can be explained as follows:

since the csNFA is anchored, most state activations will die after processing a small number of

input characters.

3.5.3.4 Traversal Overhead

Because of FEP processing, the O3FA engine may process more characters than inputs. These addi-

tional characters processed bring traversal overhead over conventional stream reassembly methods.

Table 3.3 shows the O3FA traversal overhead, expressed as a percentage ratio between the number

of extra characters processed and the size of the input stream. As can be seen, the traversal over-

54

Table 3.3: O3FA traversal overhead compared to conventional stream reassembly methods (%)

Dataset k=2, s=1 k=4, s=1 k=4, s=2
P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

P

M

=

0.35

P

M

=

0.55

P

M

=

0.75

P

M

=

0.95

Backdoor 120 107 363 3437 222 146 768 5390 125 80 302 3540
Spyware 62 61 1398 25546 106 95 2764 38484 60 52 790 25614
Dotstar.05 109 80 2774 10625 231 408 4711 15958 141 232 2810 10628
Dotstar.1 43 136 122 23773 126 319 192 35512 77 143 117 23556
Dotstar.2 88 97 168 36339 173 182 236 54807 103 106 118 36531
Range.5 8 12 34 144 18 21 57 225 10 13 35 135
Range1 7 12 35 129 15 21 54 161 9 13 35 107
E-M 7 12 35 177 15 24 57 225 9 13 35 167

head (0.0006%-5%) is small enough to be negligible in practice. In other words, O3FA traversal

efficiency is comparable to that of conventional stream reassembly methods.

This traversal overhead is affected by both pM and the number of packets with a previously pro-

cessed predecessor/successor. In our experiments, k=4/s=1 packet sequences have longer FEP

lengths than do k=2/s=1 and k=4/s=2 sequences. In addition, a larger pM leads to longer FEPs,

since it results in more packet segments being detected by supporting-FAs.

In summary, our experiments have shown that: (i) on datasets consisting of a few hundreds regular

expressions with varying complexity, the O3FA memory footprint is typically less than 100MB,

and the supporting-FAs size is limited (3.5MB in the worst case); (ii) O3FA state buffers can be up

to 20x-4000x smaller than conventional packet buffers; (iii) the O3FA bandwidth is linear in the

number of incoming characters and not significantly affected by the NFA components of O3FA; and

(iv) the O3FA traversal efficiency is comparable to that of conventional flow reassembly methods.

3.6 Conclusions and Future Work

In this chapter we have introduced the O3FA engine, a new regular expression-based DPI architec-

ture that can handle out-of-order packets on the fly without requiring packet buffering and stream

reassembly. The O3FA at the core of the proposal consists of regular DFA(s) and supporting-FAs,

55

the latter allowing the detection of matches across packet boundaries. We have proposed several

optimizations aimed to improve both the matching accuracy and speed of the O3FA engine. Our

experimental evaluation shows the feasibility and efficiency of our proposed O3FA engine.

Chapter 4

Framework for Approximate Pattern

Matching on the Automata Processor

4.1 Introduction

Finite Automata (FA) is the core of automata-based searching algorithms of many domain applica-

tions in intrusion detection, data mining, bioinformatics, etc. [180]. Compared to the deterministic

FA (DFA), the non-deterministic FA (NFA) becomes a more practical and affordable technique due

to its much less memory requirement. Recently, Automata Processor (AP) [57] is introduced by

Micron for NFA simulations. Micron AP can perform parallel automata processing within mem-

ory arrays on SDRAM dies by leveraging memory cells to store trigger symbols and simulate NFA

state transitions.

A batch of previous researches investigate accelerating various applications on AP devices [135,

61, 62, 63, 64, 66, 181] and report hundreds or even thousands of fold speedups against the CPU

counterparts. These remarkable achievements are based on limited size datasets within single

AP board capacity, hence treat the compilation and configuration overhead as a one-time cost and

exclude it from performance comparison. However, we believe such computation-only comparison

56

57

becomes unfair when the datasets scale out of single AP board capacity and demand multi-round

reconfigurations.

Similar to other reconfigurable devices, AP needs a series of costly processes to generate load-

ready binary images. These processes include synthesis, map, place-&-route, post-route physi-

cal optimizations, etc., leading to non-negligible configuration time. For small and infrequently

changed datasets, it is relatively reasonable to treat the configuration time as one-time preprocess-

ing cost. However, it becomes non-excludeable and very high for the extremely large datasets

especially those frequently updated ones, due to three reasons: (1) The large-scale problem size

needs multiple rounds of binary image load and flush. (2) In each round, once a new binary image

is generated, it will use a full compilation process, which time is as high as several hours. (3)

During these processes, the AP device is forced to stall and wait for new images in an idle status.

For example, the claimed speedups of AP-based DNA string search [68] and motif search [61]

can reach up to 3978x and 201x speedup over their CPU counterparts, respectively. In contrast,

if their pattern sets are scaling out and the reconfiguration overhead is included, the speedups will

plummet to only 3.8x and 24.7x [69].

AP SDK provides pre-compiled macros to reduce the reconfiguration cost. However, each macro

only works for a fixed shape automaton; any automaton structural change forces the construc-

tion starting from scratch. Moreover, constructing AP automata from scratch is a cumbersome

task requiring considerable expertise on both automata theory and AP architecture, since program-

mers have to manipulate computational elements, called State Transition Elements (STEs), and

inter-connections between them with a low-level Automata Network Markup Language (ANML).

Although Software Development Kit (SDK) provides some high-level APIs for a set of but limited

applications, e.g., regular expression [58] and string matching [59], users have to switch back to

ANML for many specific applications due to their lacking of flexibility and customizability.

In this chapter, we highlight the importance of counting the reconfiguration time towards the over-

all AP performance, which would provide a better angle for researchers and developers to identify

essential hardware architecture features. To this end, we propose a framework allowing users to

58

fully and easily explore AP device capacity and conduct fair comparison to counterpart hardware.

It includes a hierarchical approach to automatically generate AP automata and cascadeable macros

to ultimately minimize the reconfiguration cost. Though this framework is general, in this paper we

focus on Approximate Pattern Matching (APM) for a better demonstration. Specifically, it takes

the types of paradigms, pattern length, and allowed errors as input, and quickly and automatically

generates corresponding optimized ANML APM automata for users to test the AP performance.

During the generation, enabling our cascadeable macros can maximize the reuse of pre-compiled

information and significantly reduce the time on reconfiguration, hence allows users to conduct

performance comparison that is fair to both sides. We evaluate this framework using both syn-

thesis and real-world datasets, and conduct end-to-end performance comparison between AP and

CPU. We show, even including the multi-round reconfiguration costs, AP with our framework

can achieve up to 461x speedup against CPU counterpart. We also show using our cascadeable

macros can save 39.6x and 17.5x configuration time compared to using non-macro and conven-

tional macros respectively. The major contributions of this paper include:

• We highlight the importance of counting the reconfiguration time towards the overall AP

performance, especially the for large-scale and/or frequently updated datasets.

• We provide a framework for users to easily and fairly conduct performance comparison

between AP and its counterparts. It uses a hierarchical approach to automatically generate

AP automata and cascadeable macros to ultimately minimize reconfiguration costs.

• We evaluate our framework with AP using both synthesis and real-world datasets, and

conduct end-to-end performance comparison (configuration+computation) between AP and

CPU. Even including the configuration cost, AP can still achieves hundreds of times speedup

against its counterparts.

59

4.2 Background and Motivations

In this section, we will provide the knowledge about the Automata Processors’ architecture, exe-

cution model, and programming model first, and then describe the programmability and scalability

issues existing in the current AP SDK.

4.2.1 Automata Processors

AP Architecture Overview: Micron’s AP is a DRAM-based reconfigurable device dedicated

for NFA traversal simulations. Its computational resources consist of three major programmable

components: STEs, Counters, and Boolean gates. The STEs are the cores of AP architecture

to provide massive parallelism. Each STE includes a memory cell and a next-state decoder to

simulate a NFA state with trigger symbols, i.e., 256-bit masks for ASCII characters. Connections

between STEs simulate NFA state transitions, implemented by a programmable routing matrix. In

a cycle, all active STEs simultaneously compare their trigger symbols to the input character, and

then those hit STEs activate all their destination STEs via activation signals emitted by next-state

decoders. Counters and Boolean gated are special-purpose elements to extend the capacity of AP

chips beyond classical NFAs.

The current generation of AP board (AP-D480) contains 32 chips organized into 4 ranks. Two

half-cores reside in an AP chip, which includes a total 49,152 STEs, 768 Counters, and 2,304

Boolean gates. The organization of these programmable elements on each AP chip is organized as

following: two STEs and one special-purpose element (a counter or Boolean gate) form a group;

8 groups form a row; 16 rows form a block; and eventually, 192 blocks are evenly distributed into

the two half-cores.

AP Programming and Pre-compiling: Programming AP relies on ANML, which is a XML-

based language. Developers can define their AP automata in ANML by describing the layout of

programmable elements (STEs and transitions). Then, an AP toolchain can parse such an ANML

automata design and compile it to binary images. At runtime, after the AP board loads a binary

60

image, it starts to search given patterns against input streams of 8-bit characters by nominally

processing one character per clock cycle at 133 MHz frequency. AP reports the events to the host,

e.g., CPU, if matches are detected.

Analogous to other reconfigurable devices, AP compilation is a time-consuming process due to

the complex place-&-route calculations. To mitigate the overhead of compilation, the AP SDK

supports the pre-compile of automata to be macros and reuse macros to build larger automata in

the future. That way, any subsequent automata having existing macros can be built directly on

them with a lightweight relabeling, i.e., changing trigger symbols as demand. This can avoid the

recompilation from the ground up.

4.2.2 Motivations

Performance Issues in Reconfiguration: Although the pre-compiling technique becomes avail-

able to alleviate the overhead of reconfiguration, it is strictly restricted to handle an exactly same

structure with a pre-compiled macro, including all STEs and transitions between them. If the

structure changes, a full and time-consuming compilation process must be invoked, leaving the

computing resources in a wait state. For a large-scale problem size, which exceeds the capacity

of a single AP board, more costly reconfiguration and soaring execution time may occur. For

example, the alua dataset from a real-world database used in Bioinformatics sequence search ap-

plications demands around 20-fold of STEs supported by a AP board to perform pattern matching

against input streams, even if only one error, e.g., insertion or substitution, is allowed. It will lead

to 20 rounds of reconfiguration. As shown in our evaluation in Sec. 4.5, a single-round configu-

ration takes as high as 130 seconds, and around 2600 seconds are spent on the reconfiguration in

such a case. The conventional pre-compiled macros unfortunately would fall short from reducing

this cost, because the change of pattern lengths leads to variable structures of automata in each

round. A full recompilation has to be performed each time. Hence, a new approach is of great

necessity to extend the scope of pre-compiling by maximizing the reuse of existing macros, even

if the structure of automata differs.

61

1 ap_anml_t anml = 0;
2 ap_anml_network_t anmlNet;
3 struct ap_anml_element element;
4 ap_anml_element_ref_t element[5];
5 ap_automaton_t a;
6 ap_element_map_t elementMap;
7
8 // create the anml object

9 anml = AP_CreateAnml();
10
11 // create the automata network in the anml object

12 AP_CreateAutomataNetwork(anml, &anmlNet, "an1");
13
14 // create the elements that match "a" and start the search

15 element.res_type = RT_STE;
16 element.start = START_OF_DATA;
17 element.symbols = "a";
18 element.match = 0;
19 AP_AddAnmlElement(anmlNet, &element[0], &element);
20
21 // create the elements that match "b" report the match

22 element.res_type = RT_STE;
23 element.start = NO_START;
24 element.symbols = "b";
25 element.match = 1;
26 AP_AddAnmlElement(anmlNet, &element[1], &element);
27
28 // the rest four STEs are created in the same manner

29 // with different symbols attribute

30
31
32 // connect the STEs together to search "abc"

33 // and allow one Levenshtein distance

34
35 //match

36 AP_AddAnmlEdge(anmlNet, element[0], element[1], 0);
37 AP_AddAnmlEdge(anmlNet, element[4], element[5], 0);
38
39 //insertion

40 AP_AddAnmlEdge(anmlNet, element[0], element[2], 0);
41 AP_AddAnmlEdge(anmlNet, element[2], element[4], 0);
42 AP_AddAnmlEdge(anmlNet, element[1], element[3], 0);
43 AP_AddAnmlEdge(anmlNet, element[3], element[5], 0);
44 //substitution

45 AP_AddAnmlEdge(anmlNet, element[2], element[5], 0);
46
47 //deletion

48 AP_AddAnmlEdge(anmlNet, element[0], element[5], 0);
49
50 // compile the anml object to create the automaton

51 AP_CompileAnml(anml, &a, &elementMap, 0, 0, options, 0);
52
53 return 0;

Figure 4.1: ANML codes for a simple APM AP automaton

R

*

b

a

c

b R

∞

∞

* R
0 1

2 3

4 5

Figure 4.2: AP automaton

62

Programmability Issues: Fig. 4.2 shows an example of Approximate Pattern Matching, which

searches the pattern “abc” and allows one error at most. The STEs take characters “a”, “b”, “c”,

and “*” as input symbols. The symbol infinity means the STE is the starting STE, and the symbol

R means the STE can report the result. We also label STEs with numbers as the STE IDs on AP.

The code snippet in Fig. 4.1 shows how to configure this automata on AP with ANML. Devel-

opers need to create an element for each STE and define its attributes. An error of Approximate

Pattern Matching can be transformed to an insertion, deletion, or substitution, which needs to be

programmed as an edge between STEs. For example, there is an edge from the starting STE 0

(with the symbol “a”) to the reporting STE 5 (with the symbol “c”), meaning that the string “ac”

will be reported as a valid string for the required pattern “abc” with a deletion. As shown in the

example, developers have to carefully connect all possible STEs. The expertise of Approximate

Pattern Matching and ANML programming model of AP is required. Furthermore, if the pre-

compiling technique is used to optimize the configuration, the case will become more complicated

and error-prone.

4.3 Paradigms and Building Blocks in APM

In this section, we start from the manual implementation and optimization of mapping APM on

AP to further illustrate the complexity of using ANML. Then, we identify the paradigms in APM

applications, organize paradigms to a building block, and then discuss the inter-block transition

connecting mechanism to construct automata from blocks.

4.3.1 Approximate Pattern Matching on AP

APM is to find strings that match a pattern approximately. Different with the exact matching, APM

has a more general goal: it searches given patterns in a text, allowing a limited number of various

errors. Errors are usually in three types: insertion, deletion, and substitution. The number of errors

between text and pattern is referred to as distance. There are four most common distances allowing

63

15

8

1

16

9

2

17

10

3

18

11

4

19

12

5

20

13

6

21

14

7

o

o

o

b

b

b

e

e

e

j

j

j

c

c

c

t

t

t
Ɛ Ɛ

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

Ɛ
*

*

*

*

*

**

*
Ɛ

*

*

*

*

*

*

*

*

*

*

*

no error

one error

two errors

B

A

Figure 4.3: Levenshtein automaton for pattern “object”, allowing up to two errors. A gray colored state
indicates a match with various numbers of errors.

various subsets of error types, including Levenshtein, Hamming, Episode, and Longest Common

Subsequence [180]. Because the Levenshtein Distance allows all three kinds of APM errors, we

use it to discuss the design and optimization of APM on AP.

Fig. 4.3 shows an automata of Levenshtein Distance that detects the pattern “object” allowing up

to two errors between the pattern and the input text. The traverse starts from the starting state at

bottom-left and goes horizontally if no error occurs. Once an error occurs, the traverse goes up

or along a diagonal to an adjacent layer. Once an accepting state (tagged with the gray color) is

reached, a match will be reported. The epsilon-transitions allow the traverse reaching destination

states immediately without consuming any input character once a source state is activated. In an

APM automata, an epsilon-transition represents an error of deletion. The asterisk-transitions allow

the traverse to be triggered by any input characters. In this case, an asterisk-transition represents

an insertion or substitution when the traverse goes vertically or diagonally.

We apply two optimizations [182] on the Levenshtein automata to reduce the usage of STEs. They

are important for the implementation of mapping the Levenshtein automata on AP, considering

the limited numbers of STEs in the hardware. First, we cut down the states above the first full

diagonal.1 The states within the dotted triangle A will be skipped. The reason why we can apply

this optimization is that these states are used to deal with errors before the first character of pattern

1A full diagonal is a diagonal that connects all rows.

64

and not necessary to be counted. Second, we cut down the states below the last full diagonal. That

is because when the APM automata reports a found position in the text for the pattern, it doesn’t

need to report the number of errors. For example, in this case, no matter a position corresponds

to 0 error (of an exact match), 1 error (of insertion, deletion, or substitution), and 2 error (of

combinations of three types of errors), it will be reported. Therefore, the states within the dotted

triangle B will be also skipped.

After truncating the original automata, we manually map it on AP. The Levenshtein automata

shown in Fig. 4.3 will be transformed to the AP recognizable format shown in Fig. 4.4. Two major

problems have to be resolved in the mapping. First, the ANML programming model requires

to move a NFA trigger character associated with a transition to a state, because it can’t support

multiple outgoing transitions with different character sets from a single state, e.g. the transitions

s2 !s3, s2!s9, and s2!s10 in Fig. 4.3. The solution is to split a state to multiple STEs. For

example, the state s2 in Fig. 4.3 is split to STE1 with the trigger character o, and the auxiliary

STE2 with an asterisk. The second problem is that AP hardware can’t reach destination states

within the current clock cycle, leading to the lack of support to ✏-transitions. The alternative is

to add a transition from a source STE to its upper-diagonal adjacent STE. For example, the ✏-

transition from s2 to s10 in Fig. 4.3 is transformed to the transition from STE1 to STE8 in Fig. 4.4.

With these two transformations, the Levenshtein automata shown in Fig. 4.4 can be described in

ANML and mapped on AP.

4.3.2 Paradigms in Approximate Pattern Matching

The transformation of Levenshtein automata on AP illustrates programming with ANML requires

advanced knowledge of both automata and AP architecture. Any parameter change, e.g., the pat-

tern length, error type, max error number, etc., may lead to the code adjustment with tedious

programming efforts. In our hierarchical approach, our first goal is to exploit the paradigms of

applications to be a building block.

65

o

*

b

*

e

*

*

*

*

*

*

b

j e

j e

j

c

c t∞

∞

∞

R

R

R

STE1

STE2

STE3

STE4

STE5

STE6

STE7

STE8

STE9

STE10

STE11

STE12

STE13

STE14

STE15

STE22

STE23

STE24

STE25

STE26

R

R

Figure 4.4: Optimized STE and transition layout for Levenshtein automata for the pattern “object” allowing
up to two errors.

match deletion

insertion substitution

*

STE1

STE2

%Char

(a) (b)

Figure 4.5: (a) Four paradigms in APM applications. (b) A building block for Levenshtein automata having
all four paradigms.

APM has three types of errors: insertion, deletion, and substitution (denoted as I, D, and S). These

three kinds of errors with the match, denoted as M, can be treated as the paradigms of any APM

problem. They can be represented in an AP recognizable format as shown in Fig. 4.5a. An APM

automata usually takes one or several errors as shown in Tab. 4.1. As a result, any two adjacent

STEs in an APM automata have four possible transitions. For the Levenshtein automata that can

take all three error types, a building block including two STEs and four types of transitions is

shown in Fig. 4.5b. The STE with the asterisk is the design alternative to support multiple outgoing

transitions with different character sets.

With the building block, once the length of desired pattern n and the maximum number of errors

allowedm are also given as the parameters, building such an automata on AP can be implemented

by duplicating the building blocks and organizing them into a (m+1) ⇤ (n�m) matrix, called the

66

block matrix in the remaining sections of this paper. The row 0 corresponds to the exact match;

and the otherm rows correspond to the number of errors allowed; and the (n�m) columns corre-

spond to the pattern length with the second optimization that cuts down m characters discussed in

the previous subsection. A Levenshtein automata allowing up to two errors for the pattern “object”

having 6 characters can be built by duplicating (2+ 1) ⇤ (6� 2) = 12 blocks, and organizing them

to a 3 ⇤ 4 block matrix as shown in Fig. 4.4. Note that in Fig. 4.4, the automata doesn’t have the

STEs with the asterisk at top row, because it doesn’t need to take more errors when reaching this

row. The character associated with a STE can be automatically generated: the STE at row i and

column j is associated with the (i+ j)th character of the given pattern. 2 For example, the STE in

the row 1 and the column 2 is configured with the 3rd character e of pattern “object”.

After going through above steps, we still need to add more transitions across building blocks at

different rows. We design an inter-block transition connecting algorithm, which will be explained

in the next paragraph. We also need to handle the transitions starting from the blocks at the last

column, because they don’t have destination states. Furthermore, we will introduce the cascadable

macro design to maximize the reuse of pre-compiled macros. This method will be introduced in

Sec. 4.4.

