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Abstract
The activities we do are linked to our inter-
ests, personality, political preferences, and de-
cisions we make about the future. In this pa-
per, we explore the task of predicting human
activities from user-generated content. We
collect a dataset containing instances of social
media users writing about a range of everyday
activities. We then use a state-of-the-art sen-
tence embedding framework tailored to recog-
nize the semantics of human activities and per-
form an automatic clustering of these activi-
ties. We train a neural network model to make
predictions about which clusters contain activ-
ities that were performed by a given user based
on the text of their previous posts and self-
description. Additionally, we explore the de-
gree to which incorporating inferred user traits
into our model helps with this prediction task.

1 Introduction

What a person does says a lot about who they
are. Information about the types of activities that
a person engages in can provide insights about
their interests (Goecks and Shavlik, 2000), per-
sonality (Ajzen, 1987), physical health (Bouchard
et al., 2018), the activities that they are likely to
do in the future (Ouellette and Wood, 1998), and
other psychological phenomena like personal val-
ues (Rokeach, 1973). For example, it has been
shown that university students who exhibit traits
of interpersonal affect and self-esteem are more
likely to attend parties (Paunonen and Ashton,
2001), and those that value stimulation are likely
to watch movies that can be categorized as thrillers
(Bardi and Schwartz, 2003).

Several studies have applied computational ap-
proaches to the understanding and modeling of hu-
man behavior at scale (Yin et al., 2014) and in
real time (Wang et al., 2015). However, this pre-
vious work has mainly relied on specific devices
or platforms that require structured definitions of

behaviors to be measured. While this leads to an
accurate understanding of the types of activities
being done by the involved users, these methods
capture a relatively narrow set of behaviors com-
pared to the huge range of things that people do
on a day-to-day basis. On the other hand, publicly
available social media data provide us with infor-
mation about an extremely rich and diverse set of
human activities, but the data are rarely structured
or categorized, and they mostly exist in the form
of natural language. Recently, however, natural
language processing research has provided several
examples of methodologies for extracting and rep-
resenting human activities from text (Fast et al.,
2016; Wilson and Mihalcea, 2017) and even mul-
timodal data (Agrawal et al., 2016).

In this paper, we explore the task of predict-
ing human activities from user-generated text data,
which will allow us to gain a deeper understand-
ing of the kinds of everyday activities that peo-
ple discuss online with one another. Throughout
the paper, we use the word “activity” to refer to
what an individual user does or has done in their
daily life. Unlike the typical use of this term in the
computer vision community (Cheng et al., 2015;
Zhang et al., 2017), in this paper we use it in a
broad sense, to also encompass non-visual activ-
ities such as “make vacation plans” or “have a
dream” We do not focus on fine-grained sequences
actions such as “pick up a camera”, “hold a cam-
era to one’s face”, “press the shutter release but-
ton”, and others. Rather, we focus on the high-
level activity as a person would report to others:
“take a picture”. Additionally, we specifically fo-
cus on everyday human activities done by the users
themselves, rather than larger-scale events (Atefeh
and Khreich, 2015), which are typically character-
ized by the involvement or interest of many users,
often at a specific time and location.

Given that the space of possible phrases describ-



ing human activities is nearly limitless, we pro-
pose a set of human activity clusters that summa-
rize a large set of several hundred-thousand self-
reported activities. We then construct predictive
models that are able to estimate the likelihood that
a user has reported that they have performed an
activity from any cluster.

The paper makes the following main contribu-
tions. First, starting with a set of nearly 30,000
human activity patterns, we compile a very large
dataset of more than 200,000 users undertaking
one of the human activities matching these pat-
terns, along with over 500 million total tweets
from these users. Second, we use a state-of-the-
art sentence embedding framework tailored to rec-
ognize the semantics of human activities and cre-
ate a set of activity clusters of variable granularity.
Third, we explore a neural model that can predict
human activities based on natural language data,
and in the process also investigate the relationships
between everyday human activities and other so-
cial variables such as personal values.