4.3.3 Inter-Block Transition Connecting Mechanism

Because the cross-row transitions are required to handle consecutive errors which cannot be han-

dled by directly connecting building blocks, we propose the inter-block transition connection algo-

2The row index increases from bottom to top.

Table 4.1: Paradigm sets for common distances

Distance Paradigm
Levenshtein M, S, I, D
Hamming M, S
Episode M, I

Longest Common Subsequence M, I, D

67

*

*

*

*

B0,0.c

%Char

%Char

%Char

%Char

SD DD

SS/SI II

* *

%Char %Char

B0,0.a

B0,1.c

B0,1.a

B1,1.c

B1,1.a

B1,0.c

B1,0.a

B2,0.c

B2,0.a

B2,1.c

B2,1.a

B0,0

B1,0

B2,0

B0,1

B1,1

B2,1

Figure 4.6: Inter-block transition connection mechanism for two-consecutive errors: The right part shows
five cases we consider. The left part shows a part of Levenshtein automata having six blocks and how the
inter-block connections are applied on it.

rithm. We start from two consecutive errors and then discuss how to extend to multiple consecutive

errors. Because there are three paradigms for errors: insertion (I), deletion (D), and substitution

(S), there are 3 ⇥ 3 = 9 two-consecutive-error cases that can occur in a Levenshtein automata,

including II, ID, IS, DD, DS, DI, SS, SI, and SD. We can simplify the design with two observa-

tions. Firstly, the order of errors actually doesn’t affect the result of automata. For example, for the

pattern “object”, an input text “osect” can be detected either as a deletion D of b with a substitution

S of j by s, or a substitution S of b by s with a deletion D of j. Secondly, the consecutive errors DI

and ID are functionally equivalent to a single substitution S. As a result, we focus on five cases,

including SS, II, DD, SI, and SD.

Fig. 4.6 is a part of Levenshtein automata shown in Fig. 4.4 but inter-block transitions are added.

We denote two STEs in a block with the exact character and the asterisk as Bi,j.c and Bi,j.a,

respectively. The inter-block transition for consecutive errors have two attributes: direction and

STE-pair type. The direction has three options: upward, forward, and backward; and the STE-

pair type has four possible types: character-asterisk, asterisk-character, character-character, and

68

asterisk-asterisk. Some combinations of these two attributes are invalid or functionally dupli-

cated. For example, forward character-asterisk, e.g., B0,0.c to B1,1.a, can handle SD, e.g., path

B0,0.c!B1,1.a!B2,1.c, but it is duplicated of forward asterisk-character, e.g. B0,0.a to B2,1.c,

which can also handle SD, e.g., pathB0,0.c!B0,0.a!B2,1.c. Hence, as shown in Fig. 4.6, only four

types of inter-connections need to be considered: forward asterisk-character, forward character-

character, upward asterisk-asterisk, and backward asterisk-asterisk; and they can cover all five

cases of two-consecutive errors. Note that the inter-block transitions with asterisks as the destina-

tion STEs are always for two different cases, because the traverse cannot stop at an asterisk. For

example, the transition B0,0.a!B1,0.a is for the path B0,0.a!B1,0.a!B2,0.c of case SI and path

B0,0.a!B1,0.a!B2,1.c of case SS. Tab. 4.2 summarizes the rules of adding inter-block transitions

for two-consecutive errors.

Any case having more than two consecutive errors can be produced as a combination of two-

consecutive errors. Assume we add one more row B3,0 and B3,1 to Fig. 4.6 to allow three errors.

A three-consecutive error SSI can be produced as a combination of SS and SI with the overlapped

middle S. The existing inter-block transition connecting mechanism can handle more errors and

no extra inter-block transition is needed. For the SSI case, SS and SI can naturally generate the

path B0,0.c!B0,0.a!B1,0.a!B2,0.a!B3,0.c for SSI. If the multi-consecutive errors contain a D,

additional forward character/asterisk-character transitions have to be added, because only the

deletion can bypass the current row. For example, DDD requires a transition from B0,0.c to B3,1.c,

with the existing B0,0.c to B1,1.c (added in a building block by default) and B0,0.c to B2,1.c (added

by inter-block transition connection mechanism for a two-consecutive error). The rule for the

deletion in a multi-consecutive error, e.g., SD and DD, can be stated as: a batch of the forward

inter-block transitions with a character STE as the destination is needed from a row i to a row j,

where j is from i+1 to m (the allowed maxim number of errors). Note that in Tab. 4.2 we discuss

the additional transitions are added for the case of two-consecutive errors. For DD and SD, the

case k = 1 has been covered by the direct connection of two building blocks and k starts from 2.

69

Table 4.2: Inter-block transitions connecting rules for two-consecutive errors

Paradigm Transition Attributes STE Connection
M None
SS/SI upward a!a Bi,j.a!Bi+1,j.a
II backward a!a Bi,j.a!Bi+1,j�1.a
DD forward c!c for k=2 tom:Bi,j.c!Bi+k,j+1.c
SD forward a!c for k=2 tom:Bi,j.a!Bi+k,j+1.c

4.4 Framework Design

In this section, we first introduce how to build automata from building blocks in our framework,

and then introduce how to extend building blocks to a macro that can be pre-compiled and reused.

Finally, we present our optimized framework that can build automata from reusable macros to

reduce the time on recompilation.

4.4.1 From Building Blocks to Automata

Alg. 1 presents how to build automata on AP from building blocks. This algorithm accepts the

types of paradigms, desired pattern length, and maximum number of errors allowed. Then, this

algorithm can automatically fabricate complex AP automata. Note that this process is independent

with specific APM applications, in the sense that it can work for any given paradigms shown in

Fig. 4.5a and types of distances shown in Tab. 4.1.

In Alg. 1, we use classes of BuildingBlock (ln. 4) and Automation (ln. 3) to represent

building blocks and AP automata, respectively. First, we create the building blocks via ln. 5-6,

where the member function add() in BuildingBlock places and connects STEs following the

rules depicted in Fig. 4.5b. Second, we build up the automaton with the block matrix determined

by maximum error (m) and target pattern length (n) (ln. 7-8). After duplicating the blocks to fill

the dimensions in ln. 9, we weave them together through the ADD TRANSITIONS() to add inter-

block transitions defined in Tab. 4.2. Third, the starting and reporting STEs are set in ln. 13 and

all STEs are labels in ln. 22-24. To this point, an AP automaton can be constructed and ready to

70

be compiled to a binary image. Note that the macro-based optimization in ln. 14-21 is an optional

process, which will be discussed in Sec. 4.4.2 and Sec. 4.4.3.

Algorithm 1: Paradigm-based AP Automata Construction
/* Alg 1 constructs the automaton from basic building blocks, based on the

user-defined paradigm sets, target pattern, and max error number. */
1 CasMacroLib lib ; // Cascadable macro library
2 Procedure PRDM Atma Con (ParadigmSet ps, Pattern pat, int err num)
3 Automaton atma;
4 BuildingBlock block;
5 for Paradigm p in ps do
6 block.add(p);
7 int m = err num, n = pat.length;
8 atma.row num = m + 1; atma.col num = n - m;
9 atma � block.duplicate(m⇥n);

10 for int i 0 to m + 1 do
11 for int j 0 to n - m do
12 ADD TRANSITIONS(atma, i,j, ps);
13 atma.set start(); atma.set report();
14 #ifdef ENABLE MACRO /* Cascadable macro constr. */
15 CasMacro cmacro;
16 for Paradigm p in ps do
17 ADD PORTS(atma, p);
18 MERGE PORTS(atma);
19 cmacro � AP CompileMacros(atma);
20 lib.add(cmacro);
21 #endif
22 for int i 0 to m + 1 do
23 for int j 0 to n - m do
24 atma.re label(i, j, pat.c(j+i));
25 return atma;

4.4.2 Design Cascadable Macros

The most time consuming parts of an application on AP include the execution time and the recom-

pilation time which has the place-&-route process [69]. Although the pre-compiling technique can

build macros to reduce the recompilation time, the restriction of using this technique hinders it

widely used in manual programing. For example, we can assume the AP automaton in Fig. 4.4 (for

the pattern “object”, allowing up to 2 errors) is pre-compiled as a macro M1 with all characters of

STEs parameterized. We can reuse it for patterns with any 6 characters and up to two errors. If a

71

new pattern, e.g., “gadget” for two errors, is also needed to check, we can reuse it by relabeling

STEs to “gadget”. However, this macro can only be reused for exactly same numbers of STEs

and connections between them. Failing to comply with any of these requirements will cause an

indispensable recompilation from scratch. Thus, the pattern “gadgets” and the pattern“gadget” but

allowing up to three errors cannot directly take advantage of the macro M1.

In our framework, we propose cascadable macros to support reuse of macros for larger-scale AP

automata. In particular, we connect one or more macro instances to compose a larger and differ-

ent AP automata through our carefully-designed interconnection algorithm. With the cascadable

macros, the overhead of reconfiguration can be significantly reduced, since only the connections

between instances need to be placed-&-routed. Our method is to generate the desired automata by

connecting multiple macros if the result block matrix can be constructed by multiple building block

matrices. For example, the AP automata in Fig. 4.4 is stored as a cascadable macro M2 having a

(3 ⇤ 4) block matrix. Assume we will build an automata for a larger pattern “international” having

13 characters and allowing up to 5 errors. The result block matrix is a (5 + 1) ⇤ (13 � 5) = 6 ⇤ 8

matrix. As a consequence, the AP automata can be built by connecting 4 M2 macro instances.

To create cascadable macros, we need to extend current macros, e.g., M2, by adding input/output

ports and connecting these ports with appropriate STEs.

Builidng Cascadable Macros: The first step is to add input/output ports. The optimal design of

adding ports should minimize (1) the number of total ports, and (2) the in-degree of each input

port, because both the number of ports and the number of signals that go into an input port are

limited in AP hardware [183]. We define the port struct that has three attributes:

• Port role identifies the port is used to either input or output signals (in=input, out=output).

• Cascade direction indicates the direction of allowed cascade, and the side of two paired

macros (h=horizontal, v=vertical, d=diagonal, ad=anti-diagonal).

• Transition scope represents whether connections can cross edges of neighboring macro to

link non-adjacent STEs (e=edge of neighbors, ce=cross-edge of neighbors, e/ce=both).

72

Table 4.3: Port design rules according to paradigm

Paradigm Port Attribute STE$port ConnectionDir. Scope Role

M h e out Bi,n�m.c!Ox
h e in Iy!Bi,0.c

S, SS/SI

v e out Bm+1,j�1.a!Ox; Bm+1,j.a!Ox
v e in Iy!B0,j+1.c; Iy!B0,j.a
d e out Bm+1,n�m.a!Ox
d e in Iy!B0,0.c
h e out Bi,n�m.a!Ox
h e in Iy!Bi,0.c

I, II

v e out Bm+1,j.a!Ox; Bm+1,j+1.a!Ox
v e in Iy!B0,j.c; Iy!B0,j�1.a
ad e out Bm+1,0.a!Ox
ad e in Iy!B0,n�m.a
h e out for k=0 to i� 1: Bk,0.a!or!Ox
h e in Iy!Bi+1,n�m.a

D, DD

v e/ce out for k=0 tom+ 1: Bk,j�1.c!or!Ox
v e/ce in for k=0 tom+ 1: Iy!Bk,j+1.c
d e/ce out for k=0 tom+ 1: Bk,n�m.c!or!Ox
d e/ce in Iy!Bi,0.c
h e out for k=0 to i� 1: Bk,n�m.c!or!Ox
h e in Iy!Bi+1,0.c

SD

v e/ce out for k=0 tom+ 1: (Bk,j�1.c,Bk,j�1.a)!or!Ox
v e/ce in for k=0 tom+ 1: Iy!Bk,j+1.c
d e/ce out for k=0 tom+ 1: (Bk,n�m.c,Bk,n�m.a)!or!Ox
d e/ce in Iy!Bi,0.c

As mentioned in the previous section, multiple consecutive errors can be generated from two-

consecutive errors. Therefore, we use Tab. 4.3 to list out all possibilities of STE$port connection

rules in an AP automata having (m + 1) ⇤ (n � m) block matrix (corresponding to m errors

at most and n pattern length). A building block is represented by Bi,j . The input/output ports

always appear in pairs, representing the two sides of each connection. The STE$port connections

can be categorized in two forms. The first one is the one-to-one connection, which is relatively

straightforward. For example, for the paradigm Match, the output of one macro can be the input

of the following macro, and one character can only be connected to the following character in the

given pattern. Therefore, the framework adds the input and output ports to the exact-character

73

STEs of blocks in the first column (Bi,0.c) and last column (Bi,n�1.c), respectively. The rule is

shown in the table as Iy ! Bi,0.c and Bi,n�1.c! Ox.

The second one is the N-to-one connection, whose design needs to meet the requirements of build-

ing ANML macros and optimize the usage of ports. Here, we introduce or Boolean gates to our

design. For example, in the case of the fifth port design of paradigm Insert, rather than adding a

new port as Bk,0.a ! Ox for each row k, we use an or Boolean gate to allow a combination of

connections as Bk,0.a ! or ! Ox, so as to reduce the number of used port to be only one. This

design also bypasses a restriction of AP routing, i.e., no more than one transition is allowed to

directly go to a single output port [183].

In the final step of completing the port design of a macro, we search and merge the ports with inclu-

sive STE$port connections. Then, the attribute sets of merged port equal to the union of all partici-

pant ports. This can help further optimize the port usage. The procedure of constructing cascadable

macros is integrated into Alg. 1 from ln. 14 to ln. 21. Two predefined functions are implemented:

(1) ADD PORTS() adds input/output ports to given automata based on each paradigm (ln. 16-17),

followed by STE$port connections as described in Tab. 4.3; and (2) MERGE PORTS() optimizes

the ports layout by merging equivalent and inclusive ports (ln. 18).

Fig. 4.8 exhibits the completed ports layout for the cascadable macro M2. 3 Fig. 4.7, on the other

hand, shows the connections of four cascadable macros. Because the macro instances I and II are

vertically aligned and adjacent to each other, we simply link the input-output port pairs that have

port attributes of v and e. Note that with these fourM2 macros, we can construct more complicated

automata other than the case for the pattern “international” having a (6 ⇤ 8) block matrix: once the

block matrix of a given pattern is times of the (3⇤4)matrix, we can construct it by duplicating and

connecting these four M2 macros vertically, horizontally, diagonally, and anti-diagonally.

3Transitions between STEs inside a macro are skipped to highlight the port connections.

74

C4L3_S1R0
II

I I I I I I I I II I

O O O O O O O

O11

O10
O9

I8

I7

O
1

O
2

O7

O
6

O8

O
4

O
0

I0 I1
4

I1 I5 I5I3

I11

I10

I9

O
5

O
3

C4L3_S1R0
I

I1
2

I4 I1
3

I2 I6

O
12

C4L3_S0R1
IV

C4L3_S0R1
III

I I I I I I I I II I I I I I I I I I II I

I I I I I I I I II I

O
O O O O O OO

O O O O O OO

O O O O O OOO O
O

O

I

I

O

O

O

I

I

O

O

O

I

I

O

O

O

I

I

O

O

I

I

I

O

O

I

I

I

O

O

I

I

I

O

O

I

I

I

O

OO11

O10
O9

I8

I7

O
1

O
2

O7

O
6

O8

O
4

O
0

I0 I1
4

I1 I5 I5I3
I11

I10

I9

O
5

O
3

I1
2

I4 I1
3

I2 I6

O
12

O11

O10
O9

I8

I7

O
1

O
2

O7
O
6

O8

O
4

O
0

I0 I1
4

I1 I5 I5I3

I11

I10

I9

O
5

O
3

I1
2

I4 I1
3

I2 I6

O
12

O11

O10
O9

I8

I7

O
1

O
2

O7

O
6

O8

O
4

O
0

I0 I1
4

I1 I5 I5I3

I11

I10

I9

O
5

O
3

I1
2

I4 I1
3

I2 I6

O
12

Figure 4.7: There are four instances that from a three layers four columns cascadable macro. They are
vertically and horizontally cascaded to form a larger AP automaton that have six layers and eight columns.

*

*

*

*

*

*

*

*

*

*

*

*or

or

or

or

or

or

or

or

or

or

O

O

OO

O

O

O O

O

O

O

I

I

I

I

I

I

I

I

II

I

I

I

%Char

%Char

%Char

%Char

%Char

%Char

%Char

%Char

%Char

%Char

%Char

%Char

O11

O16

O15

O14

O4 O5 O6 O7

O8 O9 O10

I16

I15

I14

I0 I1 I2 I3

I8 I9 I10

I11 I12 I13

I

I

I17

I18

B0,0.c

or

O

O

O12

O13

O O O O

O1 O2 O3

I III4 I5 I6

O0

B0,0.a

B1,0.c

B1,0.a

B2,0.c

B2,0.a

B0,1.c

B0,1.a

B1,1.c

B1,1.a

B2,1.c

B2,1.a

B0,2.c

B0,2.a

B1,2.c

B1,2.a

B2,2.c

B2,2.a

B0,3.c

B0,3.a

B1,3.c

B1,3.a

B2,3.c

B2,3.a

I7I

Figure 4.8: Port design layout for a three layers four columns macro.

75

4.4.3 Cascadable Macro based Automata Construction Algorithm

After the pre-compilation, the cascadable macros are inserted into a macro library for reuse (ln. 19-

20). In our current design, the library contains macros whose pattern lengths (column numbers)

are in three groups of {1,2, ..., 9} {10, 20, ..., 90} {100, 200, ..., 900} with each one allowing up

to 3 errors (layers). The reasons of choosing these 27⇥ 3 = 81 macros in the library are two-fold:

(1) It is inefficient and even impractical to save all possible situations for different combinations of

pattern sizes and errors. (2) Many real-world cases focus on pattern sizes < 1000 characters and

errors 6 3 (in Sec. 4.5). Therefore, this scheme can efficiently find the appropriate instances from

the three pattern groups to handle any pattern of 6 1000 characters. For the rare cases with longer

patterns (e.g., ¿1000 characters) or larger error allowance, we can handle them by using more

macro instances. Although a dynamic macro management mechanism is promising to optimize

which macros should be put into the macro library, we leave it to our future work.

Based on the cascadable macro library, we can effectively reduce the construction and compilation

overhead and efficiently build AP automata. Alg. 2 shows our macro-based AP automata con-

struction. In this algorithm, we search the library for a hit macro, which has the same structure

with the desired automaton. If found, the macro can be directly instantiated (ln. 5-6). Otherwise,

we use multiple macros to form the desired automaton. First, we select and instantiate proper

macros according to the dimensions of the desired automaton (ln. 8-11). Second, these macro

instances are organized to a lattice (ln. 12-16). Third, we link these instances to generate the

complete AP automaton (ln. 17-27). The function CONN INST(ParadigmSet, src, dst,

dir, scope) is predefined to make cascade links of input-output port pairs from the source

instance src to the destination instance dst. The arguments of dir and scope are used as a

filter, meaning only the ports with provided attribute values are qualified for linking. Finally, the

AP automaton can be constructed after the relabeling process (ln. 29-31).

76

Algorithm 2: Cascadable Macro-based AP Automata Construction
/* Alg. 2 constructs automata based on our cascadable macro library, whose

macros are built by ln. 14-21 in Alg. 1. */
1 MacroLib lib;
2 Procedure CASM Atma Con(ParadigmSet ps, Pattern pat, int err num)
3 Automaton atma;
4 int m = err num, n = pat.length;
5 if lib.search(ps, m+1, n�m) = true then
6 Instantiate(ps, atma, m+1, n�m, true, true);
7 else
8 int digits[] = {(n�m) /100, (n�m) %100/10, (n�m) %10};
9 int quo = (m+1) / lib.max err, rem = (m+1) % lib.max err;

10 int ins col = (bool)digits[0] + (bool)digits[1] + (bool)digits[2];
11 Automaton inst[quo+(bool)rem][ins col];
12 if quo then
13 for int i 0 to (quo�1) do
14 Gen inst row(ps, inst[i], lib.max err, digits);
15 if rem then
16 Gen ins row(ps, inst[quo], rem, digits);
17 for int i 0 to (quo+(bool)rem�1) do
18 for int j 0 to (ins col�1) do
19 if j then CONN INST(ps, inst[i][j�1], inst[i][j], h, e);
20 for int k 0 to (i�1) do
21 TransitionRange scope;
22 if k=(i�1) then scope=e else scope=ce;
23 CONN INST(ps, inst[k][j], inst[i][j], v, scope);
24 if j 6=(ins col�1) then
25 CONN INST(ps, inst[k][j], inst[i][j+1], d, scope);
26 if j 6=0 then
27 CONN INST(ps, inst[k][j�1], inst[i][j], ad, scope);
28 atma � inst;
29 for int i 0 to m+1 do
30 for int j 0 to n�m do
31 atma.re label(i, j, pat.c(j+i�1));
32 return atma;
33 Function Instantiate(ParadigmSet ps, Automaton am, int row, int col, bool start, bool report)
34 CasMacro cmacro;
35 cmacro � lib.pick(ps, row, col, start, report);
36 am � cmacro.instantiate();
37 Function Gen inst row(ParadigmSet ps, Automaton ams[], int err, int digits[])
38 int j = 0;
39 for int i 0 to (ams.size-1) do
40 while j<digits.size do
41 if digits[j] then
42 Instantiate(ps, ams[i], err, digits[j], !i, !(digits.size�1�j));
43 j++; break;
44 j++;

77

4.5 Evaluation

We evaluate our APM framework by using the Levenshtein automata construction, since it includes

a full paradigm set of M, S, I, D in Tab. 4.1. In contrast, the other APM distances (e.g., Hamming

and Episode) only need to use a subset of the paradigms and simpler routing, so that the com-

pilation overhead will be less accordingly. Thus, we focus on the Levenshtein distance to better

serve our purpose for evaluating the construction of complex automata. We run our experiments

on a platform equipped with Intel Xeon E5-2637 CPU@ 3.5 GHz and 256 GB main host memory.