2 Data

While we do not expect to know exactly what a
person is doing at any given time, it is fairly com-
mon for people to publicly share the types of activ-
ities that they are doing by making posts, written
in natural language, on social media platforms like
Twitter. However, when taking a randomly sam-
pled stream of tweets, we find that only a small
fraction of the content was directly related to ac-
tivities that the users were doing in the real world
– instead, most instances are more conversational
in nature, or contain the sharing of opinions about
the world or links to websites or images. Using
such a random sample would require us to filter
out a large percentage of the total data collected,
making the data collection process inefficient.

Therefore, in order to target only those tweets
that are rich in human activity content, we formu-
late a set of queries that allows us to use the Twit-
ter Search API to find instances of users tweeting
about common human activities. Each query con-
tains a first-person, past-tense verb within a phrase
that describes a common activity that people do.
Using this approach, we are able to retrieve a set
of tweets that contains a high concentration of hu-
man activity content, and we also find that users
who wrote these tweets are much more likely to
have written other tweets that describe human ac-
tivities (Table 1). We build our set of human ac-

Sampled tweets w/valid activities 2%
Queried tweets w/valid activities 81%
Addtl. user tweets w/valid activities 15%

Table 1: Effect of targeted query approach on activity
frequency in tweets. “Valid activities” are defined as
first-person verb phrases that clearly indicate that the
author of the text has actually performed the concrete
activity being described. For each set of tweets, a ran-
dom subset of 100 was chosen and manually annotated
for validity.

count unique
Event2Mind activities 24,537 24,537
Survey activities 5,000 4,957
Total 29,537 29,494

Table 2: Number of human activity queries from mul-
tiple sources.

tivity queries from two sources: the Event2Mind
dataset (Rashkin et al., 2018) and a set of short ac-
tivity surveys, which we collect ourselves, to ob-
tain nearly 30K queries (Table 2) .

2.1 Event2Mind Activities

The Event2Mind dataset contains a large number
of event phrases which are annotated for intent
and reaction. The events themselves come from
four sources of phrasal events (stories, common
n-grams found in web data, blogs, and English id-
ioms), and many of them fall under our classifi-
cation of human activities, making Event2Mind a
great resource in our search for concrete examples
of human activities. We consider events for which
a person is the subject (e.g, “PersonX listens to
PersonX’s music”) to be human activities, and re-
move the rest (e.g., “It is Christmas morning”).
We then use several simple rules to convert the
Event2Mind instances into first-person past-tense
activities. Since all events were already filtered
so that they begin with “PersonX”, we replace the
first occurrence of “PersonX” in each event with
“I” and all subsequent occurrences with “me”. All
occurrences of “PersonX’s” become “my”, and the
main verb in each phrase is conjugated to its past-
tense form using the Pattern python module.1 For
example, the event “PersonX teaches PersonX’s
son” becomes the query “I taught my son”. Since
Event2Mind also contains wildcard placeholders
that can match any span of text within the same

1www.clips.uantwerpen.be/pattern



Total queries 29,494
Queried tweets 422,607
Avg. tweets/query 14.33
Valid queried tweets 335,357
Avg. valid tweets/query 11.37

Table 3: Summary of query results.

phrase (e.g., “PersonX buys at the store”)2 but
the Twitter API doesn’t provide a mechanism for
wildcard search, we split the event on the string
and generate a query that requires all substrings to
appear in the tweet. We then check all candidate
tweets after retrieval and remove any for which the
substrings do not appear in the same order as the
original pattern.

2.2 Short Survey Activities

In order to get an even richer set of human activ-
ities, we also ask a set of 1,000 people across the
United States to list any five activities that they had
done in the past week. We collect our responses
using Amazon Mechanical Turk,3 and manually
verify that all responses are reasonable. We re-
move any duplicate strings and automatically con-
vert them into first-person and past-tense (if they
were not in that form already). For this set of
queries, there are no wildcards and we only search
for exact matches. Example queries obtained us-
ing this approach include “I went to the gym” and
“I watched a documentary”.

2.3 Query Results

Using our combined set of unique human activity
queries, we use the Twitter Search API4 to collect
the most recent 100 matches per query (the maxi-
mum allowed by the API per request), as available,
and we refer to these tweets as our set of queried
tweets. We then filter the queried tweets as fol-
lows: first, we verify that for any tweets requiring
the match of multiple substrings (due to wildcards
in the original activity phrase), the substrings ap-
pear in the correct order and do not span multiple
sentences. Next, we remove activity phrases that
are preceded with indications that the author of the
tweet did not actually perform the activity, such as
“I wish” or “should I . . . ?”. We refer to the set

2We also treat instance of “PersonY” as a wildcard since
this could be any name or even a user (@) mention on Twitter.

3www.mturk.com
4developer.twitter.com/en/docs/tweets/search/api-

reference/get-search-tweets.html

Num. unique users 358,091
Additional tweets collected 560,526,633
Avg. additional tweets / user 1,565
Additional activities extracted 21,316,364
Avg. additional activities / user 59.52

Table 4: Summary of additional data.

Initial number unique users 358,091
Users with non-empty profiles 96.9%
Users with ≥ 1 addtl. tweets 94.9%
Users with ≥ 25 addtl. tweets 93.1%
Users with ≥ 1 addtl. activities 93.5%
Users with ≥ 5 addtl. activities 87.1%
Final number unique valid users 214,708

Table 5: Summary valid user filtering.

of tweets left after this filtering as valid queried
tweets (see Table 3 for more details).

In order to gather other potentially useful infor-
mation about the users who wrote at least one valid
queried tweet, we collect both their self-written
profile and their previously written tweets (up to
3,200 past tweets per user, as allowed by the Twit-
ter API), and we refer to these as our set of ad-
ditional tweets. We ensure that there is no over-
lap between the sets of queried tweets and addi-
tional tweets, so in the unlikely case that a user has
posted the same tweet multiple times, it cannot be
included in both sets.

Further, we use a simple pattern-matching ap-
proach to extract additional activities from these
additional tweets. We search for strings that
match I <VBD> .* <EOS> where <VBD> is
any past-tense verb, .* matches any string (non-
greedy), and <EOS> matches the end of a sen-
tence. We then perform the same filtering as be-
fore for indications that the person did not actu-
ally do the activity, and we refer to these filtered
matches as our set of additional activities (see
Table 4 for more information). Note that since
these additional activities can contain any range
of verbs, they are naturally noisier than our set of
valid query tweets, and we therefore do not treat
them as a reliable “ground truth” source of self-
reported human activities, but as a potentially use-
ful signal of activity-related information that can
be associated with users in our dataset.

For our final dataset, we also filter our set of
users. From the set of users who posted at least
one valid queried tweet, we remove those who had
empty user profiles, those with less than 25 addi-



tional tweets, and those with less than 5 additional
activities (Table 5).

2.4 Creating Human Activity Clusters
Given that the set of possible human activity
phrases is extremely large and it is unlikely that the
same phrase will appear multiple times, we make
this space more manageable by first performing a
clustering over the set of activity phrase instances
that we extract from all valid queried tweets. We
define an activity phrase instance as the set of
words matching an activity query, plus all follow-
ing words through the end of the sentence in which
the match appears. By doing this clustering, our
models will be able to make a prediction about
the likelihood that a user has mentioned activities
from each cluster, rather than only making predic-
tions about a single point in the semantic space of
human activities.

In order to cluster our activity phrase instances,
we need to define a notion of distance between
any pair of instances. For this, we turn to prior
work on models to determine semantic similar-
ity between human activity phrases (Zhang et al.,
2018) in which the authors utilized transfer learn-
ing in order to fine-tune the Infersent (Conneau
et al., 2017) sentence similarity model to specifi-
cally capture relationships between human activ-
ity phrases. We use the authors’ BiLSTM-max
sentence encoder trained to capture the related-
ness dimension of human activity phrases5 to ob-
tain vector representations of each of our activity
phrases. The measure of distance between vectors
produced by this model was shown to be strongly
correlated with human judgments of general activ-
ity relatedness (Spearman’s ρ = .722 between the
model and human ratings, while inter-annotator
agreement is .768).