The installed AP SDK is in version 1.6.5. Currently, the Micron AP is not ready for production;

thus, we use an emulator4 to estimate the runtime performance. We enable the cascadable macro

library in our framework and generate AP automata using Alg. 2. The size of the library follows

the scheme in Sec. 4.4.3. We also set the macros in library to accept up to three errors. That way,

the higher error number (e.g., ¿3) will need not only horizontal instance cascading but also vertical

cascading.

4.5.1 Synthetic Patterns

To evaluate our framework on processing different patterns and error allowances, we use a set of

six synthetic patterns of lengths from 25 to 155 in steps of 25. The error allowances range from

one to four. In Fig. 4.9, the construction and compilation time of our framework is compared with

other three AP automata construction approaches: Functional Units (FU) [140], String Matching

APIs (SM API) [59], and basic ANMLAPIs (ANML). These three use partially optimized macros,

conventional macros and non-macros respectively. We choose up to 155 characters for the synthetic

patterns to fit into the AP board and avoid reconfiguration. The AP runtime performance is not

considered in this section, because all these approaches present similar performance in processing

patterns with the same length. This is due to AP’s lock-step execution mode, which makes the

performance linear to the length of input stream and independent of what automata construction is

4http://www.micronautomata.com

78

applied.

The compilation data of FU is not available when four errors are allowed, due to the in-degree

limitation in the FU approach [140]. In Fig. 4.9, we first observe that the compilation costs of all

approaches increase exponentially as the error number rises. This explains that even with small

growth rates of error number, the AP construction and compilation will have a larger impact on total

performance. The reason for this error-cost relationship is because more errors require higher STE

usage and more complicated placement-&-routing. SM API is a “black-box” approach provided

byMicron and its performance is insensitive to the pattern length, meaning high compilation time is

needed even for small patterns. The FU and ANML approaches show positively correlated pattern

length and compilation cost, for the similar reason with aforementioned error-cost relationship. In

contrast, the compilation cost of our framework is more determined by the instance number than

the pattern length. For example, if only one error is allowed, a 100-char pattern uses 1 instance,

while a 75-char pattern needs 2 instances (One has 70 columns and another has 5 columns). Since

additional cascade compilation is required for the 75-char pattern, we observe its cost is higher

than that for the 100-char pattern. On the other hand, we can also notice that the instantiation of a

larger pre-compiled macro usually causes higher cost, e.g., the 100-char pattern needs more time

for compiling than the 50-char pattern, despite only one macro used in both cases.

Overall, the SM API approach provides higher abstraction and is easier for developers to use.

However, it usually requires more expensive construction and compilation than the other ap-

proaches. FU approach can achieve up to 3.7x speedups against the ANML approach. As a con-

trast, our framework can achieve up to 33.9x, 34.2x, and 46.5x speedups over the ANML for the

case of one, two, and three errors respectively. Note, the speedups are obtained in the scenario of

only cascading horizontal instances, because the error numbers are less than our predefined max-

imum error allowance for the library macros. When the error number exceeds this threshold, the

scenario changes to use both vertical and horizontal instance cascades, where our framework can

still provide up to 16.3x speedups over the ANML baseline.

79

ANML APIs SM APIs FU Our Framework

25-char 50-char 75-char 100-char125-char155-char

0.01

0.1

1

10

100

pattern length

lo
g

-s
c
la

le
 c

o
n

s
tr

u
c
ti
o

n
&

c
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

(a) One Error

25-char 50-char 75-char 100-char125-char155-char

0.1

1

10

100

1000

pattern length

lo
g

-s
c
la

le
 c

o
n

s
tr

u
c
ti
o

n
&

c
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

(b) Two Errors

25-char 50-char 75-char 100-char125-char155-char

1

10

100

1000

10000

pattern length

lo
g

-s
c
la

le
 c

o
n

s
tr

u
c
ti
o

n
&

c
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

(c) Three Errors

25-char 50-char 75-char 100-char125-char155-char

1

10

100

1000

10000

pattern length

lo
g

-s
c
la

le
 c

o
n

s
tr

u
c
ti
o

n
&

c
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

(d) Four Errors

Figure 4.9: Construction and compilation time vs. pattern lengths. The highest speedups of our framework
over FU, ANML APIs, SM APIs are highlighted.

80

Table 4.4: Dataset Characteristics

Pattern Sets Pattern# Length (min.) Length (max.) Diff lengths#
Bio 85389 32 686 375

IR 100K 10 959 846

4.5.2 Real-world Dataset

We evaluate the framework with two real-world datasets “Bio” and “IR” from bioinformatics and

information retrieval domains respectively. The “Bio” is the BLAST igseqprot dataset5, and “IR”

is the NHTSA Complaints dataset6. Tab. 4.4 describes the characteristics of the two datasets.

The “Bio” contains ˜85K patterns ranging from 32 to 686 characters, while the “IR” has ˜100K

patterns from 10 to 959 characters. Apparently, the overall demand for STEs in processing either

dataset exceeds the capacity of a single AP board. For example, the “Bio” dataset with one error

allowance requires over 4M STEs; however, the AP board can supply only 1.5M STEs (=49,152

STEs⇥32 chips in Sec. 4.2.1). This supply-demand imbalance forces us to use multiple flush/load

reconfigurations to completely process the dataset. Since the AP automata can be stored as a

macro in a library, we can reuse it for all the patterns with the same length and errors by simply

instantiating the macro and relabeling parameters. Therefore, we only need to cascade and compile

the patterns with different lengths. The two datasets have 375 and 846 such patterns respectively.

Compilation Profiling: We compare our framework to two other AP construction approaches:

FU and ANML-APIs. The SM APIs method is not used because it hides the compiling profile

(e.g., STE usage) so that the rounds of reconfiguration are uncomputable. Tab. 4.5 shows the

profiles of the three approaches. We test the two datasets “Bio” and “IR” with up to 4 maximum

error allowances. Since the FU supports up to three errors, the corresponding data is not available

for 4 errors. In the table, the “STE usage” (in percentages) is used to estimate the number of

reconfiguration rounds. Generally, in the case of same datasets and errors, higher STE usage

indicates less reconfiguration rounds are needed. On the other hand, the STE usage is negatively

5https://www-odi.nhtsa.dot.gov/downloads/flatfiles.cfm
6ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/

81

correlated to the placement-&-routing complexity, which is represented by “BR allocation” (in

percentages). Obviously, longer patterns (e.g., “IR”) and more errors will result in more larger

single automata, thereby giving rise to higher BR allocation and lower STE usage.

For reconfiguration rounds, we distinguish the “recompile” rounds from the light-weight “relabel”

rounds, based on that the patterns with the same length and error number require at most one

cascading and placement-&-routing processing. Relabeling the entire AP board costs 45 ms [60],

while the recompiling time depends on AP automata complexity. The “total compile time” columns

include the cost from both recompile and relabel rounds. ANML-APIs show the best STE usage

and thus use the least reconfiguration rounds. This is because the ANML-APIs use the low-level

interfaces to accurately manipulate AP computational resources, which can provide efficient STE

usages. However, the ANML approach takes the longest overall compile time, since there are no

optimizations applied onto its recompile rounds.

In contrast, the FU approach oftentimes presents the lowest STE usage with the highest recon-

figuration rounds, due to its large number of functional unit copies and associated complex inter-

connections. Nevertheless, the functional units can also reduce the placement-&-routing costs and

thus optimize recompile rounds. As a result, the total compile time of FU approach can be still

shorter than ANML-APIs. On the other hand, our APM framework shows slightly lower STE

usage with more reconfiguration rounds than ANML-APIs. However, our framework can achieve

Table 4.5: Compilation Profile

#Err Approach Bioinformatics (Bio) Information Retrieval (IR)
Reco-
mpile
round

Relabel
round

Mean
STE
usage(%)

Mean
BR
alloc(%)

Total
compile
time (s)

Reco-
mpile
round

Relabel
round

Mean
STE
usage(%)

Mean
BR
alloc(%)

Total
compile
time (s)

1 err
ANML 1 34 71.2 73.5 103 2 79 70.3 75.8 329
FU 1 56 44.7 80.1 53.8 3 131 42.4 80.7 162
Ours 1 36 68.3 79.2 5.83 2 89 62.6 80.4 12.8

2 errs
ANML 1 61 61.2 80.9 665 3 148 56.3 81.4 3763
FU 2 95 39.6 89.3 335 4 228 36.8 92.2 996
Ours 1 71 52.8 82.7 48.1 3 174 48.3 86.4 110

3 errs
ANML 2 105 47.5 81.7 7585 4 242 46.2 84.2 42340
FU 3 149 33.5 91.4 3634 6 323 34.6 95.1 18780
Ours 2 119 42.2 85.9 381 5 281 39.5 89.4 1070

4 errs
ANML 3 141 44.2 86.3 43201 6 353 39.6 87.9 135437
FU Beyond the capacity
Ours 3 168 37.4 88.6 3607 8 460 30.4 90.5 12760

82

the fastest total compile time, thanks to our cascadable macro design. In particular, our framework

can achieve up to 39.6x and 17.5x speedups against ANML-APIs and FU approaches respectively.

Performance Comparison: In Fig. 4.10 and Fig. 4.11, we compare the performance of AP ap-

proaches to an automata-based CPU implementation PatMaN [184] over the two datasets. Differ-

ent from other CPU-based APM tools (e.g., BLAST [185]), PatMaN allows both gaps (insertion

and deletion) and mismatches (substitution) with no upper-bound error number. We first compare

the pure computational time between AP and CPU. After loading the binary image to AP board,

it executes in a lock-step style; thus, the runtime performance is linear to input stream length

and rounds of reconfiguration. This process is independent of automata construction approach.

Fig. 4.10 shows our APM codes on AP can achieve up to 4370x speedups, which are within the

same order of magnitude with the other AP-related work [60, 63].

In Fig. 4.11, we conduct a more fair comparison using the overall execution time (i.e., runtime

and compiling time) for AP. We can observe that these AP approaches can generally outperform

the CPU implementation in the cases of large error number (e.g., in sub-figures of “Four Errors

Bio” and “Four Error IR”). However, ANML-APIs based approach may be slower than its CPU

counterpart for small error number (in “One Error Bio”). This performance deterioration becomes

more salient in processing the larger pattern set of “IR” (in “One Error IR”). The FU approach can

provide better performance than ANML-APIs, but still fails to outperform the PatMaN in some

cases (e.g., in “One Error IR”). This overall view shows the significance of the reconfiguration

overhead of processing large-scale datasets.In contrast to these AP approaches, our APM solution

can outperform all AP approaches and CPU implementations. Specifically, our APM is able to

give an improvement of 2x to 461x speedups over CPU PatMaN for the two datasets. In addition,

the optimal speedups over ANML-APIs and FU are 33.1x and 14.8x respectively.

83

CPU ANML_APIs FU Our Framework

100M 200M 300M 400M 500M

0

50

100

150

200

250

300
One Error Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

100

200

300

400

500

600

700
One Error IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

1000

2000

3000

4000

5000

6000

7000

8000
Two Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

2000

4000

6000

8000

10000

12000

14000

16000
Two Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

20000

40000

60000

80000

100000

120000
Three Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

500000

1000000

1500000

2000000

2500000
Four Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

1000000

2000000

3000000

4000000

5000000
Four Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

Figure 4.10: Computational time comparison between AP (with three different construction approaches)
and the CPU counterpart. Notice that FU approach can’t support more than three errors.

84

CPU ANML_APIs FU Our Framework

100M 200M 300M 400M 500M

0

50

100

150

200

250

300
One Error Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

100

200

300

400

500

600

700
One Error IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

1000

2000

3000

4000

5000

6000

7000

8000
Two Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

2000

4000

6000

8000

10000

12000

14000

16000
Two Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

20000

40000

60000

80000

100000

120000
Three Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

50000

100000

150000

200000

250000
Three Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

500000

1000000

1500000

2000000

2500000
Four Errors Bio

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

100M 200M 300M 400M 500M

0

1000000

2000000

3000000

4000000

5000000
Four Errors IR

input length

to
ta

l t
im

e
 (

s
e

c
o

n
d

)

Figure 4.11: Overall time comparison between AP (with three different construction approaches) and CPU
implementation. Notice that FU approach cant support more than three errors.

85

4.6 Conclusions

In this chapter, we provide a framework allowing users to easily conduct fair end-to-end perfor-

mance comparison between Micron AP and its counterpart platforms, especially for large-scale

problem sizes leading to high reconfiguration costs. In this framework, we use a hierarchical ap-

proach to automatically generate optimized low-level codes for Approximate Pattern Matching

applications on AP, and we propose the cascadeable macros to ultimately minimize the reconfigu-

ration overhead. We evaluate our framework by comparing to state-of-the-art research using non-

macros or conventional macros. The experimental results illustrate the improved programming

productivity and significantly reduced configuration time, hence fully explore the AP capacity.

Chapter 5

GPU-based Android Program Analysis

Framework for Security Vetting

5.1 Introduction

The Android operating system so far holds 86% smartphone OS market share [72]. End-users

frequently install and utilize Android apps for their daily life, including many security-critical

activities like online bank login and email communication. It has been widely reported the security

problems, for example, the data leaks, the intent injections, and the API misconfigurations, exist in

the Android devices due to malicious and vulnerable apps [73, 74, 75, 76, 77, 78, 79, 80, 81]. An

efficient vetting system for the new and updated Android apps is desired to keep the app store clean

and safe. On the other hand, the Google play store currently has more than 3.5 million1 Android

apps available, and around 7K2 new apps are released through play store each day. Moreover,

most popular existing apps provide updates weekly or even daily. These huge scales and high

frequencies make the prior entering market app vetting extremely challenging. Bosu et al. [82]

experimentally show that analyzing 110K real-world apps costs more than 6340 hours, even using

1https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
2https://www.statista.com/statistics/276703/android-app-releases-worldwide/

86

87

Figure 5.1: The execution time of Amandroid. We analyze 1000 Android APKs. The x-axis represents
APK indices. The APKs are sorted according to the descending order of Amandroid run time. The y-axis
shows the execution time. The blue line indicates overall run time while the orange line indicates the IDFG
construction time.

the optimized analysis approaches. Apparently, a fast and scalable implementation is the key to

make app vetting practical.

In recent years, plenty of Android program analysis tools including FlowDroid [83], IccTA [84],

DialDroid [82], and AmanDroid [85] have been proposed. Most of them conduct static analysis

on the Dalvik bytecodes to discover the security problems of Android apps. Static analysis can

provide a comprehensive picture of the app’s possible behaviors, whereas the dynamic analysis can

only screen the behaviors during the dry run. However, static analysis suffers from the inherent

undecidability of code behaviors; any static analysis method must make a trade-off between the

run-time and the analysis precision. Typically, a 10MB app could take around 30 minutes to be

statically analyzed and is defined as a large-size app. We use one of the state-of-art Android

Static Analysis tools – Amandroid [85] to analyze 1000 random chosen Android APKs. The

blue line in Fig. 5.1 shows the execution time: Amandroid takes up to 38min to analyze a single

APK. Accordingly, many existing analysis tools set the cut-off threshold at 30min for a single app.

However, Google raised the app size limit in the play store to 100MB in 2015, and a majority

of modern commodity apps has dozens of MegaBytes. It is manifest that current Android static

analysis implementations must be accelerated to accommodate the app size growth.

88

Over the past decade, parallel devices become very popular computing platforms and successfully

accelerate a verity of domain applications. More recently, due to the massive parallelism and com-

putational power, Graphic Processing Unit (GPU) stands out and is trendy hardware in general-

purpose parallel computing. It has been broadly adopted in Bioinformatics [49], Biomedical [52],

Natural Language Processing [86] and so on. However, this trend does not draw enough attention

in security community. Only a handful of previous work [87, 88, 89, 90, 91, 92, 93, 94, 95, 96]

implement the program analysis on modern parallel hardware; only three work [87, 90, 95] out

of them leverage the GPU, and all discuss the acceleration of the common pointer analysis algo-

rithm; none of them consider the Android program analysis. On the other hand, straightforward

mapping of an application onto GPU usually is sub-optimal or even under-performs its serial coun-

terpart. The additional application-specific tuning is required to achieve optimal performance. For

example, the industrial standard generic GPU sparse matrix-vector multiplication (SpMV) library

cuSPARSE [97] can achieve up to 15X speedups against the CPU version. The CT image re-

construction uses SpMV as its computational core. However, mapping the reconstruction to GPU

by directly calling cuSPARSE achieves only 3X speedups. On the contrary, a fine-grained design

leveraging this application’s domain characteristics can increase the performance to 21-fold against

CPU [52].

In this chapter, we propose a GPU-assisted Android static analysis framework. To our best knowl-

edge, this is the first work attempting to accelerate the Android program analysis on HPC platform.

We find that implementing the IDFG construction on GPU using the generic approaches (i.e., lever-

aging no application-specific characteristics) can largely underutilize the GPU computation capac-

ity. We identify four performance bottlenecks existing in the plain GPU implementations: frequent

dynamic memory allocations, a large number of branch divergences, workload imbalance, and ir-

regular memory access patterns. Accordingly, we exploit the application-specific characteristics

to propose three optimizations that refactor the algorithm to fit the GPU architecture and execu-

tion model. (i) Matrix-based data structure for data-facts. It uses the fixed-size matrix-based data

structure to substitute the dynamic-size set-based data structure to store the data-facts. This opti-

mization can efficiently avoid dynamic memory allocations. It also can reduce memory consump-

89

tion since it removes the copies of repetitive data-facts. (ii) Memory access based node grouping.

It groups the ICFG nodes based on their memory access patterns. Compared to the original state-

ment type based node grouping, this optimization can significantly reduce the branch divergences

since it leads to only three groups (while the original grouping yields 17 groups). It can also maxi-

mize memory bandwidth usage. (iii)Worklist merging. This optimization postpones the processing

of worklist’s tail subset to significantly mitigate the workload imbalance issue. It also can avoid

the redundant processings by merging the repetitive nodes in the worklist. We evaluate the three

proposed optimizations using 1000 Android APKs. We find the first and third optimizations can

significantly improve the performance compared to the plain GPU implementation, while the sec-

ond optimization can slightly improve the performance. The GPU implementation with all three

optimizations can achieve the optimal performance; it can achieve up to 128X speedups compared

to optimal performance. Our contribution can be summarized as follows:

• We propose a GPU-assisted framework for static program analysis based Android security

vetting. It constructs Data-Flow Graphs using GPU and can support multiple vetting tasks

by adding lightweight plugins onto the DFGs.

• We identify four performance bottlenecks in the plain GPU implementation: frequent dy-

namic memory allocations, a large number of branch divergences, workload imbalance,

and irregular memory access patterns. To break through the bottlenecks, we leverage the

application-specific characteristics to propose three fine-grained optimizations, including

matrix-based data structure for data-facts, memory access based node grouping, and worklist

merging.

• We evaluate the efficacy of proposed optimizations using 1000 Android APKs. The first and

third optimizations can significantly improve the performance compared to the plain GPU

implementation while the second one can slightly improve the performance. The optimal

GPU implementation can achieve up to 128X speedups against the plain GPU implementa-

tion.

90

5.2 Background Knowledge

In this section, we will provide the background knowledge regarding the Android program static

analysis. We first explain what the android static analysis is, and then introduce the Worklist

algorithm, which is one of the most popular DFG construction algorithms.

5.2.1 Static Analysis for Android Apps

The ultimate goal of the static analysis is achieving the minimum false positive rate while captur-

ing all potentially dangerous app behaviors. Three Android-specific features make this goal par-

ticularly challenging: (i) The Android control flow is event-driven. (ii) The Android apps highly

depend on a large size runtime library. (iii) The Android apps are component-based and intensively

call the inter-component communication (ICC).