While the relationship between two activity
phrases can be defined in a number of ways (Wil-
son and Mihalcea, 2017), we we chose a model
that was optimized to capture relatedness so that
our clusters would contain groups of related ac-
tivities without enforcing that they are strictly the
same activity. Since the model that we employed
was trained on activity phrases in the infinitive
form, we again use the Pattern python library, this
time to convert all of our past-tense activities to
this form. We also omit the leading first person
pronoun from each phrase, and remove user men-
tions (@<user>), hashtags, and URLs. We then

5Shared by the first author of the referenced paper.

“Cooking”
make cauliflower stir-fry for dinner

make garlic and olive oil vermicelli for lunch
start cooking bacon in the oven (on foil in a sheet)

burn the turkey
make perfect swordfish steaks tonight

“Pet/Animal related”
get a new pet spider today

cuddle 4 dogs
get a pet sitter

feel so happy being able to pet kitties today
spend some time with cats

“Spectating”
watch football italia

watch a football game in the pub
watch basketball today

watch sports
watch fireworks today in the theatre

“Passing Examinations”
ace the exam

pass one’s exam thank god
get a perfect score on one’s exam

get a c on one’s french exam
pass another exam omg

Table 6: Examples of clustered activities (with manu-
ally provided labels, for reference purposes only).

define the distance between any two vectors using
cosine distance, i.e., 1 − A·B

||A||||B|| , for vectors A
and B.

We use K-means clustering in order to find a
set of kact clusters that can be used to repre-
sent the semantic space in which the activity vec-
tors lie. We experiment with kact = 2n with
n ∈ Z ∩ [3, 13] and evaluate the clustering results
using several metrics that do not require super-
vision: within-cluster variance, silhouette coeffi-
cient (Rousseeuw, 1987), Calinski-Harabaz crite-
rion (Caliński and Harabasz, 1974), and Davies-
Bouldin criterion (Davies and Bouldin, 1979).
In practice, however, we find that these metrics
are strongly correlated (either positively or nega-
tively) with the kact, making it difficult to quan-
titatively compare the results of using a different
number of clusters, and we therefore make a de-
cision based on a qualitative analysis of the clus-
ters.6 For the purpose of making these kinds of

6We acknowledge that similar experiments could be run
with different cluster assignments, and our preliminary ex-
periments showed comparable results. It is important to note
that we do not treat these clusters as the definitive organiza-
tion of human activities, but as an approximation of the full
activity space in order to reduce the complexity of making
predictions about activities in that space.



Distance to “Cooking”: 0.11
cook breakfast

cook the spaghetti
start cooking

cook something simple
start cooking a lot more

Distance to “Cooking”: 0.52
feed one’s ducks bread all the time

give one’s dog some chicken
stop eating meat

eat hot dogs and fries
get one’s dog addicted to marshmellows

Distance to “Cooking”: 0.99
take a picture with her

post a photo of one
bring something like 1000 rolls of film

draw a picture of us holding hands
capture every magical moment to give to the bride

Table 7: Three sample clusters and their distances from
the first cluster in Table 6, showing the closest cluster,
a somewhat distant cluster, and a very distant cluster.

predictions about clusters, it is beneficial to have a
smaller number of larger clusters, but clusters that
are too large are no longer meaningful since they
contain sets of activities that are less strongly re-
lated to one another. In the end, we find that using
210 = 1024 clusters leads to a good balance be-
tween cluster size and specificity, and we use this
configuration for our prediction experiments mov-
ing forward. Examples of activities that were as-
signed the same cluster label are shown in Table 6,
and Table 7 illustrates the notion of distance within
our newly defined semantic space of human activi-
ties. For example, two cooking-related clusters are
near to one another, while a photography-related
cluster is very distant from both.

3 Methodology

Given a set of activity clusters and knowledge
about the users who have reported to have partic-
ipated in these activities, we explore the ability of
machine learning models to make inferences about
which activities are likely to be next performed by
a user. Here we describe the supervised learning
setup, evaluation, and neural architecture used for
the prediction task.

3.1 Problem Statement

We formulate our prediction problem as follows:
for a given user, we would like to produce a prob-
ability distribution over all activity clusters such

that:
argmax

ci∈C
P (ci|h,p,a) = ct ,

whereC is a set of activity clusters, h, p, and a are
vectors that represent the user’s history, profile,
and attributes, respectively, and ct is the target
cluster. The target cluster is the cluster label of
an activity cluster that contains an activity that is
known to have been performed by the user.

If a model is able to accurately predict the tar-
get cluster, then it is able to estimate the general
type of activity that the user is likely to write about
doing in the future given some set of information
about the user and what they have written in the
past. By also generating a probability distribution
over the clusters, we can assign a likelihood that
each user will write about performing each group
of activities in the future. For example, such a
model could predict the likelihood that a person
will claim to engage in a “Cooking” activity or a
“Pet/Animal related” activity.

The ability to predict the exact activity cluster
correctly is an extremely difficult task, and in fact,
achieving that alone would be a less informative
result than producing predictions about the like-
lihood of all clusters. Further, in our setup, we
only have knowledge about a sample of activities
that people actually have done. In reality, it is
very likely that users have participated in activi-
ties that belong to a huge variety of clusters, re-
gardless of which activities were actually reported
on social media. Therefore, it should be sufficient
for a model to give a relatively high probability to
any activity that has been reported by a user, even
if there is no report of the user having performed
an activity from the cluster with the highest prob-
ability for that user.

3.2 Model Architecture

As input to our activity prediction model, we use
three major components: a user’s history, profile,
and attributes. We represent a history as a se-
quence of documents, D, written by the user, that
contain information about the kinds of activities
that they have done. Let t = |D|, and each docu-
ment in D is represented as a sequence of tokens.
We experiment with two sources for D: all addi-
tional tweets written by a user, or only the addi-
tional activities contained in tweets written by a
user, which is a direct subset of the text contained
in the full set of tweets.

A user’s profile is a single document, also



Figure 1: Predictive model architecture.

represented as a sequence of tokens. For each
user, we populate the profile input using the plain
text user description associated with their account,
which often contains terms which express self-
identity such as “republican” or “athiest.”

We represent the tokens in both the user’s
history and profile with the pretrained 100-
dimensional GloVe-Twitter word embeddings
(Pennington et al., 2014), and preprocess all text
with the script included with these embeddings.7

Finally, our model allows the inclusion of any
additional attributes that might be known or in-
ferred in order to aid the prediction task, which
can be passed to the model as a dima dimensional
real-valued vector. For instance, we can use per-
sonal values as a set of attributes, as described in
Section 3.3.

We train a deep neural model, summarized in
Figure 1, to take a user’s history, profile, and at-
tributes, and output a probability distribution over
the set of kact clusters of human activities, indi-
cating the likelihood that the user has reported to
have performed an activity in each cluster. There
are four major components of our network:

Document Encoder This is applied to each of the
t documents in the history– either an activity
phrase or a full tweet. For document i inD, it
takes a sequence of token embeddings as in-
put and produces a dimd dimensional vector,
di as output.

History Encoder This layer takes the sequence
7nlp.stanford.edu/projects/glove/preprocess-twitter.rb

{d0, . . . ,dt} as input and produces a sin-
gle dimH dimensional vector, h, as output,
intended to represent high-level features ex-
tracted from the entire history of the user.

Profile Encoder Takes each token in the user’s
profile as input and produces a single dimp

dimensional vector, p as output.

Classifier As input, this module takes the con-
catenation a ⊕ h ⊕ p, where a is the prede-
fined attribute vector associated with the user.
Then, a prediction is made for each of the kact
clusters, first applying softmax in order to ob-
tain a probability distribution. We refer to the
dimension of the output as dimo.

For any of the three encoder layers, several layer
types can be used, including recurrent, convo-
lutional, or self-attention based (Vaswani et al.,
2017) layers. The classifier layer is the only layer
that does not take a sequence as input and we
implement it using a simple feed-forward multi-
layer network containing `c layers with hc hidden
units each. The network is trained with cross-
entropy loss, which has been shown to perform
competitively when optimizing for top-k classifi-
cation tasks (Berrada et al., 2018).