All the existing Android analysis tools including the well-known FlowDroid [83] have attempted

to at least partially address the above challenges. FlowDroid builds a call graph based on Spark/-

Soot [148], and then conducts a taint and on-demand alias analysis using IFDS [149] based on

the constructed call graph. However, FlowDroid does not compute all objects’ alias or points-to

information in both context- and flow-sensitive way. It trades this precision for the computational

cost [150]. Recently, another highly-regarded tool – Amandroid[85] has been proved that it is

practical and efficient. In contrast to FlowDroid, Amandroid calculates all objects points-to infor-

mation in a context- and flow-sensitive way. This provides higher precision and enables building

a generic framework that can support multiple security analyses. However, it slows down the per-

formance around four-fold compared to FlowDroid [154]. Fortunately, with the help of GPU, we

can preserve the high precision while satisfying the timeliness requirement.

Moreover, most previous work design specific tool to detect specific Android security problems.

On the contrary, Amandroid observes the fact that abnormal data flow behavior is the common

phenomenon of these security problems. Accordingly, Amandroid builds the Data Flow Graph

(DFG) and the data dependence graph (DDG). Then any specific analysis can be realized by adding

91

a plugin on top of the DFG and DDG. It substantially improves the design and running efficiency

due to the reuse of DFG. We leverage this Amandroid’s observation and design the GPU-based

framework for different Android analyses. Fig 5.1 shows the breakdown of Amandroid execution

time. The DFG construction consumes the majority of running time. It takes at least 58% and up

to 96% of the total execution time. Plugins for any specific analyses bring in negligible overhead

(usually in the order of tens of milliseconds). Hence the GPU-assist framework design is specified

to efficiently mapping of DFG building to the GPU.

5.2.2 Worklist-based DFG Building Algorithm

ADFG consists of an Inter-procedural Control-Flow Graph (ICFG) and the point-to fact sets. Each

ICFG node has one set, and the DFG is built by flowing the point-to facts along the ICFG paths

into the corresponding node’s set. Formally, let C be a component, the DFG can be defined as the

following:

DFG(EC) ⌘ ((N,E), {fact(n)|n 2 N}) (5.1)

where EC is the environment method of C, N and E are the nodes and edges of the ICFG starting

from EC , and fact(n) is the fact set of the statement associated with node n.

Fig. 5.2 shows a sample DFG. Each ICFG node is accompanied by a point-to fact set fact(i){}.

During the DFG building, the facts are generated after each node processing and propagated along

the ICFG paths. Unlike the graph traversal, visiting all nodes is not the end of the process. For

example, in Fig. 5.2, after visiting node L7, one flow goes back to L1 and the fact set fact(i) is

updated to fact(i)0. Due to this update, its visited successor nodes L2 and L4 must be revisited,

and fact sets fact(2) and fact(4) must be updated accordingly. Amandroid constructs the DFG

using a fixed-point worklist-based algorithm. Alg. 3 reproduce this algorithm. The while loop

(ln. 10-ln. 14) is the core that iteratively processes the nodes and propagates the point-to facts.

In each iteration, the analyzer pops out a node from the worklist and processes it through the

function ProcessNode() (ln. 11-ln. 13). ProcessNode() processes a node to generate the facts and

92

foo().Entry

L2: v2:= new A1

L1: if(x=0) goto 5

L3: v2.f1:= new B

L6: v3:= “abc”

L7: if(y=1) goto 1

L5: v9:= new B

L4: v2:= new A2

.…

Fact(0){}

Fact(1){}

Fact(2){} Fact(4){}

Fact(3){<v2,2>} Fact(5){<v2,4>}

Fact(6){<v2,2>, <v2,4>,
<v9,5>, <(v2.f1),3>}

Fact(7){<v2,2>, <v2,4>,
<v9,5>, <(v2.f1),3>}

Fact(1)’{<v2,2>, <v2,4>,
<v9,5>, <(v2.f1),3>}

Figure 5.2: A sample DFG. Each box is a ICFG node. Blue arrow-lines indicate the ICFG paths. Each node
has a fact set colored in red.

propagates the facts to current node’s successors. If any of the successors’ fact set gets a new fact,

that successor will be collected into a set nodes (ln. 13). Then the nodes will be inserted into

the worklist (ln. 14). The while loop keeps active until it converges to a fixed point that all fact

sets are steady (i.e., worklist goes to empty). Apparently, the while loop could be significantly

time-consuming due to the potentially huge number of iterations.

5.3 Our Plain GPU Implementation

In this section, we will present our plain GPU implementation. This implementation uses only

generic approaches without leveraging any application-specific characteristics. We first introduce

the basic implementation designs, and then analyze the performance bottlenecks.

93

Algorithm 3: Worklist-based Iterative DFG Building
1 Require: entry point procedure EP;
2 Ensure: DFG;
3 Procedure DFGBuilding(EP)
4 icfg ⌘ (N,E);
5 for ni 2 N do
6 new empty Set fact(i){};
7 ni fact(i){};
8 new empty List worklist ;
9 worklist EntryNodeEP ;

10 while worklist 6= ? do
11 n worklist.front();
12 worklist.pop front();
13 nodes ProcessNode(icfg,n);
14 worklist nodes;
15 return (icfg, fact{})

5.3.1 Basic Design

In this section, we implement the worklist algorithm on GPU using the generic approaches. We

call it the plain GPU implementation because it neither uses application-specific characteristics nor

considers fine-grained GPU architectural features.

5.3.1.1 Using Summary-based Analysis

In order to parallelize the Android method processing, we employ the Summary-based Bottom-

up Data-flow Analysis (SBDA) algorithm introduced in [186]. SBDA generates a unified heap

manipulation summary for each method. With SBDA, the interprocedural DFG construction can

utilize the summaries instead of re-analyzing the visited methods. It makes the methods at the

same layer independent hence makes the worklist algorithm more parallel-friendly. Though the

SBDA is a more conservative approach, it still can preserve flow and context-sensitive data-flow

analysis result [187].

94

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

SM0

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

SM1

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

SMn

……

GPU board

Method0
Worklist{L0,L1,L
2,L3,L4,…}

Method1
Worklist

Methodn
Worklist

Figure 5.3: The two-level parallelization. Different methods are processed on different SM. Each core
processes one ICFG node in the current corresponding worklist.

5.3.1.2 Two-level Parallelization

GPU architecture supports two-level parallelism: a GPU board has multiple streaming multi-

processing engines (SMs); each SM contains multiple CUDA cores. CUDA programming model

groups the threads into thread-blocks. All SMs process the thread-blocks parallelly; in each SM,

CUDA cores execute corresponding threads simultaneously. We map each Android method onto

a thread-block to achieve the method-level parallelization. We then let each thread in the thread-

block handles one ICFG node of the current worklist to achieve the finer node-level parallelization.

This two-level parallelization design makes a maximized utilization of the GPU computational re-

sources. Fig. 5.3 schematically shows such design.

5.3.1.3 Dual-Buffering Data Transfer

The memory consumption of the static analysis highly depends on the size of Android APK file.

A large app could have hundreds of methods and take up tens of GB memory space. On the other

hand, a commodity GPU usually has no more than 32GB global memory. For examplethe NVIDIA

P40, one of NVIDIA’s current high-end products, has only 24GB global memory. In the case

memory consumption exceeding the GPU capacity, we have to divide the workload to sub-groups

95

Algorithm 4: GPU Worklit Kernel
1 int *h cfg, *h nodeValue, *h facts;
2 d cfg h cfg; d nodeValue h nodeValue; d facts h facts; . copy data from host to device;
3 Procedure WORKLIST(d cfg, d nodeValue, d facts)
4 local int worklist; . allocate shared memory space for worklist;
5 int tid � threadIdx.x;
6 int methodid � blockIdx.x ⇤ blockDim.x;
7 worklist � init nodes[methodid];
8 while !worklist.empty() do
9 if tid < worklist.size() then

10 src node � worklist[tid]; . each thread handles one node in current worklist;
11 new facts � Gen Kill(d nodeValue(methodid, src node));
12 . each thread processes corresponding node statement and generate facts; different blocks

handle different methods;
13 dest nodes � search CFG(d cfg(methodid, src node));
14 . each thread collects destination nodes of its current source node;
15 for n 2 dest nodes do
16 d facts(methodid, n).union(new facts);
17 if d facts(methodid, n).update() then
18 worklist � n;
19 . update facts and worklist;
20 syncthread;
21 h facts d facts;
22 . copy the result back to host;

and transfer the data in and out of the GPU multiple rounds. Even the latest hardware technologies

– NVLink and unified memory provide faster transfer speed, the CPU-GPU data communication

is still considered as one of the major overhead and can significantly degrade the performance.

In order to hide the CPU-GPU data transfer overhead, we propose a double buffering scheme.

This scheme is a software solution based on the asynchronous execution of the CUDA kernel and

data-transfer engine. Specifically, we create two buffer spaces in the GPU global memory and two

CUDA execution streams. Buffer 1 stores the current data, and Stream 1 launches kernel execution

accessing Buffer 1. Simultaneously, Stream 2 transfers next bulk of the workload to Buffer 2 for

next round of kernel executions. The function of the two streams and two buffers is swapped from

iteration to iteration. The CPU-GPU data communication overhead of (i+1)th round is hidden by

overlapping the kernel execution of ith round.

96

Figure 5.4: The performance comparison between the plain GPU implementation and the CPU counterpart.
The x-axis represents the APK indices, y-axis indicates the speedups compared to the CPU performances.
the APKs are sorted according to the descending order of GPU implementation’s speedups.

5.3.2 Performance Analysis

To evaluate the efficiency of the plain GPU implementation, we examine the designs mentioned

above with a dataset containing 1K Android APKs. We then analyze the experiment results to

discover the performance bottlenecks.

5.3.2.1 Comparison with CPU Counterpart

We test our plain GPU implementation on a NVIDIA TESLA P40 GPU using 1000 Android APKs.

Fig. 5.4 shows the performance comparison between the GPU implementation and the CPU coun-

terpart. We re-implement the worklist algorithm in Amandroid using C language with multithread-

ing to make the CPU version fairly comparable to the GPU implementation. The figure shows that

GPU can only achieve 1.81X speedups on average against the CPU counterpart. It at most can

achieve 3.39X speedups against CPU; for the majority (65.9%) of the APKs, GPU only achieve

less than 2X speedups (the skyblue area); for 7.3% of the APKs, GPU even runs slower than the

CPU (the red area). Apparently, the plain implementation largely underutilizes the GPU computa-

tion capacity.

97

5.3.2.2 Performance Bottlenecks

As Fig. 5.4 indicated, worklist algorithm is an irregular application; straightforwardly mapping

the algorithm onto GPU largely underutilizes GPU’s computation capacity. There are four perfor-

mance bottlenecks in the plain implementation:

Dynamic Memory Allocation Although very recently, researchers notice and try to break through

the GPU memory allocation bottleneck [188], dynamic memory allocation in GPU is still a sig-

nificant challenge due to the hardware limitation. Worklist algorithm associates an data fact set

with each node; the data fact sets keep updating during the node traversals. Hence the sizes of the

data fact sets cannot be foreknown, and the GPU implementation requires frequent dynamic GPU

allocations and reallocations.

Branch Divergence The GPU execution model is single instruction multiple threads (SIMT),

means that to maximize the GPU resource usage, all threads in a thread-block should execute

the same instructions with different data. In the occurrence of branches, GPU has to handle them

one by one. When the threads with branch 1 are executing, all other threads get stuck until the

branch 1 execution complete. Then GPU will execute branch 2 and all succeeding branches in the

same manner. In the worst case that all threads execute different branches, it will deteriorate to

sequential execution.

The worklist algorithm groups the ICFG nodes based on the types of their corresponding state-

ments. There are nine categories of statements in Android apps: AssignmentStatement, Emp-

tyStatement, MonitorStatement, ThrowStatement, CallStatement, GoToStatement, Ifstatement, Re-

turnStatement, SwitchStatement. Furthermore, AssignmentStatement consists of expressions com-

ing from 17 different groups: AccessExpr, BinaryExpr, CallRhs, CastExpr, CmpExpr, ConstClas-

sExpr, ExceptionExpr, IndexingExpr, InstanceOfExpr, LengthExpr, LiteralExpr, VariableName-

Expr, StaticFieldAccessExpr, NewExpr, NullExpr, TupleExpr, UnaryExpr. Apprently, this group-

ing scheme in original worklist algorithm could result in dozes of branches. It could be a disaster

to the GPU execution.

98

Load Imbalance An ideal balanced workload should be that the number of ICFG nodes in a work-

list matches or is an integral multiple of the number of CUDA cores in a SM. The balanced work-

load can ultimately utilize the resources since no cores will be idle during execution. However,

the size of worklist on each iteration highly depends on the ICFG structure. Any two consecutive

worklists’ size could be quite different and unpredictable. It is pretty hard to make every worklist

to be a balanced load.

Irregular Memory Access Pattern GPU has enormous memory bandwidth. Each memory access

of a warp (32 threads) can read or write a 128B memory block. If this 128B block contains

the requested data of all 32 threads, it is a full utilization of the bandwidth. However, if the

block contains only the data requested by some of the threads, then multiple memory accesses are

needed to feed the whole warp, and a proportion of the bandwidth is wasted. In the worst case, the

request data of 32 threads reside at 32 random memory location, then 32 memory accesses should

be performed and 31⁄32 bandwidth is wasted. Unfortunately, like other graph traversal problems,

the accesses to the destination nodes are unstructured; hence it’s extremely difficult to guarantee

the efficient bandwidth utilization. Moreover, different statements and expressions have different

memory access patterns, and the data-fact set of each node is dynamically changing; these make

the memory access pattern of the worklist algorithm even more irregular.

5.4 The Optimization Designs

Aiming to break through the performance bottlenecks described above, in the section, we propose

three optimizations. These optimizations leverage fine-grained application-specific characteristics

to refactor the worklist algorithm to make it fit the GPU’s architecture and execution model.

99

String[]@L1 xyz@L3 yyy@L4
str L2-L6, Exit
ArraySlot(Stri
ng[]@L1)

L5, L6, Exit L6, Exit

s Exit Exit

slot

instance
L1: empty
L2: str -> String[]@L1
L3: str -> String[]@L1
L4: str -> String[]@L1
L5: str -> String[]@L1; ArraySlot(String[]@L1) -> “xyz”@L3
L6: str -> String[]@L1; ArraySlot(String[]@L1) -> “xyz”@L3;

ArraySlot(String[]@L1) -> “yyy”@L4
Exit: str -> String[]@L1; ArraySlot(String[]@L1) -> “xyz”@L3;

ArraySlot(String[]@L1) -> “yyy”@L4
ArraySlot(String[]@L1) s->”xyz”@L3 -> “yyy”@L4 @L6

(a) (b)

Figure 5.5: (a) is the straightforward data structure of point-to fact set. (b) is the unified compact point-to
fact matrix.

5.4.1 Optimization 1: Matrix-based Data Structure for Data-Facts

Worklist algorithm stores the point-to data-facts using set data structure since it should dynamically

insert newly-generated facts to the set. Set data structure causes no significant inefficiency in CPU-

based execution, however, can sharply degrade the GPU-based execution’s performance due to the

frequent dynamic memory allocations. Moreover, we find that many repetitive data-facts exist

among different data-fact sets. Fig. 5.5(a) shows sample data-fact sets of some ICFG nodes stored

using original set data structure. We can see data-fact sets of node L2, L3, and L4 have exactly the

same facts. These repetitions are caused by the data fact propagation.

A data-fact is a pair consisting of a slot and an instance. We observe that the pools of slot and

instance can be pre-determined before the worklist iterations. During the data-fact generations and

propagation, the algorithm combine the slots and instances chosen from the pools. Accordingly,

in our optimization, we propose the matrix-based data-fact data structure as shown in Fig. 5.5(b)

to substitute the original set-based data structure. One ICFG node associate with one matrix. Each

row of the matrix represents one slot and each column represents one instance. Once a data-fact

is generated and propagated to a node, the corresponding matrix cell will be marked. With this

optimization, we replace the dynamic updating of fact sets by the entry accesses of fixed-size fact

matrices. This optimization not only can make the memory access pattern more regular but also

can reduce memory consumption due to avoiding storing repetitive data-facts. We can further

reduce the memory usage by applying bit-masks to the matrices.

100

T0 T1 T2 T31……

Thread-block

One warp (32 threads)

…… …… ……

memory layout

Current

worklist

……

(node IDs only)

Suppose there are 96 total, and each type has 32 nodes

……

32 nodes

…… ……

32 nodes 32 nodes

Re-group the worklist

Each thread

read one ID

Read 32 actual node

data from memory

Figure 5.6: The scheme of node grouping. Three colors indicate three different types of nodes.

5.4.2 Optimization 2: Memory Access Pattern Based Node Grouping

The original worklist algorithm classifies the ICFG nodes based on the statement and expression

types. This classifying scheme is insufficient for the GPU implementation due to the large number

of divergences. We observe that if we pre-determine the pools of slot and instance, generating

and propagating data-facts for every ICFG node are converted to looking up and combining entries

from two pools. Hence, grouping the nodes based on the types of statements is no longer neces-

sary. Instead, we propose a memory access pattern based grouping scheme for ICFG nodes. We

identify that there are only three ICFG node memory access patterns existing: (i) The one-time

fact-generation statements, e.g., ConstClassExpression, NullExpression, LiteralExpression. Each

of them only generates new facts at the first time they are visited; then it will only propagates the

facts when they are inserted to the worklist again. (ii) The single-layer statements, e.g., Variable-

NameExpression, StaticFieldAccessExpression. They may produce new facts every time they are

visited; each visit only requires single de-reference. (iii) The double-layer statements, e.g., Acces-

sExpression, IndexingExpression. They may produce new facts every time they are visited; each

visit requires a double de-reference.

The nodes in the same group are stored consecutively in the global memory. We sort each current

worklist based on the node group before we process it. This new grouping scheme apparently

101

Worklist algorithm

{L1}

{L2, L3}

{L6, L4}

{L5}

{L6}

Processing this L6
is redundant

Figure 5.7: An example shows a case that the worklist merging can eliminate redundant processing.

can significantly reduce the number of branches given that it has only three groups. Moreover,

the new grouping scheme can maximize memory coalescing. For example, in Fig. 5.6’s case, a

warp will always process the nodes with the same memory access pattern, so it eliminates the

branch divergence. Moreover, storing the nodes of the same group consecutively in the memory

can maximize bandwidth utilization.

5.4.3 Optimization 3: Worklist Merging

We assume the current worklist has 36 ICFG nodes. Given a warp has only 32 threads, GPU needs

two warps to handle the current worklist. The second warp processes only four nodes leads to a

waste of 28 threads. Hence this 32-node worklist is an imbalanced load.

Aiming to solve the load imbalance issue, we propose the worklist merging optimization. In this

optimization, we divide each current worklist to a head list and a tail list. The head list contains

the subset of current worklist in which the number of nodes is the integral multiple of 32 while the

102

tail list contains the remaining nodes of the worklist. In the above example, the head list contains

the first 32 nodes, and the tail list contains the last 4 nodes. The GPU implementation first uses

one warp to process the head list; then, instead of processing the tail list, it collects the destination

nodes of the head list to form the next worklist and merges the tail list into the next worklist.

The implementation then handles the next worklist in the same manner and keeps iterating until

reaching the fix-point. Since the worklist algorithm is insensitive to the orders of node processing,

our worklist merging optimization can minimize the imbalanced workloads without affecting the

final results. Moreover, the worklist merging can avoid some redundant node processings. For

example, in Fig. 5.7, node L6 is processed twice in both the third and fifth worklists. Suppose

the L6 is in the tail list, with our worklist merging, it will not be processed in the third worklist;

when we merge the tail list into the fifth worklist, the duplicated L6 will be removed hence we

avoid the redundant processing of node L6. Since the data-fact propagation in worklist algorithm

is monotone, the L6’s data-facts after the second processing is a superset of the data-facts after the

first processing. Hence removing the first L6 processing will not affect the fact propagating from

L6.

5.5 Framework Evaluation

In this section, we evaluate the efficacy of the proposed optimizations for our GPU-based Android

program analysis framework. We run the experiments on the machines quipped with 10-cores

Intel(R) Xeon(R) Gold 5115 CPU@ 2.40GHz, 64GB RAM systemmemory, and NVIDIA TESLA

P40 GPU. This Pascal microarchitecture GPU has 24GB total global memory, the peak memory

bandwidth is 346GB/s. It has 30 streaming-multiprocessors (SM); each SM has 128 CUDA cores.

The total CUDA core number is 3840. Each SM has a 48KB L1 cache (shared memory), and the

L2 cache size is 3MB. The CUDA version is 10.

We use the latest Amandroid 3 (coded using scala) as the CPU counterpart. To make it fair, we

3https://github.com/arguslab/Argus-SAF.git

103

Table 5.1: Dataset Characteristics

no. of CFG Nodes no. of Methods no. of Variable max Worklist length
6217 268 116 74

re-implement the worklist algorithm in Amandroid using multithreading C. We evaluate our GPU

implementation using a dataset containing 1000 APKs. The characteristics of these APKs are listed

in the table 5.1.

We verify the output results of GPU implementations by comparing them to the DFG constructed

by the original CPU implementation. The plain GPU implementation, as well as every opti-

mizations, do not affect the correctness of DFG. In the following subsections, we first provide

an overview of our GPU implementation. We then zoom in the performance and evaluate three

optimizations: matrix-based data structure, node grouping, and worklist merging, respectively.

5.5.1 Overview of GPU Implementation’s Performance

Section 5.3.2.1 indicates our plain GPU implementation mostly can only achieve less than 2X

speedups against the CPU counterpart. In order to evaluate our optimizations, we use the perfor-

mance of plain GPU implementation as the baseline, then accumulate the optimizations to the GPU

implementation and compare their performances with the baseline.

Fig. 5.8 shows the performance comparison of GPU implementations with different optimizations.

The x-axis shows the app APK indices. Notice that we sort the APKs according to the descending

order of the optimal performance. The y-axis shows the performance speedups against the base-

line. The figure indicates that applying all three optimizations to the GPU implementation can

achieve the optimal performance: it can achieve 128X peak speedups and 71.3X average speedups

against the plain GPU implementation. The figure also shows that the matrix-based data struc-

ture (mat) and the worklist merging (mer) optimizations can largely improve the performance of

GPU implementation. Though the memory access pattern based node grouping (grp) optimization

can also improve the performance, it is not significant. We will provide detailed evaluations and

discussions of each optimization in the following sections.

104

Figure 5.8: The GPU implementation’s performance overview. The x-axis indicates the app APK IDs while
the y-axis indicates performance speedups against the plain GPU implementation.

5.5.2 Evaluation of Matrix Data Structure Optimization

In this subsection, we apply the first optimization – matrix-based data structure (mat) of the data-

facts to the general GPU implementation. The optimization design is described in subsection 5.4.1.

Fig. 5.9a shows the performance comparison between the GPU implementation with and without

the first optimization. The x-axis shows the APK IDs while the y-axis shows the performance

speedups compared to GPU implementation without mat. Notice that we sort the data pairs based

on the running time of CPU version in descending order.

The figure indicates that the matrix-based data structure optimization can significantly improve

the GPU version’s performance. It can achieve at least 7.6X speedups and up to 92.4X speedups

against the plain GPU implementation. For 59.4% of APKs, the mat optimization can improve

20X-40X performance (the skyblue area in Fig. 5.9a), and in average, it can achieve 26.7X

speedups. The performance improvement is significant because the mat optimization can elim-

inate dynamic memory allocation, which is one of the major GPU performance bottlenecks.

105

(a) Matrix-based Data Structure (mat) optimization

(b) Memory Access Pattern based Node Grouping (grp) optimization

Figure 5.9: Performance comparisons between the GPU implementation with and without (a) matrix data
structure (mat) optimization; (b) memory access pattern based node grouping (grp) optimization; (c) work-
list merging (mer) optimization. The x-axis indicates the app APK IDs while the y-axis indicates the
speedups against the GPU implementation without (a) mat, (b) grp, and (c) mer respectively.

106

(c) Worklist Merging (mer) optimization

Figure 5.9: (cont.) Performance comparisons between the GPU implementation with and without (a) matrix
data structure (mat) optimization; (b) memory access pattern based node grouping (grp) optimization; (c)
worklist merging (mer) optimization. The x-axis indicates the app APK IDs while the y-axis indicates the
speedups against the GPU implementation without (a) mat, (b) grp, and (c) mer respectively.

107

Figure 5.10: Memory footprint comparison between the matrix-based and set-based data structure for storing
the data-facts. The x-axis indicates the app APK IDs while the y-axis indicates the memory footprint.

Since the matrix-based data structure is also designed to reduce the memory space consumption,

we also compare its memory footprints to the memory footprint of the set-based data structure.

Fig. 5.10 shows the memory footprint comparisons between the matrix-based and set-based data

structure. It indicates the matrix-based data structure optimization can reduce 75% memory con-

sumption on average. It at most needs 34%memory space compared to the set-based data structure.

The matrix-based data structure can significantly reduce the memory footprint because it avoids

storing the copies of repetitive data-facts.

5.5.3 Evaluation of Memory Access Pattern Based Node Grouping Opti-

mization

In this subsection, we apply the second optimization – the memory access pattern based node

grouping (grp) in addition to the GPU implementation with mat. The optimization design is de-

scribed in subsection 5.4.2.

108

Table 5.2: Worklist Profiling

Worklist sizes
32 >32 & 64 >64

before mer 87.6% 4.3% 8.1%
after mer 74.4% 11.9% 13.7%

no. of Worklist iteration
average max min

before mer 5.6K 6.8K 4.3K
after mer 4.5K 5.8K 3.6K

Fig. 5.9b shows the performance comparison between the GPU implementation with and without

the second optimization. The x-axis shows the APK IDs while the y-axis shows the performance

speedups compared to GPU implementation without grp. Notice that we sort the data pairs based

on the running time of CPU version in descending order.

The figure indicates that grp optimization can only slightly improve the performance. For 76.3%

APKs, the grp can only achieve less than 1.5X speedups (the skyblue area in Fig. 5.9b) against

the baseline; for 15.5% APKs, it even degrades the performance (the red area in Fig. 5.9b). The

performance degradation is caused by that most worklists are small. Table 5.2 shows the results of

worklist profiling. The third line of the Table indicates that on average, 87.6% of the worklists in

a worklist algorithm instance have less than 32 ICFG nodes. It means that most of the worklists

can fit into a single warp hence cannot take the merits of grp but will suffer the sorting overhead.

However, since the grp can maximize the coalesced memory accesses, in some cases, it can still

achieve slightly overall performance improvement.

5.5.4 Evaluation of Worklist Merging Optimization

In this subsection, we apply the third optimization – the worklist merging (mer) in addition to the

GPU implementation with both mat and grp optimizations. The optimization design is described

in subsection 5.4.3.

Fig. 5.9c shows the performance comparison between the GPU implementation with and without

109

the third optimization. The x-axis shows the APK IDs while the y-axis shows the performance

speedups compared to GPU implementation without mer. Notice that we sort the data pairs based

on the running time of CPU version in descending order.

The figure indicates that mer optimization can significantly improve performance. For 67.4%

APKs, the mer can achieve at least 1.5X speedups and up to 3X speedups against the baseline (the

skyblue area in Fig. 5.9c). In average, it can achieve 1.94X speedups. The improvement is signif-

icant because mer can efficiently reduce the number of worklist algorithm iterations and enlarge

the worklist sizes. The eighth line of Table 5.2 indicates that in average, the mer optimization can

reduce 1.1K iterations in a worklist algorithm instance. This reduction apparently can improve

performance. Moreover, merging the tail list with the predecessor worklists can enlarge the sizes

of the worklists. The fourth line of the Table 5.2 indicates that 25.6% worklists require more than

one warp to process. Hence the mer can boost the benefits of grp optimization.

5.6 Conclusion

In this chapter, we propose a GPU-based Android program analysis framework for the security

vetting. Based on the profiling results, we find that the IDFG constructions take the most of the

overall analyzing time (up to 96%); hence we accelerate the IDFG constructions on the GPUs.

In the GPU design, we first implement the IDFG construction algorithm on GPU using general ap-

proaches, including summary-based analysis, two-level parallelization, and optimized data trans-

fer. However, we find this plain GPU implementation has four major performance bottlenecks:

frequent dynamic memory allocation, the branch divergences, load imbalance, and the irregu-

lar memory access pattern. These issues can sharply degrade GPU implementation’s efficiency.

Accordingly, we leverage application-specific characteristics and propose three advanced opti-

mizations, including matrix-based data structure for data-facts, memory access pattern based node

grouping, and worklist merging. The matrix-based data structure is also designed to reduce mem-

ory consumption.

110

In our experiments, we evaluate the three proposed optimizations respectively on Intel(R) Xeon(R)

Gold 5115 CPU and NVIDIA TESLA P40 GPU using 1000 Android APKs. The experiment re-

sults show that the matrix-based data structure for data-facts and worklist merging optimizations

can significantly improve the performance compared to the plain GPU implementation, while the

memory access pattern based node grouping optimization can slightly improve the performance.

The optimal GPU implementation can achieve up to 128X speedups against plain GPU optimiza-

tion. The matrix-based data structure optimization also can save 75% memory space on average

compared to the original set-based data structure.

Chapter 6

Comparative Measurement of Cache

Configurations’ Impacts on the

Performance of Cache Timing Side-Channel

Attacks

6.1 Introduction

Timing-based cache side-channel attacks have been comprehensively studied since its debut in

1996 [98]. The time side-channel of cache leaks secret information, specifically through the time

differences of cache hits and misses. Time-driven attacks are the primary type in the early age of

the timing-based side-channel attacks. They observe the total execution time of the cryptographic

operations and crack the keys by analyzing the observations.

In the last decade, access-driven attacks, for example, the notorious meltdown attack [101], have

gained popularity. They manipulate specific cache-lines and observe the access behaviors of

cryptographic operations on these cache-lines. They require fewer observations than the time-

111

112

driven attacks due to the higher resolutions and lower noises. Fine-grained variants of the access-

driven attacks have been proposed, including PRIME+PROBE [102], FLUSH+RELOAD [103],

and FLUSH+FLUSH [104]. However, all access-driven attacks require that the attacker’s process

have access to specific cache addresses that shared by the victim’s process.

Recently, some proposals leverage new hardware technologies to defend the access-driven attacks.

For example, the CATalyst [105] exploits Intel’s Cache Allocation Technology (CAT) (CAT iso-

lates shared cache space for victim’s process) to physically revoke the accessibility of attacker’s

process. Given the attackers’ access privilege is not an assurance, studying time-driven attacks are

still worthwhile since they demand no adversary’s intervention during the observations.

Researchers have been speculating that cache configurations can impact the performances of time-

driven side-channel attacks [106, 107, 108]. For example, intuitively, a bigger cache size would

make the attacks on AES more difficult, as it can hold a larger portion of the precomputed S-box

lookup table in the cache. However, we are not aware of any previous work that provides exper-

imental data to demonstrate how cache configuration parameters influence time-driven attacks. It

is extremely challenging to conduct performance comparisons under the same system with differ-

ent cache configurations, as none of the existing CPU products provide configurable caches. This

challenge prevents the experimental study about the impact of cache parameters on time-driven

attacks.

In this work, we overcome the aforementioned difficulty and conduct a comprehensive study on

how cache configurations impact the success rates of time-driven attacks. We leverage a modular

platform – GEM5 [110] to measure the performances of time-driven attacks under various cache

configurations. GEM5 is one of the most popular cycle-accurate full-system emulators in the

computer-system architecture community [111, 112]. We leverage GEM5 to emulate the X86 64

system with a configurable cache.

In our work, we measure the performance of Bernstein’s cache timing attack on AES [106]. Bern-

stein’s attack is one of the most classic time-driven attacks and still feasible on model proces-

sors [113, 114]. To make its performance comparable, we propose a new metric to quantify the

113

its success rate. In the measurement, we run Bernstein’s attacks on GEM5 instances with different

cache configurations and provide systematic experimental data to describe the correlation of cache

parameters and the attack’s performance. Our contribution can be summarized as follows:

• We use the GEM5 platform to investigate the cache configurations’ impacts on time-driven

cache side-channel attacks. We configure the GEM5’s cache through seven parameters:

Private Cache Sizes, Private Cache Associativity, Shared Cache Sizes, Shared Cache Asso-

ciativity, Cacheline Sizes, Replacement Policy, and Clusivity.

• We extend the traditional success-fail binary metric to make the cache timing side-channel

attacks’ performances comparable. We define the equivalent key length (EKL) to describe

the success rates of the attacks under a certain cache configuration.

• We systematically measure and analyze each cache parameter’s influence on the attacks’

success rate. Based on the measurement results, we find the private cache is the key to

the success rates; the 8KB, 16-way private cache can achieve the optimal balance between

the security and the cost. Although the shared cache’s impacts are trivial, running neighbor

processes can significantly increase the success rates of the attacks. The replacement policies

and cache clusivity also have impacts on the attacks’ performances: Random replacement

leads to the highest success rates while the LFU/LSU leads to the lowest; the exclusive

policy makes the attacks harder to succeed compared to the inclusive policy. We then use

these findings to enhance both the cache side-channel attacks and defenses and strengthen

future systems.

6.2 Background

In this section, we provide the knowledge about modern cache model and the GEM5 platform, and

explain how the Bernstein’s time-driven attack works.

114

CPU Core

register

On-board Main Memory

Shared Cache (LLC)

Private Cache

CPU Core

register

Private Cache

Two-level cache hierarchy

si
ze

large

small

sp
ee

d

slow

fast

Figure 6.1: A generic cache model. It is a two-level hierarchy: each CPU core has its own private cache; all
cores could access a shared cache through the private cache.

6.2.1 CPU Cache Hierarchy

The CPU cache is in between of the CPU cores and the main memory. It stores copies of the

frequently used data in main memory, aiming to reduce the average latency of data access from

the main memory. Compared to the main memory, the cache is faster but smaller. Modern multi-

core CPUs usually organize the cache as a hierarchy of multiple cache levels. Fig. 6.1 indicates a

generic cache hierarchy model. Each CPU core is bound with a private cache and has this private

cache’s exclusive access permission. The whole CPU chip has one shared cache (a.k.a Last Level

Cache (LLC)) that shared by all the CPU cores. The shared cache usually is larger but slower

than the private cache. Commodity Intel CPUs follow this cache model and usually implement the

private cache as two levels (L1 and L2) and split L1 cache into instruction and data caches. Private

cache size typically is in KB scale while shared cache size is in MB scale.

115

2N encryptions
on victim server

2N encryptions
on victim server

Reference
time model

Attacking
time data

Correlating the reference
and attacking data

Reduced key
search space

Brute-force search

Known Key Secret Key

Recovered Key

(a) Profiling phase (b) Attacking phase

(c) correlating phase

(d) searching phase
O

nline phases on victim
 server

O
ffline phases on local system

Figure 6.2: The workflow of Bernstein’s time-driven attack. It consists of two online phases: (a) profiling
phase and (b) attacking phase, and two offline phases: (c) correlating phase and (d) searching phase.

6.2.2 Bernstein’s Cache Timing Attack

The Bernstein’s cache timing attack on AES [106] is one of the most classical time-driven cache

attacks. It cracks the AES keys by measuring and analyzing the encryption time data.

Fig. 6.2 shows the workflow of Bernstein’s attack. On the victim server, the attacker performs two

online phases. During the profiling phase (Fig. 6.2 (a)), she or he encrypts millions of different

plaintexts with a known key, then collects and profiles each execution time to build the reference

time model. During the attacking phase (Fig. 6.2 (b)), she or he collects attacking time data

by measuring the execution time of millions of encryptions with an unknown key. Then two

116

offline phases postprocess the attacking data to guess the unknown key. Specifically, during the

correlating phase(Fig. 6.2 (c)), the attacker mathematically correlates the time model and attacking

data to shrink the key search space by generating value candidates for each key byte. Finally, in

the searching phase(Fig. 6.2 (d)), the attacker brute-force searches the reduce key space to recover

the secret key.

Only the two online phases need to be performed on the victim server. Although the Bernstein’s

attack is computationally expensive (typically needs 222-223 encryptions for profiling and attacking

phases respectively [106]), it does not require attacker’s intervention during the attack. Thus, con-

ducting this attack does not need much computer architecture knowledge and the victim system’s

access privilege.

6.2.3 GEM5 Platform

GEM5 is a modular platform for computer-system architecture research [110]. GEM5 is the combi-

nation of two influential projects: M5 [189] and Gems [190]. The former is renowned for CPU sim-

ulation while the latter is for memory system simulation. Therefore, GEM5 can cycle-accurately

emulate the full X86 system encompassing system-level architecture and processor microarchitec-

ture. It provides the interfaces to manipulate the configuration of almost all system components,

including processing units, cache, and main memory. In the full-system mode, GEM5 runs a real

operating system on it and allows users to interact with the OS. Hence, users can run any applica-

tions on GEM5 as running on real-world hardware. The downside of GEM5 is that its execution is

1000X slower than real hardware.

6.3 Measurement Design

We measure the performances of Bernstein’s attacks running on different GEM5 instances. We

configure these instances’ caches using seven cache parameters, including Private Cache Size, Pri-

117

vate Cache Associativity, Shared Cache Size, Shared Cache Associativity, Cacheline Size, Replace-

ment Policy, and Cache Clusivity. We elaborate all the cache parameters in Section 6.3.1. GEM5

instances play the role of victim servers; hence we only need to run two online phases (Fig. 6.2 (a)

and (b)) on it. Under each cache configuration, in accordance with the references [106, 113, 114],

we conduct 222 encryptions for profiling and attacking phases respectively. To quantify the perfor-

mances of the attacks, we define the success rate of the time-driven attack in Section 6.3.2.

6.3.1 Cache Parameters for Configuration

GEM5 platform gives us the full privilege to configure the cache. Without loss of generality, we

configure the cache in our measurements to a two-level hierarchy as shown in Fig. 6.1. Under such

implementation, there are seven controllable cache parameters listed below:

1. Private Cache Size (PCS) The total amount of private cache space. It generally falls in the

range from 2KB to 32KB. Intuitively, smaller PCS makes the attacks easier.

2. Private Cache Associativity (PCA) The number of cache blocks in a private cache set.

Its range typically is between 2-way and 32-way. Intuitively, larger PCA results in lower

success rates of the attacks.

3. Shared Cache Size (SCS) The total amount of shared cache space. It usually is a value in

between 2MB and 32MB. Intuitively, the smaller SCS the easier attacks.

4. Shared Cache Associativity (SCA) The number of cache blocks in a shared cache set. It

commonly is consistent with the PCA and intuitively has similar impacts.

5. Cacheline Size (CLS) The size of the basic unit of cache storage. The common CLSs are

32Bytes, 64Bytes, and 128Bytes. Intuitively, larger CLS leads to lower success rates of the

attacks.

6. Replacement Policy (RP) The algorithms to manage the contents stored in the cache. The

RP’s impacts are highly-depend on the application’s memory locality.

118

7. Cache Clusivity (CC) Clusivity describes whether the data in one level of cache present

also in other levels. It is either inclusive or exclusive. Intuitively, the exclusive policy makes

the attacks easier.

We reconfigure the cache of GEM5 platform through changing the above parameters. In the sub-

sequent sections, we elaborate these cache parameters and their possible theoretical impacts on the

time-driven attacks.

6.3.1.1 Private and Shared Cache Size

Both private and shared cache copy a portion of the main memory that possibly contains the next

data that CPU will use. Apparently, larger PCS and SCS provide broader coverage and lower

cache-miss rate; However, taking into account the production cost factor, commodity systems

usually limit their PCS in KB scale and SCS in MB scale.

Theoretical expectation of PCS’s impacts. We attack the AES implemented in OpenSSL library.

OpenSSL precomputes the results of each AES step and stores them as a 4KB lookup table [174].

Given the time-driven attacks rely on the time differences of overall cache hits and misses, theoret-

ically, a PCS less than 4KB renders higher miss rates and consequently causes higher success rates

of the attacks. After 4KB, the attacks are impossible since the private cache can hold the entire

lookup table.

Theoretical expectation of SCS’s impacts. We discuss the impacts of SCS in two different scenar-

ios. Theoretically, given the SCS is in MB scale that is much larger than the 4KB table, if there

are no other processes running on the neighbor CPU cores, the SCS impacts to the attacks’ success

rates could be negligible. On the other hand, if there are random neighbor processes running, the

SCS’s impacts can be non-trivial. In the next section, we will experimentally examine whether the

facts align with these theoretical expectations.

119

6.3.1.2 Private and Shared Cache Associativity and Cacheline Size

The basic data copying unit between caches and main memory is referred to as cacheline. A

cacheline contains multiple bytes. The commodity CPUs usually divide the caches into multiple

sets that each of them contains N cachelines (referred to as N-way associativity). Each cacheline

of the main memory must go to a particular cache set but can choose one of the N positions in the

set to reside. Either PCA or SCA (i.e., the N) is a trade-off between miss-rate and the searching

cost.

Theoretical expectation of CLS, PCA, and SCA’s impacts. The larger CLS leverages more spatial

locality hence has lower miss-rates. The larger PCA leads to lower miss-rates as well. Lower

cache miss-rates result in lower success rates of the attacks. Similar to SCS, if there are no running

neighbor processes, SCA’s impacts will be trivial. Otherwise, SCA’s impacts are analogous to

PCA’s.

6.3.1.3 Replacement Policies

When a cache-miss occurs and the cache is full, the cache should make room for the new entry.

Replacement policies are sophisticated algorithms to choose the existing cache entries to evict.

Since the mission of the cache is storing the data that CPU is most likely to use next, the RPs

speculate about which existing entries have the least chances to be used in the future. Given this

heuristic is difficult, there is no universal optimal choice among available RPs.