3.3 Incorporating Personal Values
While the attributes vector a can be used to en-
code any information of interest about a user, we
choose to experiment with the use of personal val-
ues because of their theoretical connection to hu-
man activities (Bardi and Schwartz, 2003). In
order to get a representation of a user’s values,
we turn to the hierarchical personal values lexi-
con from (Wilson et al., 2018). In this lexicon,
there are 50 value dimensions, represented as sets
of words and phrases that characterize that value.
Since users’ profiles often contain value-related
content, we use the Distributed Dictionary Repre-
sentations (DDR) method (Garten et al., 2018) to
compute a score, sv for each value dimension, v,
using cosine similarity as follows:

sv =
R(profile) ·R(lexiconv)
||R(profile)||||R(lexiconv)||

,

where R(·) is a representation of a set of vec-
tors, which, for the DDR method, is defined as the
mean vector of the set; profile is a set of word
embeddings, one for each token in the user’s pro-
file; and lexiconv is another set of word embed-
dings, one for each token in the lexicon for value



dimension v. Finally, we set a = (s0, . . . , sdimL
)

where dimL = 50, the number of value di-
mensions in the lexicon. Examples of profiles
with high scores for sample value dimensions are
shown in Table 8.

Category Top Scoring Profile
Family a mother to my son
Nature Environment & nat resource

economist tweeting about cli-
mate change/risk, energy, envi-
ronmental protection, green fi-
nance, commodities, data sci-
ence, politics

Work-Ethic Football is like life - it requires
perseverance, self-denial, hard
work, sacrifice, dedication and
respect for authority

Religion /Galatians 2:20/ I love our Lord
Jesus Christ.

Table 8: Profiles scoring the highest for various values
categories when measured with the values lexicon.

Further, we explore the types of activity clusters
that contain activities reported by users with high
scores for various value dimensions. For a given
value, we compute a score for each cluster sCv by
taking the average sv of all users who tweeted
about doing activities in the cluster. For each value
v, we can then rank all clusters by their sCv score.
Examples of those with the highest scores are pre-
sented in Table 9. We observe that users whose
profiles had high scores for Family were likely to
report doing activities including family members,
those with high scores for Nature tweeted about
travel, and those with high Work-Ethic scores re-
ported performing writing related tasks.

Category Activities in High Scoring Cluster
give one’s daughter a number of plants

Family take one’s family to the park
work in the garden with mom
visit another castle

Nature visit france
go on a fishing trip
add another footnote to the dissertation

Work-Ethic file a complaint with the fcc
write one’s first novel by hand
follow the rules

Religion study really hard
do a good deed

Table 9: Activity clusters associated with the highest
scoring users for various values categories when mea-
sured with the values lexicon.

3.4 Evaluation

We evaluate our activity prediction models using a
number of metrics that consider not only the most
likely cluster, but also the set of keval most likely
clusters. First, we evaluate the average per-class
accuracy of the model’s ability to rank ct, the tar-
get cluster, within the top keval clusters. These
scores tell us how well the model is able to make
predictions about the kinds of activities that each
user is likely to do.

Second, we test how well the model is able to
sort users by their likelihood of having reported to
do an activity from a cluster. This average compar-
ison rank (ACR) score is computed as follows: for
each user in the test set, we sample n other users
who do not have the same activity label. Then,
we use the probabilities assigned by the model to
rank all n + 1 users8 by their likelihood of being
assigned ct, and the comparison rank score is the
percentage of users who were ranked ahead of the
target user (lower is better). We then average this
comparison rank across all users in the test set to
get the ACR. The ACR score tells us how well the
model is able to find a rank users based on their
likelihood of writing about doing a given activity,
which could be useful for finding, e.g., the users
who are most likely to claim that they “purchased
some pants” or least likely to mention that they
“went to the gym” in the future.

4 Experiments and Results

We split our data at the user-level, and from our set
of valid users we use 200,000 instances for train-
ing data, 10,000 as test data, and the rest as our
validation set.