In our measurement design, we examine four most common RPs: (i) Least recently used (LRU). It

keeps tracking what cache entries are used and discards the least recently used entry first. (ii) Least-

-frequently used (LFU). It counts how many times each cache entry is used and discards the least

often used entry first. (iii) First in first out (FIFO). Cache with the FIFO works in the same way

as FIFO queue. It always discards the entry loaded first. (iv) Random replacement (RANDOM). It

randomly chooses the candidate entries and evicts them when necessary. It doesn’t require tracking

any cache access history.

120

Theoretical expectation of RP’s impacts. The relations of the RPs and the miss-rates highly depend

on the memory access patterns of the crypto algorithms. Therefore, without the measurement data,

it is difficult to predict the impacts of RPs on the time-driven attacks’ success rates. We will use

the measurement results in the next section to illustrate it.

6.3.1.4 Cache Clusivity

Cache Clusivity describes the data consistency policy between the private and shared cache. We

consider two CCs: inclusive and exclusive. With the inclusive policy, all entries in the private cache

will also present in the shared cache. Evicting a shared cache entry results in the eviction of the

corresponding private cache entry. Whereas with the exclusive policy, the shared cache contains

only the entries that do not present in the private cache. A hit entry in shared cache will be moved

to private cache while an evicted entries from the private cache will be stored in the shared cache.

Theoretical expectation of CC’s impacts. The inclusive policy implies less cache-miss penalties but

smaller unique memory capacity. The exclusive policy is the opposite. Given the AES lookup table

is small, cache-miss penalties will dominate the influences on the attacks’ success rates. Hence we

expect the inclusive policy leads to lower success rates compared to the exclusive policy.

6.3.2 Metric Definition: the Success Rate of an Attack

Conventionally, the metric for cache side-channel attack performance is a dualism: either success

or failure. For any attack, no matter the difficulty, if it can crack the unknown key using reasonable

computational resources and time, we label it with success; otherwise, we label it as a failure.

However, this binary metric does not have sufficient granularity to support performance compar-

ison of the attacks labeled with success. To compare two successful attacks or evaluate a single

successful attack running under different hardware environments, we need to measure the attack-

ing difficulty i.e., the amount of demanded computational resources and time. Accordingly, we

leverage the classical cryptanalysis concept [191] and propose the equivalent key length (EKL) to

121

indicate the success rate of the time-driven cache side-channel attack. The EKL is formally defined

as the following:

Definition 6.3.1. The equivalent key length (EKL) is a normalized metric to represent the key

search space. The EKL value 2 [0, 1] is computed as in Equation 6.1, where n is the length of the

target key, vk denotes the number of candidate values for the k-th key byte after the correlating

phase and k 2 [0, n� 1].

EKL = 1�
Pn

k=0 log2 vk
8n

(6.1)

In our measurement, we use 16-byte keys, i.e. n is 16. EKL being 0 represents the original search

space, i.e. the correlating phase (Fig. 6.2 (c)) fails to reduce the number of candidate values of any

key byte. On the other extreme, EKL being 1 represents the single element search space, i.e. the

correlating phase fully reveals the unknown key.

We indicate the success rate of time-driven attacks using the ratio of EKL to the number of en-

cryptions in attacking phase. Apparently, with the same amount of attacking encryptions, larger

EKL implies a higher success rate. Increasing the number of encryptions could boost the EKL,

however, will demand more measurement cost. One does not need to make the EKL achieve 1 at

the correlating phase. We only need to reduce the search space to a reasonable size before entering

the brute-force search phase (Fig. 6.2 (d)). Practically, an EKL at 0.8 achieves a good balance of

the measurement cost and the brute-force search cost.

6.4 Measurement Results

We perform our measurements on a 10-node cluster. Each node is equipped with a 24-core Intel(R)

Xeon(R) E5-2620 2.4GHz CPU and a 192GB RDIMM main memory. We launch multiple GEM5

instances. Each instance emulates the system with two 3GHz CPU cores, 4GB main memory,

and a two-level cache. Different instances have different cache configuration; each configuration

is one combination of seven cache parameters’ candidate values described in Section 6.3.1. In

122

Table 6.1: Measurement Environment

Host System
CPU Intel(R) Xeon(R) E5-2620
main memory 192 GB RDIMM

GEM5 Platform
CPU core # 2 cores (3 GHz)
main memory 4 GB
CPU cache two-level configurable
operating system Ubuntu 16.04.1 LTS
OpenSSL version 1.0.2 LTS

each GEM5 instance, we run a Bernstein’s time-driven attack to attack the AES implemented in

OpenSSL 1.0.2. This OpenSSL version uses the lookup table and is vulnerable to cache timing

side-channel attacks. The measurement environment is summarized in Table 6.1.

We measure the attack’s success rates under every instance and show them in Fig. 6.3, then analyze

the impacts of each cache parameter respectively. In a nutshell, the private cache has a significant

effect on the attacks’ success rates; larger private cache size and associativity could make the

attacks more difficult. The shared cache parameters have minor impacts on the attacks without

regard to the neighbor processes. The replacement policies can significantly affect the success

rate of attacks while the cacheline size’s effect is insignificant. The clusivity also influences the

success rates; using the exclusive policy makes the attack harder than using the inclusive policy.

We elaborate on the impacts of each cache parameter in the following sections.

6.4.1 Private Caches’ Impacts

PCS Fig. 6.3a shows how the Private Cache Size impacts the success rates of the attacks. We

can observe that the overall trend of the impact is that the larger PCS leads to a lower success rate.

Moreover, we can see a cliff-like drop in the success rate when the PCS increases from 4KB to

8KB.

The observed fact, by and large, matches the theoretical expectation stated in Section 6.3.1.1. The

larger PCS results in fewer cache-misses (i.e., fewer time differences) and makes the time-driven

123

(a) Private Cache Size (b) Private Cache Associativity (c) Shared Cache Sizes (w/o NP)

(d) Shared Cache Sizes (w/ NP) (e) Shared Cache Associativity (w/o
NP)

(f) Shared Cache Associativity (w/
NP)

(g) Cacheline Sizes (h) Replacement Policies (i) Cache Clusivity

Figure 6.3: The success rates of time-driven attacks impacted by different cache parameters. NP stands for
the neighbor processes running on the neighbor CPU core. The x-axis represents the numbers of encryp-
tions conducted during the attacking phase (Fig. 6.2(b)). The y-axis indicates the equivalent key lengths
(Section 6.3.2).

attacks more difficult. The cliff drop between 4KB and 8KB is caused by the AES lookup table size

(4KB). When the private cache is larger than 4KB, since there are no other processes co-located

on the same core, the entire lookup table theoretically can reside in the private cache. It means the

cache-misses will not happen; hence, the time-driven attacks will not succeed. However, disagreed

with the expectation, the measurement result shows that, although it is much harder, the attacks

still have the chance to succeed with a PCS larger than 4KB. It implies that the AES computation

itself and the system operations can kick some lookup table entries out of the private cache.

124

PCA Fig. 6.3b indicates the attacks’ success rates influenced by the Private Cache Associativity.

We observe that the success rates and the PCA are negatively correlated: larger PCA leads to lower

success rates. We also find that there is a sharp success-rate decrease from 8-way to 16-way. The

16-way and 32-way associativities make the attacks have nearly the same success rates.

For the most part, the impact of PCA matches the expectation discussed in Section 6.3.1.2. A

larger PCA results in less cache misses hence makes the attacks harder to succeed. The experi-

mental results imply that if a cache set has 16 entries or more, the loaded entry mostly can find

an appropriate place in the set without flushing the data needed by next cache reads. Accordingly,

from 8-way to 16-way, the cache-misses become very occasional. It causes that the success rates

fall quickly from 8-way to 16-way, and 16-way and 32-way make similar success rates.

Above findings suggest that the private cache parameters have significant influences on the success

rates of the time-driven attacks. The influences mostly comply with the theoretical expectations

with a few unexpected singular points.

6.4.2 Shared Caches’ Impacts

SCS We use the stress tool to generate random memory-intensive workloads and run these work-

loads as the neighbor processes. Fig. 6.3c and 6.3d show the attacks’ success rates impacted by

Shared Cache Size without and with the neighbor processes (NP) respectively. As anticipated,

without NP, the SCS has negligible impacts on the success rates. Differing from the expectation,

although running the NP can make the attacks easier, changing SCS still has no significant impact

on the success rates. The reason is likely to be that the MB-level shared cache is huge compared

to 4KB AES lookup table; so the table entries always have similar chances to be found in shared

cache no matter it is 4MB or 32MB.

SCA Fig. 6.3e and 6.3f are the success rates of attacks impacted by various Shared Cache As-

sociativity without and with the NP respectively. SCA without the NP matches the expectation: it

barely affects the success rates. On the contrary, similar to SCS, despite the NP can increase the

125

attacks’ success rates, the SCA’s impacts are still trivial.

Our findings in this suction suggest that shared cache parameters have no significant impact on

the attacks’ success rates with no regards of the NP. As distinct from the theoretical expectation,

although running a memory-intensive NP can make the attacks easier to succeed, it cannot boost

either SCS or SCA’s impacts on the attacks’ success rates.

6.4.3 CLS, RPs, and CCs’s Impacts

CLS We measure the attacks’ success rates affected by different CacheLine Sizes. Disagreeing

with the expectation in Section 6.3.1.2, Fig. 6.3g indicates that the impacts of CLS are subtle and

random. There are two possible explanations. One reason is that the AES computation has good

spatial locality that many next cache-reads are within 32B. The other is that the AES has bad

locality that many next reads are out of the 128B range. Later we will indicate that the former

explanation matches the fact. So changing the CLS will not significantly change the cache-miss

rates.

RPs We also measure the attacks’ success rates under a variety of Replacement Policies de-

scribed in Section 6.3.1.3. Fig. 6.3h indicates the RPs have significant impacts on the success

rates. The attacks under RANDOM have the highest success rates while under FIFO have the

runner-up ones. The LFU and LRU lead to similar success rates that are lower than the other two

RPs.

The measurement results imply that AES computation has good temporal and spatial localities. It

is consistent with the findings regarding CLS. So the LFU and LRU result in the least miss-rates,

i.e. lowest success rates of the attacks. Since the RANDOM does not leverage any localities, many

cache misses can occur, makes the attacks easy to succeed. The FIFO leverages the localities to

some extent, makes its success rates lie between the RANDOM and the LFU/LRU.

126

CCs We finally measure the Clusivity’s impacts. In contrast to the expectation described in

Section 6.3.1.4, Fig. 6.3i shows the exclusive policy makes the attacks more difficult to succeed.

The reason is that private cache’s cache-misses dominate the AES computation time. Since the

exclusive policy stores all private cache evicted entries into the shared cache, the private cache

miss rates are low. Conversely, the inclusive policy removes the private cache entries whenever

their copies in the shared cache are evicted, hence increases the private cache miss rates and makes

the attacks easier.

6.5 Discussion

1) Takeaways Private cache configuration is the key to the success rates of the time-driven cache

attacks. Although larger PCS and PCA cannot completely prevent the time-driven attacks, they can

make the attacks much harder to succeed.

Shared cache configuration is trivial to the attacks’ success rates, but the neighbor processes can

have significant impacts on the success rates. A memory-intensive neighbor process can make the

attacks one order of magnitude easier.

Replacement policies and cache clusivity also can influence the attacks’ success rates. In this

Bernstein’s AES attack case, the random replacement leads to the easiest attack; the exclusive

policy makes the attack easier compared to the inclusive policy.

2) Suggestions for the attackers Increasing the eviction rate of the AES lookup table entries

from the private cache can make the time-driven attacks easier to succeed. A feasible way is

binding a noise process with the same CPU core running the AES encryptions. It leads to a higher

possibility of kicking the table entries out of the private cache.

3) Suggestions for the defenders A luxury private cache definitely can reduce the vulnerability

to time-driven cache attacks. However, in order to achieve the optimal cost-efficiency balance, it

127

is better to set the private cache parameters at some inflection points, for example, 8KB PCS and

32-way PCA for this AES attack case.

If AES lookup table size can fit into private cache, using lock-into-cache instruction to ensure the

entire table in the private cache can sharply reduce the attacks’ success rates. Besides, assigning a

CPU core exclusive and reserving a shared cache space for the AES encryptions can also make the

cache less vulnerable to the time-driven attacks.

It is not necessary to keep the replacement policy and clusivity consistent between the private

caches and shared cache. One can use Random replacement and exclusive policy for one private

cache used by AES encryptions, then apply other replacement policies and clusivity to remaining

private caches and shared cache, to balance the cache-attack resistances and the system perfor-

mance efficiency.

6.6 Limitations

There are a few limitations in our measurement design from both the attacks and the systems

aspects.

It is unclear whether our measurement design is compatible with other cache side-channel attacks.

The targeted Bernstein’s attack relies on the statistical patterns of the encryption time rather than

any cache-behavior based analytic attack models. Its advantages include that it is portable between

different systems with rare adaptations, and its performance is easy to be measured. However,

some other time-driven attacks use the attack models based on particular cache effects, for ex-

ample, the cache-collision effect [107]. The current measurement design may need case-by-case

modifications for investigating these specific time-driven attacks. The current design also may be

not compatible with other crypto algorithms, e.g. DES, RSA and with the access-driven attacks.

Our measurement design does not count the effects of some modern hardware technologies. The

GEM5 platform accurately emulates the cache latency and behaviors, but it does not implement

128

some advanced hardware techniques, e.g. the prefetcher. The prefetcher predicts the future cache

accesses and loads the data to the cache before any possible cache-misses happen. It may signif-

icantly change the impacts of some cache parameters, including cacheline sizes and replacement

policies, on the attacks’ success rates. It is difficult to theoretically model the prefetcher’s effects

since it depends on the prediction accuracy for specific encryption algorithms.

6.7 Conclusion

In this chapter, we systematically studied how cache configurations impact the success rates of

time-driven cache attacks. We addressed the difficulty of conducting apples-to-apples experimen-

tal comparisons and proposed the methodology to measure the attacks’ performances under dif-

ferent cache configurations. In our measurement design, we made the cache-attack performances

comparable by extending the traditional success-fail binary metric to the quantifiable success rate

metric. We leveraged the GEM5 platform to emulate the X86 system with the configurable cache.

We configured the cache through seven cache parameters, including Private and Shared Caches’

Size and Associativity, Cacheline Size, Replacement Policy, and Clusivity. From the measurement

results, we found that the private caches’ impacts on the attacks’ success rates are significant while

the shared caches’ are trivial; the replacement policies and cache clusivity also have clear influ-

ences on the attacks’ performances. We provided suggestions to the attackers and defenders and

implications for the future system designs according to our measurement findings.

Our measurement work is focused on cache timing based side channels. It remains an interesting

open question of whether one can similarly characterize other types of more complex side channels

in a systematic fashion.

Chapter 7

Conclusion and Future Work

In this dissertation, we have tried to improve the execution efficiency and scalability of cybersecu-

rity applications. We demonstrated how to leverage application-specific characteristics to achieve

fast and scalable implementations of cybersecurity applications on the HPC platforms. We in-

vestigated three sub-areas in cybersecurity, including mobile software security, network security,

and system security. We targeted various HPC platforms, including multi-core CPUs, many-core

GPUs, and reconfigurable Micron’s Automata Processors.

7.1 Summaries

In Chapter 3, we have presented the O3FA, a new finite automata-based, deep packet inspection

engine to perform regular-expression matching on out-of-order packets without requiring flow re-

assembly. Our proposed approach leveraged the insight that various segments matching the same

repetitive sub-pattern are logically equivalent to the regular-expression matching engine, and thus,

interchanging them would not affect the final result. The O3FA at the core of the proposal consisted

of the regular deterministic finite automaton (DFAs) coupled with supporting-FAs (a set of prefix-

/suffix-FA), which allows processing out-of-order packets on the fly. It is faster and more scalable

129

130

compared to the conventional approaches because it requires no packet buffering and stream re-

assembly. We have proposed several optimizations aimed to improve both the matching accuracy

and speed of the O3FA engine. Our experiments showed that our design requires 20-4000 less

buffer space than conventional buffering-and-reassembling schemes on various datasets and that it

can process packets in real-time, i.e., without reassembly.

In Chapter 4, we provided a framework – ROBOTOMATA allowing users to easily and efficiently

deploy their domain-specific applications on the emergingMicron’s Automata Processors (AP), es-

pecially for large-scale problem sizes leading to high reconfiguration costs. We observed that AP

suffered from two major problems: the programmability and the scalability issues. Firstly, the cur-

rent APIs of AP required manual manipulations of all computational elements. Secondly, multiple

rounds of time-consuming compilation were needed for large datasets. Both problems hindered

programmers’ productivity and end-to-end performance. Accordingly, in ROBOTOMATA, we

used a paradigm-based hierarchical approach to automatically generate optimized low-level codes

for Approximate Pattern Matching applications on AP, and we proposed the cascadeable macros

to ultimately minimize the reconfiguration overhead. By taking in the following inputs - the types

of APM paradigms, the desired pattern length, and the allowed number of errors as input - our

framework can generate the optimized APM-automata codes on AP, so as to improve program-

mer productivity. The generated codes can also maximize the reuse of pre-compiled macros and

significantly reduce the time for reconfiguration. We evaluated our framework by comparing to

state-of-the-art research using non-macros or conventional macros with real-world datasets. The

experimental results showed that our generated codes can achieve up to 30.5x and 12.8x speedup

with respect to configuration while maintaining the computational performance. Compared to the

counterparts on CPU, our codes achieved up to 393x overall speedup, even when including the re-

configuration costs. We highlighted the importance of counting the configuration time towards the

overall performance on AP, which would provide better insight in identifying essential hardware

features, specifically for large-scale problem sizes.

In Chapter 5, we presented a GPU-based static Android program analysis framework for the se-

curity vetting. We focused on the IDFG constructions since it is the core of Android program

131

analysis and takes most part of the overall analyzing time (up to 96%). We found our plain GPU

implementation largely underutilized the GPU’s capacity due to the following four major perfor-

mance bottlenecks: frequent dynamic memory allocation, the branch divergences, load imbalance,

and the irregular memory access pattern. Accordingly, we leveraged the application-specific char-

acteristics and proposed three advanced optimizations, including matrix-based data structure for

data-facts, memory access pattern based node grouping, and worklist merging. The matrix-based

data structure was also designed to reduce memory consumption. Our experiment results showed

that the matrix-based data structure for data-facts and worklist merging optimizations can signif-

icantly improve the performance compared to the plain GPU implementation, while the memory

access pattern based node grouping optimization can slightly improve the performance. The opti-

mal GPU implementation can achieve up to 128X speedups against plain GPU optimization. The

matrix-based data structure optimization also can save 75% memory space on average compared

to the original set-based data structure.

In Chapter 6, we found that it is unclear how different cache parameters influence the attacks suc-

cess rates. This question remained open because it was extremely difficult to conduct comparative

measurements. The difficulty came from the unavailability of the configurable caches in existing

CPU products. Accordingly, we proposed the methodology to fairly measure the attacks’ perfor-

mances under different cache configurations. In our measurement design, we defined the equiva-

lent key length (EKL) to describe the attacks success rates and proposed the quantifiable success

rate metric to make the cache-attack performances comparable. We utilize the GEM5 platform to

measure the impacts of different cache parameters, including Private and Shared Caches’ Size and

Associativity, Cacheline Size, Replacement Policy, and Clusivity. Key findings from the measure-

ment results included (i) private cache has a key effect on the attacks success rates; (ii) changing

shared cache has a trivial effect on the success rates, but adding neighbor processes can make the

effect significant; (iii) the Random replacement policy leads to the highest success rates while the

LRU/LFU are the other way around; (iv) the exclusive policy makes the attacks harder to succeed

compared to the inclusive policy. We finally leveraged these findings to provide suggestions to the

attackers and defenders as well as the future system designers.

132

7.2 Future Work

There still is plenty of research spaces at the intersection of high-performance computing and cy-

bersecurity. In the following, we explore the potential research opportunities in the three subareas

of security, including network security, program security, and system security, then discuss the

future research directions, respectively.

7.2.1 High-Performance Network Security

The main goal of Chapter 3 is to demonstrate the O3FA idea and engine design; in the future, we

aim to deploy this engine on real hardware. In particular, because the automata in O3FA can operate

concurrently, the O3FA engine can be implemented on parallel architectures such as FPGAs [125]

and GPGPUs [25], potentially leading to higher traversal efficiency. Moreover, since the size of

the O3FA state buffer is typically at the KB level, better performance can be achieved by storing

this buffer in SRAM (rather than in DRAM).

We also can implement the O3FA on Automata processor using our ROBOTOMATA framework.

Since O3FA uses automata processing as its computational core, AP is a suitable platform to ac-

celerate O3FA implementation. Moreover, since O3FA contains a regular DFA which can be large

and complicated, using hierarchical construction and cascadeable macro in our ROBOTOMATA

framework can ultimately optimize the O3FA implementation.

7.2.2 High-Performance Program Security

Currently, our GPU-based framework focuses on accelerating the construction of Android program

IDFG on GPU.We leave the plugins for various vetting tasks in CPU. In the future, we can consider

moving the plugins into GPU as well to minimize the slow data transfers between CPU and GPU.

The plugin and the IDFG construction should be implemented as two GPU kernels, and the plu-

gin kernel should launch the IDFG construction kernel. Such realization should involve dynamic

133

parallelism (DP) technique. Using DP requires fine-grained application-specific optimizations to

minimize the kernel launching overhead.

IDFG construction is also the core of program analyses for many other languages. In the future, we

can consider generalizing our GPU implementation to support the static security checks for other

languages. Moreover, we can extend the generic GPU IDFG construction framework to make it

portable to other parallel platforms including FPGAs, Intel Xeon Phis, and GPU clusters.

7.2.3 High-Performance System Security

We can extend our comparative measurement for cache side-channel attacks to answer some other

interesting in-depth questions.

Are this measurement’s approach, findings, and conclusions transferable to other cache side-

channel attacks? To answer this question, we should extend our experiment to measure the per-

formances of other side-channel attacks. However, as mentioned in Section 6.6, we might need

to modify the current measurement design to fit other attacks. For example, with the purpose of

measuring the performance of the access-driven attacks on GEM5, one needs to run malicious

processes concurrently with the victim crypto process on the GEM5 platform.

Do the RISC-based embedded systems’ cache configurations have the same impacts? In order to

answer it, we plan to measure the attacks’ performance on the Rocket emulator [192] whose cache

also can be configured. Different from the GEM5 that implements the CISC ISA, the Rocket im-

plements the RISC-V specification and can emulate the SoC embedded platforms. This extension

will complete our measurement by covering all scale systems from embedded to server systems.

How accurate is this emulation-based measurement? Can we apply the conclusions to predict

the cache timing attack vulnerability of unseen systems? Though the GEM5-based measurement

results can largely reflect the real hardware’s impacts, according to the limitation stated in Sec-

tion 6.6, they might not exactly match the actual performances on modern commodity CPUs. In

the future, we can run the attacks on real CPUs with corresponding cache configurations to exam-

134

ine the deviations, and then try to use the statistic approaches to model these deviations. Moreover,

inspired by the works that model and predict the system performance variability [193, 194, 195],

we can build the vulnerability prediction model based on the measurement and deviation analysis

results. The possible linear and nonlinear statistic tools that we can leverage to build the model

include linear Shepard and Delaunay triangulation. This model will be useful to predict the success

rates of cache attacks on the unseen systems. The predictions can provide implications for future

system designs to reduce the cache-attack vulnerability.

Bibliography

[1] J. Newsome, B. Karp, and D. Song. Polygraph: automatically generating signatures for

polymorphic worms. In 2005 IEEE Symposium on Security and Privacy (S&P’05), pages

226–241, May 2005.

[2] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection signa-

tures with context. In Proceedings of the 10th ACM Conference on Computer and Commu-

nications Security, CCS ’03, pages 262–271, New York, NY, USA, 2003. ACM.

[3] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan Osipkov.

Spamming botnets: Signatures and characteristics. In Proceedings of the ACM SIGCOMM

2008 Conference on Data Communication, SIGCOMM ’08, pages 171–182, New York, NY,

USA, 2008. ACM.

[4] Antonio Carzaniga, Matthew J Rutherford, and Alexander L Wolf. A routing scheme for

content-based networking. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies, volume 2, pages 918–928. IEEE, 2004.

[5] Yaxuan Qi, Kai Wang, Jeffrey Fong, Yibo Xue, Jun Li, Weirong Jiang, and Viktor Prasanna.

Feacan: Front-end acceleration for content-aware network processing. In INFOCOM, 2011

Proceedings IEEE, pages 2114–2122. IEEE, 2011.

135

136

[6] Vern Paxson. End-to-end internet packet dynamics. In Proceedings of the ACM SIGCOMM

’97 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’97, pages 139–152, New York, NY, USA, 1997. ACM.

[7] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don Towsley. Mea-

surement and classification of out-of-sequence packets in a tier-1 ip backbone. IEEE/ACM

Trans. Netw., 15(1):54–66, February 2007.

[8] Sarang Dharmapurikar and Vern Paxson. Robust tcp stream reassembly in the presence

of adversaries. In Proceedings of the 14th Conference on USENIX Security Symposium -

Volume 14, SSYM’05, pages 5–5, Berkeley, CA, USA, 2005. USENIX Association.

[9] Thomas H Ptacek and Timothy N Newsham. Insertion, evasion, and denial of service: Elud-

ing network intrusion detection. Technical report, SECURE NETWORKS INC CALGARY

ALBERTA, 1998.

[10] Alan E Saldinger, James Ding, and Shirish K Sathe. Method and apparatus for ensuring

atm cell order in multiple cell transmission lane switching system, July 20 1999. US Patent

5,926,475.

[11] Alan Stanley John Chapman and Hsiang-Tsung Kung. Method and apparatus for re-ordering

data packets in a network environment, June 12 2001. US Patent 6,246,684.

[12] Aswinkumar Vishanji Rana and Corey Alan Garrow. Queue engine for reassembling and

reordering data packets in a network, August 24 2004. US Patent 6,781,992.

[13] Meng Zhang and Jiu-bin Ju. Space-economical reassembly for intrusion detection system.

In International Conference on Information and Communications Security, pages 393–404.

Springer, 2003.

[14] Xinming Chen, Kailin Ge, Zhen Chen, and Jun Li. Ac-suffix-tree: Buffer free string match-

ing on out-of-sequence packets. In Architectures for Networking and Communications Sys-

tems (ANCS), 2011 Seventh ACM/IEEE Symposium on, pages 36–44. IEEE, 2011.

137

[15] Theodore Johnson, SMuthukrishnan, and Irina Rozenbaum. Monitoring regular expressions

on out-of-order streams. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference on, pages 1315–1319. IEEE, 2007.

[16] Xiaodong Yu, Wu-chun Feng, Danfeng (Daphne) Yao, and Michela Becchi. O3FA: A Scal-

able Finite Automata-based Pattern-Matching Engine for Out-of-Order Deep Packet Inspec-

tion. In Proceedings of the 2016 Symposium on Architectures for Networking and Commu-

nications Systems, ANCS ’16, pages 1–11, New York, NY, USA, 2016. ACM.

[17] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner.

Algorithms to accelerate multiple regular expressions matching for deep packet inspection.

In ACM SIGCOMM Computer Communication Review, volume 36, pages 339–350. ACM,

2006.

[18] Sailesh Kumar, Jonathan Turner, and John Williams. Advanced algorithms for fast and scal-

able deep packet inspection. In Architecture for Networking and Communications systems,

2006. ANCS 2006. ACM/IEEE Symposium on, pages 81–92. IEEE, 2006.

[19] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George Varghese. Cur-

ing regular expressions matching algorithms from insomnia, amnesia, and acalculia. In

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Com-

munications Systems, ANCS ’07, pages 155–164, New York, NY, USA, 2007. ACM.

[20] Michela Becchi and Patrick Crowley. A hybrid finite automaton for practical deep packet

inspection. In Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT ’07, pages

1:1–1:12, New York, NY, USA, 2007. ACM.

[21] Michela Becchi and Patrick Crowley. An improved algorithm to accelerate regular expres-

sion evaluation. In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Net-

working and Communications Systems, ANCS ’07, pages 145–154, New York, NY, USA,

2007. ACM.

138

[22] Michela Becchi and Patrick Crowley. Extending finite automata to efficiently match perl-

compatible regular expressions. In Proceedings of the 2008 ACM CoNEXT Conference,

page 25. ACM, 2008.

[23] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating the big bang: Fast and

scalable deep packet inspection with extended finite automata. In Proceedings of the ACM

SIGCOMM 2008 Conference on Data Communication, SIGCOMM ’08, pages 207–218,

New York, NY, USA, 2008. ACM.

[24] Alex X Liu and Eric Torng. An overlay automata approach to regular expression matching.

In INFOCOM, 2014 Proceedings IEEE, pages 952–960. IEEE, 2014.

[25] Xiaodong Yu and Michela Becchi. GPU Acceleration of Regular Expression Matching for

Large Datasets: Exploring the Implementation Space. In Proceedings of the ACM Inter-

national Conference on Computing Frontiers, CF ’13, pages 18:1–18:10, New York, NY,

USA, 2013. ACM.

[26] X. Yu, B. Lin, and M. Becchi. Revisiting state blow-up: Automatically building augmented-

fa while preserving functional equivalence. IEEE Journal on Selected Areas in Communi-

cations, 32(10):1822–1833, Oct 2014.

[27] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. infant: Nfa pat-

tern matching on gpGPU devices. SIGCOMM Comput. Commun. Rev., 40(5):20–26, Octo-

ber 2010.

[28] Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression matching using FPGAs. In

Proceedings of the the 9th Annual IEEE Symposium on Field-Programmable Custom Com-

puting Machines, FCCM ’01, pages 227–238, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[29] Michela Becchi and Patrick Crowley. Efficient regular expression evaluation: Theory to

practice. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, ANCS ’08, pages 50–59, New York, NY, USA, 2008. ACM.

139

[30] AbhishekMitra, Walid Najjar, and Laxmi Bhuyan. Compiling pcre to FPGA for accelerating

snort ids. In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking

and Communications Systems, ANCS ’07, pages 127–136, New York, NY, USA, 2007.

ACM.

[31] Yi-Hua E Yang, Weirong Jiang, and Viktor K Prasanna. Compact architecture for high-

throughput regular expression matching on FPGA. In Proceedings of the 4th ACM/IEEE

Symposium on Architectures for Networking and Communications Systems, pages 30–39.

ACM, 2008.

[32] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. Optimizing burrows-wheeler

transform-based sequence alignment on multicore architectures. In 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, pages 377–384. IEEE,

2013.

[33] Da Zhang, Hao Wang, Kaixi Hou, Jing Zhang, and Wu chun Feng. pDindel: Accelerating

InDel Detection on a Multicore CPU Architecture with SIMD. In 2015 IEEE 5th Inter-

national Conference on Computational Advances in Bio and Medical Sciences (ICCABS),

pages 1–6, Oct 2015.

[34] Jing Zhang, Sanchit Misra, Hao Wang, and Wu-chun Feng. mublastp: database-indexed

protein sequence search on multicore cpus. BMC bioinformatics, 17(1):443, 2016.

[35] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-Chun Feng. Directive-

based pipelining extension for openmp. In 2016 IEEE International Conference on Cluster

Computing (CLUSTER), pages 481–484. IEEE, 2016.

[36] K. Hou, W. c. Feng, and S. Che. Auto-tuning strategies for parallelizing sparse matrix-vector

(spmv) multiplication on multi- and many-core processors. In 2017 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2017.

140

[37] Jing Zhang, Sanchit Misra, Hao Wang, and Wu-chun Feng. Eliminating irregularities of

protein sequence search on multicore architectures. In 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 62–71. IEEE, 2017.

[38] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. An evaluation of unified memory

technology on nvidia GPUs. In 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 1092–1098. IEEE, 2015.

[39] X. Yu, H. Wang, W. C. Feng, H. Gong, and G. Cao. cuART: Fine-Grained Algebraic Recon-

struction Technique for Computed Tomography Images on GPUs. In 2016 16th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016.

[40] K. Hou, H. Wang, W. Feng, J. Vetter, and S. Lee. Highly Efcient Compensation-based

Parallelism for Wavefront Loops on GPUs. In IEEE Int. Parallel and Distrib. Process.

Symp. (IPDPS), 2018.

[41] Jing Zhang, HaoWang, andWu-chun Feng. cublastp: Fine-grained parallelization of protein

sequence search on cpu+ GPU. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 14(4):830–843, 2017.

[42] Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. Fast Segmented Sort on GPUs.

In Proceedings of the 2017 International Conference on Supercomputing, ICS ’17. ACM,

2017.

[43] Xuewen Cui and Wu-chun Feng. Iterative machine learning (iterml) for effective parameter

pruning and tuning in accelerators. In Proceedings of the 16th ACM International Confer-

ence on Computing Frontiers, pages 16–23. ACM, 2019.

[44] K. Hou, H. Wang, and W. c. Feng. Delivering Parallel Programmability to the Masses via

the Intel MIC Ecosystem: A Case Study. In 2014 43rd International Conference on Parallel

Processing Workshops, pages 273–282, Sept 2014.

141

[45] Kaixi Hou, Hao Wang, and Wu-chun Feng. ASPaS: A Framework for Automatic SIMDiza-

tion of Parallel Sorting on x86-based Many-core Processors. In Proceedings of the 29th

ACM on International Conference on Supercomputing, ICS ’15, pages 383–392, New York,

NY, USA, 2015. ACM.

[46] K. Hou, H. Wang, and W. C. Feng. AAlign: A SIMD Framework for Pairwise Sequence

Alignment on x86-Based Multi-and Many-Core Processors. In 2016 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 780–789, May 2016.

[47] Kaixi Hou, Hao Wang, and Wu-chun Feng. A Framework for the Automatic Vectorization

of Parallel Sort on x86-based Processors. IEEE Trans. Parallel Distrib. Syst. (TPDS), 2018.

[48] Kaixi Hou. Exploring Performance Portability for Accelerators via High-level Parallel

Patterns. PhD thesis, Virginia Tech, 2018.

[49] Jing Zhang, Hao Wang, Heshan Lin, and Wu-chun Feng. cuBLASTP: Fine-Grained Par-

allelization of Protein Sequence Search on a GPU. In IEEE International Parallel and

Distributed Processing Symposium, Phoenix, Arizona, USA, 2014.

[50] Xiaodong Yu and Michela Becchi. Exploring Different Automata Representations for Effi-

cient Regular Expression Matching on GPUs. SIGPLAN Not., 2013.

[51] Xiaodong Yu. Deep packet inspection on large datasets: algorithmic and parallelization

techniques for accelerating regular expression matching on many-core processors. Univer-

sity of Missouri-Columbia, 2013.

[52] Xiaodong Yu, Hao Wang, Wu-chun Feng, Hao Gong, and Guohua Cao. An enhanced image

reconstruction tool for computed tomography on GPUs. In Proceedings of the Computing

Frontiers Conference, CF’17. ACM, 2017.

[53] Kaixi Hou, Hao Wang, and Wu-chun Feng. GPU-unicache: Automatic code generation of

spatial blocking for stencils on GPUs. In Proceedings of the ACMConference on Computing

Frontiers, CF ’17. ACM, 2017.

142

[54] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-chun Feng. Directive-

based partitioning and pipelining for graphics processing units. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 575–584. IEEE, 2017.

[55] Jing Zhang, Ashwin M Aji, Michael L Chu, Hao Wang, and Wu-chun Feng. Taming irreg-

ular applications via advanced dynamic parallelism on GPUs. In Proceedings of the 15th

ACM International Conference on Computing Frontiers, pages 146–154. ACM, 2018.

[56] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-

ming with CUDA. In ACM SIGGRAPH 2008 classes, page 16. ACM, 2008.

[57] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and

scalable semiconductor architecture for parallel automata processing. IEEE Transactions

on Parallel and Distributed Systems, 25(12):3088–3098, Dec 2014.

[58] Micron Technology. PCRE Programmers Reference.

http://www.micronautomata.com/apsdk˙documentation/latest/h1˙pcre.html.

[59] Micron Technology. String Matching Programmers Reference.

http://www.micronautomata.com/apsdk˙documentation/latest/h1˙string.html.

[60] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential pattern mining with the micron

automata processor. In Proceedings of the ACM International Conference on Computing

Frontiers, CF ’16, pages 135–144, New York, NY, USA, 2016. ACM.

[61] Indranil Roy and Srinivas Aluru. Finding motifs in biological sequences using the micron

automata processor. In Proceedings of the 2014 IEEE 28th International Parallel and Dis-

tributed Processing Symposium, IPDPS ’14, pages 415–424, Washington, DC, USA, 2014.

IEEE Computer Society.

[62] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. Towards Machine

Learning on the Automata Processor, pages 200–218. Springer International Publishing,

Cham, 2016.

143

[63] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru. High performance pattern

matching using the automata processor. In 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 1123–1132, May 2016.

[64] I. Roy, N. Jammula, and S. Aluru. Algorithmic techniques for solving graph problems on

the automata processor. In 2016 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 283–292, May 2016.

[65] Fast track pattern recognition in high energy physics experiments with the automata proces-

sor. arXiv preprint arXiv:1602.08524, 2016.

[66] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan, and K. Skadron.

Generating efficient and high-quality pseudo-random behavior on automata processors. In

2016 IEEE 34th International Conference on Computer Design (ICCD), pages 622–629,

Oct 2016.

[67] C. Bo, K. Wang, J. J. Fox, and K. Skadron. Entity resolution acceleration using the automata

processor. In 2016 IEEE International Conference on Big Data (Big Data), pages 311–318,

Dec 2016.

[68] C. Bo, K. Wang, Y. Qi, and K. Skadron. String kernel testing acceleration using the mi-

cron automata processor. In the 1st International Workshop on Computer Architecture for

Machine Learning (CAMEL), in conjunction with the 42nd International Symposium on

Computer Architecture (ISCA 2015), 2015.

[69] Kevin Angstadt, Westley Weimer, and Kevin Skadron. Rapid programming of pattern-

recognition processors. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16,

pages 593–605, New York, NY, USA, 2016. ACM.

[70] X. Yu, K. Hou, H. Wang, and W. c. Feng. A framework for fast and fair evaluation of

automata processing hardware. In 2017 IEEE International Symposium on Workload Char-

acterization (IISWC), pages 120–121, Oct 2017.

144

[71] X. Yu, K. Hou, H. Wang, and W. c. Feng. Robotomata: A framework for approximate pat-

tern matching of big data on an automata processor. In 2017 IEEE International Conference

on Big Data (Big Data), 2017.

[72] Gartner. Gartner says worldwide sales of smartphones returned to growth in first quarter of

2018, 2018. https://www.gartner.com/newsroom/id/3876865.

[73] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-

application communication in android. In Proceedings of the 9th international conference

on Mobile systems, applications, and services, pages 239–252. ACM, 2011.

[74] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Lan-

don P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an

information-flow tracking system for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[75] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks: automati-

cally detecting potential privacy leaks in android applications on a large scale. In Interna-

tional Conference on Trust and Trustworthy Computing, pages 291–307. Springer, 2012.

[76] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android taint flow

analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on

the State of the Art in Java Program Analysis, pages 1–6. ACM, 2014.

[77] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue, and

Wei Huo. Libd: scalable and precise third-party library detection in android markets. In

Software Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on, pages

335–346. IEEE, 2017.

[78] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques

Klein, and Yves Le Traon. Effective inter-component communication mapping in android:

An essential step towards holistic security analysis. In Presented as part of the 22nd

145

USENIX Security Symposium (USENIX Security 13), pages 543–558, Washington, D.C.,

2013. USENIX.

[79] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre Bartel, Li Li,

Jacques Klein, and Yves Le Traon. Combining static analysis with probabilistic models

to enable market-scale android inter-component analysis. In ACM SIGPLAN Notices, vol-

ume 51, pages 469–484. ACM, 2016.

[80] TrendMicro. In review: 2016s mobile threat landscape brings diversity, scale, and

scope, 2017. https://blog.trendmicro.com/trendlabs-security-intelligence/2016-mobile-

threat-landscape/.

[81] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-An, Gregg Rothermel, and Jackson Dinh.

An efficient, robust, and scalable approach for analyzing interacting android apps. In Pro-

ceedings of the 39th International Conference on Software Engineering, pages 324–334.

IEEE Press, 2017.

[82] Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang Wang. Collusive data leak

and more: Large-scale threat analysis of inter-app communications. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, pages 71–85.

ACM, 2017.

[83] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan

Notices, 49(6):259–269, 2014.

[84] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven

Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. IccTA:

Detecting Inter-component Privacy Leaks in Android Apps. In Proceedings of the 37th

International Conference on Software Engineering - Volume 1, ICSE ’15, pages 280–291.

IEEE Press, 2015.

146

[85] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of android apps. In Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 1329–1341. ACM, 2014.

[86] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised learning

using graphics processors. In Proceedings of the 26th annual international conference on

machine learning, pages 873–880. ACM, 2009.

[87] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. Eigencfa: Accelerat-

ing flow analysis with GPUs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’11, pages 511–522, New

York, NY, USA, 2011. ACM.

[88] Francesco Banterle and Roberto Giacobazzi. A fast implementation of the octagon abstract

domain on graphics hardware. In International Static Analysis Symposium, pages 315–332.

Springer, 2007.

[89] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. Parallel inclusion-based

points-to analysis. In Proceedings of the ACM International Conference on Object Ori-

ented Programming Systems Languages and Applications, OOPSLA ’10, pages 428–443,

New York, NY, USA, 2010. ACM.