For the document encoder and profile encoder
we use Bi-LSTMs with max pooling (Conneau
et al., 2017), with dimd = 128 and dimp = 128.
For the history encoder, we empirically found that
single mean pooling layer over the set of all docu-
ment embeddings outperformed other more com-
plicated architectures, and so that is what we use in
our experiments. Finally, the classifier is a 3-layer
feed-forward network with and dimc = 512 for
the hidden layers, followed by a softmax over the
dimo-dimensional output. We use Adam (Kingma
and Ba, 2014) as our optimizer, set the maximum
number of epochs to 100, and shuffle the order of
the training data at each epoch. During each train-

8We set n = 999 in this study to achieve comparison
samples of size 1000.



keval 1 2 3 5 10 25 ACR
fullT 2.54 5.04 7.01 13.14 24.49 55.36 46.22
−a 2.11 5.05 7.91 13.58 23.29 54.85 46.12
−p 3.20 6.47 9.08 14.70 27.52 60.26 42.24
−a, p 4.29 7.76 10.67 15.92 29.12 61.03 41.51
fullA 2.13 4.46 7.12 11.44 22.49 55.05 47.40
−a 2.60 4.55 7.35 12.26 23.37 54.73 46.17
−p 2.75 4.84 7.56 12.00 25.25 55.36 46.23
−a, p 3.75 6.79 9.73 15.47 28.22 60.87 42.70
−h 2.02 4.13 6.67 11.61 23.43 53.38 47.98
−a, h 1.68 4.55 7.61 11.49 23.41 52.97 47.83
−p, h 2.29 3.61 4.88 9.22 20.48 51.25 49.28
rand 2.00 4.00 6.00 10.00 20.00 50.00 50.00

Table 10: Per-class accuracy (%) @ keval and ACR scores for the 50-class prediction task. Note that removing h
from either fullT or fullA gives the same model. For ACR only, lower is better.

ing step, we represent each user’s history as a new
random sample of max sample docs = 100 doc-
uments9 if there are more thanmax sample docs
documents available for the user, and we use a
batch size of 32 users. Since there is a class im-
balance in our data, we use sample weighting in
order to prevent the model from converging to a
solution that simply predicts the most common
classes present in the training data. Each sample
is weighted according to its class, c, using the fol-
lowing formula:

wc =
N

count(c) ∗ dimo

where count(c) is the number of training instances
belonging to class c. We evaluate our model on the
development data after each epoch and save the
model with the highest per-class accuracy. Finally,
we compute the results on the test data using this
model, and report these results.

We test several configurations of our model. We
use the complete model described in section 3.2
using either the set of additional tweets written
by a user as their history (fullT), or only the set
of additional activities contained in those tweets
(fullA). Then, to test the effect of the various
model components, we systematically ablate the
attributes vector input a, the profile text (and sub-
sequently, the Profile Encoder layer) p, and the
set of documents, D, comprising the history along
with the Document and History Encoders, thereby
removing the h vector as input to the classifier. We
also explore removing pairs of these inputs at the
same time. To contextualize the results, we also

9We empirically found that increasing this value beyond
100 had little effect on the development accuracy.

include the theoretical scores achieved by random
guessing, labeled as rand.10

We consider two variations on our dataset: the
first is a simplified, 50-class classification prob-
lem. We choose the 50 most common clusters
out of our full set of kact = 1024 and only make
predictions about users who have reportedly per-
formed an activity in one of these clusters. The
second variation uses the entire dataset, but rather
than making predictions about all kact classes, we
only make fine-grained predictions about those
classes for which count(c) ≥ minCount. We
do this under the assumption that training an
adequate classifier for a given class requires at
least minCount examples. All classes for which
count(c) < minCount are assigned an “other”
label. In this way, we still make a prediction for
every instance in the dataset, but we avoid allow-
ing the model to try to fit to a huge landscape of
outputs when the training data for some of these
outputs is insufficient. By setting minCount to
100, we are left with 805 out of 1024 classes,
and an 806th “other” class for our 806-class setup.
Note that this version includes all activities from
all 1024 clusters, it is just that the smallest clus-
ters are grouped together with the “other” label.

While our models are able to make predictions
indicating that learning has taken place, it is clear
that this prediction task is difficult. In the 50-class
setup, the fullT − a, p model consistently had the
strongest average per-class accuracy for all values
of keval and the lowest (best) ACR score (Table
10). The fullA − a, p model performed nearly as
well, showing that using only the human-activity

10For the evaluation metrics considered in this paper, ran-
dom guessing is as strong or stronger than a “most frequent
class” baseline, so we do not report it.



keval 1 2 3 5 10 25 50 75 100 200 300 ACR
fullT 0.15 0.36 0.61 0.97 1.91 4.65 8.66 12.24 16.15 30.69 43.96 44.10
−a 0.32 0.61 0.98 1.39 2.96 5.99 10.21 14.61 18.95 35.19 49.26 42.61
−p 0.45 1.02 1.37 1.96 3.38 7.41 12.71 17.17 21.60 37.53 51.11 41.14
−a, p 0.41 0.70 1.10 1.66 3.03 6.88 12.89 17.86 22.76 38.61 52.38 40.82
fullA 0.29 0.41 0.72 1.04 2.05 4.50 8.50 12.14 15.48 30.04 44.24 45.98
−a 0.24 0.44 0.75 1.02 2.02 4.62 8.70 12.19 15.56 30.18 43.34 45.99
−p 0.23 0.46 0.66 1.13 2.29 5.27 9.66 14.33 18.75 34.00 47.71 42.64
−a, p 0.26 0.47 0.83 1.35 2.24 4.61 8.90 13.24 16.80 31.29 45.11 44.56
−h 0.10 0.28 0.44 0.73 1.37 4.08 7.60 10.96 14.28 27.60 40.77 47.94
−a, h 0.10 0.36 0.53 1.00 1.85 4.64 8.58 12.57 16.23 29.31 41.57 46.94
−p, h 0.10 0.23 0.41 0.68 1.49 3.72 7.12 10.46 13.65 26.90 39.93 48.15
rand 0.12 0.25 0.37 0.62 1.24 2.98 6.34 9.19 12.54 26.21 36.77 50.00

Table 11: Per-class accuracy (%) @ keval and ACR scores for the 806-class prediction task. Note that removing h
from either fullT or fullA gives the same model. For ACR only, lower is better.

relevant content from a user’s history gives simi-
lar results to using the full set of content available.
When including the attributes and profile for a
user, the model typically overfits quickly and gen-
eralization deteriorates.

In the 806-class version of the task, we observe
the effects of including a larger range of activi-
ties, including many that do not appear as often as
others in the training data (Table 11). This version
of the task also simulates a more realistic scenario,
since predictions can be made for the “other” class
when the model does to expect the user to claim to
do an activity from any of the known clusters. In
this setting, we see that the fullT−pmodel works
well for keval ≤ 25, suggesting that the use of
the attribute vectors helps, especially when pre-
dicting the correct cluster within the top 25 is im-
portant. For keval ≥ 50, the same fullT − a, p
model that worked best in the 50-class setup again
outperforms the others. Here, in contrast to the
50-class setting, using the full set of tweets usu-
ally performs better than focusing only on the hu-
man activity content. Interestingly, the best ACR
scores are even lower in the 806-class setup, show-
ing that it is just as easy to rank users by their like-
lihood of writing about an activity, even when con-
sidering many more activity clusters.

5 Conclusions

In this paper, we addressed the task of predict-
ing human activities from user-generated content.
We collected a large Twitter dataset consisting of
posts from more than 200,000 users mentioning
at least one of the nearly 30,000 everyday activi-
ties that we explored. Using sentence embedding
models, we projected activity instances into a vec-

tor space and perform clustering in order to learn
about the high-level groups of behaviors that are
commonly mentioned online. We trained predic-
tive models to make inferences about the likeli-
hood that a user had reported to have done activi-
ties across the range of clusters that we discovered,
and found that these models were able to achieve
results significantly higher than random guessing
baselines for the metrics that we consider. While
the overall prediction scores are not very high, the
models that we trained do show that they are able
to generalize findings from one set of users to an-
other. This is evidence that the task is feasible,
but very difficult, and it could benefit from further
investigation.

We make the activity clusters, models,
and code for the prediction task available at
http://lit.eecs.umich.edu/downloads.html
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