[90] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU implementation of

inclusion-based points-to analysis. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’12, pages 107–116, NewYork,

NY, USA, 2012. ACM.

[91] Aws Albarghouthi, Rahul Kumar, Aditya V. Nori, and Sriram K. Rajamani. Parallelizing

top-down interprocedural analyses. In Proceedings of the 33rd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’12, pages 217–228, New

York, NY, USA, 2012. ACM.

147

[92] Sandeep Putta and Rupesh Nasre. Parallel replication-based points-to analysis. In Interna-

tional Conference on Compiler Construction, pages 61–80. Springer, 2012.

[93] Yu Su, Ding Ye, and Jingling Xue. Parallel pointer analysis with cfl-reachability. In 2014

43nd International Conference on Parallel Processing (ICPP), pages 451–460. IEEE, 2014.

[94] Yu Su, Ding Ye, and Jingling Xue. Accelerating inclusion-based pointer analysis on hetero-

geneous CPU-GPU systems. In High Performance Computing (HiPC), 2013 20th Interna-

tional Conference on, pages 149–158. IEEE, 2013.

[95] Yu Su, Ding Ye, Jingling Xue, and Xiang-Ke Liao. An efficient GPU implementation of

inclusion-based pointer analysis. IEEE Transactions on Parallel and Distributed Systems,

27(2):353–366, 2016.

[96] Vaivaswatha Nagaraj and R Govindarajan. Parallel flow-sensitive pointer analysis by graph-

rewriting. In Proceedings of the 22nd international conference on Parallel architectures and

compilation techniques, pages 19–28. IEEE Press, 2013.

[97] Nvidia. Cusparse library. NVIDIA Corporation, Santa Clara, California, 2014.

[98] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In Advances in Cryptology — CRYPTO ’96, pages 104–113. Springer,

1996.

[99] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. IACR

Cryptology ePrint Archive, 2002(169), 2002.

[100] Kris Tiri, Onur Acıiçmez, Michael Neve, and Flemming Andersen. An Analytical Model

for Time-Driven Cache Attacks. In Fast Software Encryption, pages 399–413. Springer,

2007.

[101] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,

Jann Horn, StefanMangard, Paul Kocher, Daniel Genkin, Yuval Yarom, andMike Hamburg.

148

Meltdown: Reading Kernel Memory fromUser Space. In 27th USENIX Security Symposium

(USENIX Security 18), pages 973–990. USENIX Association, 2018.

[102] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-Level Cache

Side-Channel Attacks are Practical. In 2015 IEEE Symposium on Security and Privacy,

pages 605–622, 2015.

[103] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: a High Resolution, Low Noise, L3

Cache Side-Channel Attack. In USENIX Security Symposium, pages 719–732, 2014.

[104] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+Flush: A

Fast and Stealthy Cache Attack. In Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 279–299. Springer, 2016.

[105] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and

Ruby B Lee. Catalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud Com-

puting. In 2016 IEEE international symposium on high performance computer architecture

(HPCA), pages 406–418. IEEE, 2016.

[106] Daniel J Bernstein. Cache-Timing Attacks on AES. 2005.

[107] Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks Against AES. In Cryp-

tographic Hardware and Embedded Systems - CHES 2006, pages 201–215. Springer, 2006.

[108] Billy Bob Brumley and Risto M. Hakala. Cache-Timing Template Attacks. In Advances in

Cryptology – ASIACRYPT 2009, pages 667–684. Springer, 2009.

[109] Xiaodong Yu, Ya Xiao, Kirk Cameron, and Danfeng Daphne Yao. Comparative mea-

surement of cache configurations impacts on cache timing side-channel attacks. In 12th

{USENIX} Workshop on Cyber Security Experimentation and Test ({CSET} 19), 2019.

[110] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

149

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.

Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[111] Mohammad Alian, Ahmed HMO Abulila, Lokesh Jindal, Daehoon Kim, and Nam Sung

Kim. Ncap: Network-driven, Packet Context-aware Power Management for Client-Server

Architecture. In 2017 IEEE International Symposium on High Performance Computer Ar-

chitecture (HPCA), pages 25–36. IEEE, 2017.

[112] D. Zhang, V. Sridharan, and X. Jian. Exploring and Optimizing Chipkill-Correct for Persis-

tent Memory Based on High-Density NVRAMs. In 2018 51st Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 710–723, 2018.

[113] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still Practical. In

Computer Security – ESORICS 2011, pages 355–371. Springer, 2011.

[114] Hassan Aly andMohammed ElGayyar. Attacking AES Using Bernstein’s Attack onModern

Processors. In Progress in Cryptology – AFRICACRYPT 2013, pages 127–139. Springer,

2013.

[115] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,

languages, and computation, 2nd edition. SIGACT News, 32(1):60–65, March 2001.

[116] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A scalable architecture for high-

throughput regular-expression pattern matching. In Proceedings of the 33rd Annual Interna-

tional Symposium on Computer Architecture, ISCA ’06, pages 191–202, Washington, DC,

USA, 2006. IEEE Computer Society.

[117] Shijin Kong, Randy Smith, and Cristian Estan. Efficient signature matching with multiple

alphabet compression tables. In Proceedings of the 4th international conference on Security

and privacy in communication netowrks, page 1. ACM, 2008.

150

[118] Jignesh Patel, Alex X Liu, and Eric Torng. Bypassing space explosion in high-speed regular

expression matching. IEEE/ACM Transactions on Networking (TON), 22(6):1701–1714,

2014.

[119] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni Antichi, and

Andrea Di Pietro. An improved dfa for fast regular expression matching. ACM SIGCOMM

Computer Communication Review, 38(5):29–40, 2008.

[120] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and

memory-efficient regular expression matching for deep packet inspection. In Proceedings

of the 2006 ACM/IEEE Symposium on Architecture for Networking and Communications

Systems, ANCS ’06, pages 93–102, New York, NY, USA, 2006. ACM.

[121] George Varghese, J Andrew Fingerhut, and Flavio Bonomi. Detecting evasion attacks at

high speeds without reassembly. In ACM SIGCOMM Computer Communication Review,

volume 36, pages 327–338. ACM, 2006.

[122] Michela Becchi, Charlie Wiseman, and Patrick Crowley. Evaluating regular expression

matching engines on network and general purpose processors. In Proceedings of the 5th

ACM/IEEE Symposium on Architectures for Networking and Communications Systems,

ANCS ’09, pages 30–39, New York, NY, USA, 2009. ACM.

[123] Piti Piyachon and Yan Luo. Efficient memory utilization on network processors for deep

packet inspection. In Proceedings of the 2006 ACM/IEEE symposium on Architecture for

networking and communications systems, pages 71–80. ACM, 2006.

[124] Subramanian Shiva Shankar, Lin PinXing, and Andreas Herkersdorf. Deep packet inspec-

tion in residential gateways and routers: Issues and challenges. In Integrated Circuits (ISIC),

2014 14th International Symposium on, pages 560–563. IEEE, 2014.

[125] Christopher R Clark and David E Schimmel. Efficient reconfigurable logic circuits for

matching complex network intrusion detection patterns. In International Conference on

Field Programmable Logic and Applications, pages 956–959. Springer, 2003.

151

[126] Ioannis Sourdis, João Bispo, Joao MP Cardoso, and Stamatis Vassiliadis. Regular expres-

sion matching in reconfigurable hardware. Journal of Signal Processing Systems, 51(1):99–

121, 2008.

[127] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. Fast support for

unstructured data processing: The unified automata processor. In Proceedings of the 48th

International Symposium on Microarchitecture, MICRO-48, pages 533–545, New York,

NY, USA, 2015. ACM.

[128] Chad R Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X Liu. Fast regular

expression matching using small tcams for network intrusion detection and prevention sys-

tems. In Proceedings of the 19th USENIX conference on Security, pages 8–8. USENIX

Association, 2010.

[129] Chad R Meiners, Alex X Liu, and Eric Torng. Bit weaving: A non-prefix approach to

compressing packet classifiers in tcams. IEEE/ACM Transactions on Networking (ToN),

20(2):488–500, 2012.

[130] Kunyang Peng, Siyuan Tang, Min Chen, and Qunfeng Dong. Chain-based dfa deflation

for fast and scalable regular expression matching using tcam. In Proceedings of the 2011

ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Sys-

tems, pages 24–35. IEEE Computer Society, 2011.

[131] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: a GPU-

accelerated software router. ACM SIGCOMM Computer Communication Review,

41(4):195–206, 2011.

[132] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P Markatos, and

Sotiris Ioannidis. Gnort: High performance network intrusion detection using graphics

processors. In International Workshop on Recent Advances in Intrusion Detection, pages

116–134. Springer, 2008.

152

[133] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P Markatos, and

Sotiris Ioannidis. Regular expression matching on graphics hardware for intrusion detec-

tion. In International Workshop on Recent Advances in Intrusion Detection, pages 265–283.

Springer, 2009.

[134] Randy Smith, Neelam Goyal, Justin Ormont, Karthikeyan Sankaralingam, and Cristian Es-

tan. Evaluating GPUs for network packet signature matching. In Performance Analysis of

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 175–

184. IEEE, 2009.

[135] K. Wang, Y. Qi, J. J. Fox, M. R. Stan, and K. Skadron. Association rule mining with the

micron automata processor. In Parallel and Distributed Processing Symposium (IPDPS),

2015 IEEE International, pages 689–699, May 2015.

[136] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela Becchi. De-

mystifying automata processing: GPUs, FPGAs or micron’s AP? In Proceedings of the

International Conference on Supercomputing, ICS ’17. ACM, 2017.

[137] Tiffany Ly, Rituparna Sarkar, Kevin Skadron, and Scott T Acton. Feature extraction and

image retrieval on an automata structure. In Signals, Systems and Computers, 2016 50th

Asilomar Conference on, pages 566–570. IEEE, 2016.

[138] I. Roy, A. Srivastava, and S. Aluru. Programming techniques for the automata processor.

In 2016 45th International Conference on Parallel Processing (ICPP), pages 205–210, Aug

2016.

[139] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron. Brill tagging on the micron

automata processor. In Proceedings of the 2015 IEEE 9th International Conference on

Semantic Computing (IEEE ICSC 2015), pages 236–239, Feb 2015.

[140] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, and G. Robins. Non-

deterministic finite automata in hardware : the case of the levenshtein automaton. In 5th

153

International Workshop on Architectures and Systems for Big Data (ASBD), in conjunction

with the 42nd International Symposium on Computer Architecture (ISCA 2015), 2015.

[141] J. Wadden, V. Dang, N. Brunelle, T. T. II, D. Guo, E. Sadredini, K. Wang, C. Bo, G. Robins,

M. Stan, and K. Skadron. Anmlzoo: a benchmark suite for exploring bottlenecks in au-

tomata processing engines and architectures. In 2016 IEEE International Symposium on

Workload Characterization (IISWC), pages 1–12, Sept 2016.

[142] Ke Tian, Danfeng Yao, Barbara G Ryder, and Gang Tan. Analysis of code heterogeneity for

high-precision classification of repackaged malware. In 2016 IEEE Security and Privacy

Workshops (SPW), pages 262–271. IEEE, 2016.

[143] Ke Tian, Danfeng Daphne Yao, Barbara G Ryder, Gang Tan, and Guojun Peng. Detection

of repackaged android malware with code-heterogeneity features. IEEE Transactions on

Dependable and Secure Computing, 2017.

[144] Ke Tian, Gang Tan, Danfeng Daphne Yao, and Barbara G Ryder. Redroid: Prioritizing data

flows and sinks for app security transformation. In Proceedings of the 2017 Workshop on

Forming an Ecosystem Around Software Transformation, pages 35–41. ACM, 2017.

[145] Ke Tian, Zhou Li, Kevin D Bowers, and Danfeng Daphne Yao. Framehanger: Evaluating

and classifying iframe injection at large scale. In International Conference on Security and

Privacy in Communication Systems, pages 311–331. Springer, 2018.

[146] Ke Tian, Steve TK Jan, Hang Hu, Danfeng Yao, and Gang Wang. Needle in a haystack:

tracking down elite phishing domains in the wild. In Proceedings of the Internet Measure-

ment Conference 2018, pages 429–442. ACM, 2018.

[147] Ke Tian. Learning-based Cyber Security Analysis and Binary Customization for Security.

PhD thesis, Virginia Tech, 2018.

154

[148] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and

Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it feasible? In

International conference on compiler construction, pages 18–34. Springer, 2000.

[149] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 49–61. ACM, 1995.

[150] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Highly precise taint analysis

for android applications. , EC SPRIDE, 2013.

[151] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques

Klein, and Yves Le Traon. Effective inter-component communication mapping in android:

An essential step towards holistic security analysis. In the 22nd USENIX Security Sympo-

sium (USENIX Security 13), pages 543–558, Washington, D.C., 2013. USENIX.

[152] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel.

Composite constant propagation: Application to android inter-component communication

analysis. In Proceedings of the 37th International Conference on Software Engineering-

Volume 1, pages 77–88. IEEE Press, 2015.

[153] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and

Martin C. Rinard. Information flow analysis of android applications in droidsafe. In NDSS,

2015.

[154] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools keep their

promises? arXiv preprint arXiv:1804.02903, 2018.

[155] Darren C Atkinson and William G Griswold. Implementation techniques for efficient data-

flow analysis of large programs. In Proceedings of the IEEE International Conference on

Software Maintenance (ICSM’01), page 52. IEEE Computer Society, 2001.

155

[156] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms on the GPU us-

ing cuda. In International conference on high-performance computing, pages 197–208.

Springer, 2007.

[157] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating cuda

graph algorithms at maximum warp. In Proceedings of the 16th ACM Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’11, pages 267–276, 2011.

[158] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph traversal. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’12, pages 117–128, 2012.

[159] Jatin Chhugani, Nadathur Satish, Changkyu Kim, Jason Sewall, and Pradeep Dubey. Fast

and efficient graph traversal algorithm for cpus: Maximizing single-node efficiency. In Par-

allel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages

378–389. IEEE, 2012.

[160] Hang Liu and H Howie Huang. Enterprise: Breadth-first graph traversal on GPUs. In

High Performance Computing, Networking, Storage and Analysis, 2015 SC-International

Conference for, pages 1–12. IEEE, 2015.

[161] Federico Busato and Nicola Bombieri. An efficient implementation of the bellman-ford

algorithm for kepler GPU architectures. IEEE Transactions on Parallel and Distributed

Systems, 27(8):2222–2233, 2016.

[162] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.

Owens. Gunrock: A high-performance graph processing library on the GPU. In Proceedings

of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’16, pages 11:1–11:12, 2016.

[163] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis

with applications to constant propagation. Theoretical Computer Science, 167(1-2):131–

170, 1996.

156

[164] Derek Rayside and Kostas Kontogiannis. A generic worklist algorithm for graph reacha-

bility problems in program analysis. In Software Maintenance and Reengineering, 2002.

Proceedings. Sixth European Conference on, pages 67–76. IEEE, 2002.

[165] Hakjoo Oh. Large spurious cycle in global static analyses and its algorithmic mitigation. In

Asian Symposium on Programming Languages and Systems, pages 14–29. Springer, 2009.

[166] Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions to the

ifds algorithm. In International Conference on Compiler Construction, pages 124–144.

Springer, 2010.

[167] IBM. T.J. Watson Libraries for Analysis (WALA).

http://wala.sourceforge.net/wiki/index.php/Main˙Page.

[168] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In Proceedings of

the ACM SIGPLAN International Workshop on State of the Art in Java Program analysis,

pages 3–8. ACM, 2012.

[169] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-

daresan. Soot: A java bytecode optimization framework. In CASCON First Decade High

Impact Papers, pages 214–224. IBM Corp., 2010.

[170] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. CacheD: Identifying

Cache-based Timing Channels in Production Software. In 26th USENIX Security Sympo-

sium (USENIX Security 17), pages 235–252, 2017.

[171] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared Cache Attack that

Works Across Cores and Defies VM Sandboxing–and its Application to AES. In 2015

IEEE Symposium on Security and Privacy, pages 591–604. IEEE, 2015.

[172] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks: Automat-

ing Attacks on Inclusive Last-Level Caches. In 24th USENIX Security Symposium (USENIX

Security 15), pages 897–912. USENIX Association, 2015.

157

[173] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-aside

Buffer: Defeating Cache Side-channel Protections with TLB Attacks. In 27th USENIX

Security Symposium (USENIX Security 18), pages 955–972. USENIX Association, 2018.

[174] Heiko Mantel, Alexandra Weber, and Boris Köpf. A Systematic Study of Cache Side Chan-

nels Across AES Implementations. In Engineering Secure Software and Systems, pages

213–230. Springer, 2017.

[175] Sazzadur Rahaman and Danfeng Yao. Program Analysis of Cryptographic Implementations

for Security. In 2017 IEEE Cybersecurity Development (SecDev), pages 61–68. IEEE, 2017.

[176] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Dan-

feng (Daphne) Yao, and Murat Kantarcioglu. CryptoGuard: High Precision Detection of

Cryptographic Vulnerabilities in Massive-sized Java Projects. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2019.

[177] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke.

CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In 22nd USENIX

Security Symposium (USENIX Security 13), pages 431–446. USENIX, 2013.

[178] Randy Smith, Cristian Estan, and Somesh Jha. Xfa: Faster signature matching with extended

automata. In 2008 IEEE Symposium on Security and Privacy, pages 187–201. IEEE, 2008.

[179] Michela Becchi, Mark Franklin, and Patrick Crowley. A workload for evaluating deep

packet inspection architectures. In Workload Characterization, 2008. IISWC 2008. IEEE

International Symposium on, pages 79–89. IEEE, 2008.

[180] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,

33(1):31–88, March 2001.

[181] Indranil Roy, Ankit Srivastava, Matt Grimm, and Srinivas Aluru. Parallel interval stabbing

on the automata processor. In Proceedings of the Sixth Workshop on Irregular Applications:

Architectures and Algorithms, pages 10–17, Piscataway, NJ, USA, 2016. IEEE Press.

158

[182] Baeza-Yates and R. G. Navarro. Faster approximate string matching. Algorithmica,

23(2):127–158, 1999.

[183] Micron Technology. Guidelines for Building a Macro.

http://www.micronautomata.com/documentation/anml˙documentation/c˙macros.html.

[184] Kay Prfer, Udo Stenzel, Michael Dannemann, Richard E. Green, Michael Lachmann, and

Janet Kelso. Patman: rapid alignment of short sequences to large databases. Bioinformatics,

24(13):1530, 2008.

[185] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

[186] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact modular pro-

cedure summaries for heap manipulating programs. In ACM SIGPLAN Notices, volume 46,

pages 567–577. ACM, 2011.

[187] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. Jn-saf: Precise

and efficient ndk/jni-aware inter-language static analysis framework for security vetting of

android applications with native code. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages 1137–1150. ACM, 2018.

[188] Isaac Gelado and Michael Garland. Throughput-oriented GPU memory allocation. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming

(PPoPP ’19), pages 27–37. ACM, 2019.

[189] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi, and Steven K

Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro, (4):52–60,

2006.

[190] Milo MKMartin, Daniel J Sorin, Bradford M Beckmann, Michael RMarty, Min Xu, Alaa R

Alameldeen, Kevin E Moore, Mark D Hill, and David A Wood. Multifacet’s General

159

Execution-driven Multiprocessor Simulator (GEMS) Toolset. ACM SIGARCH Computer

Architecture News, 33(4):92–99, 2005.

[191] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-round DES. In Ad-

vances in Cryptology — CRYPTO’ 92, pages 487–496. Springer, 1993.

[192] Krste Asanovi, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,

Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar

Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin

Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian

Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The Rocket

Chip Generator. Number UCB/EECS-2016-17, Apr 2016.

[193] Thomas C. H. Lux, Layne T. Watson, Tyler H. Chang, Jon Bernard, Bo Li, Xiaodong Yu,

Li Xu, Godmar Back, Ali R. Butt, Kirk W. Cameron, Danfeng Yao, and Yili Hong. Novel

Meshes for Multivariate Interpolation and Approximation. In Proceedings of the ACMSE

2018 Conference, ACMSE ’18, pages 13:1–13:7. ACM, 2018.

[194] Thomas CH Lux, Layne TWatson, Tyler H Chang, Jon Bernard, Bo Li, Xiaodong Yu, Li Xu,

Godmar Back, Ali R Butt, Kirk W Cameron, Danfeng Yao, and Yili Hong. Nonparametric

Distribution Models for Predicting and Managing Computational Performance Variability.

In SoutheastCon 2018, pages 1–7. IEEE, 2018.

[195] Kirk W Cameron, Ali Anwar, Yue Cheng, Li Xu, Bo Li, Uday Ananth, Jon Bernard, Chan-

dler Jearls, Thomas Lux, Yili Hong, Layne T Watson, and Ali R Butt. Moana: Modeling

and Analyzing I/O Variability in Parallel System Experimental Design. IEEE Transactions

on Parallel and Distributed Systems, 2019.

