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Sustainable Development 
Sector is Changing
“…the sector has evolved over years…[and] the emergence of a systems-
based approach is the reaction to…[our] messy world. The world isn’t 
linear.”

IRC  WASH Talk Podcast (Episode 10, 2018) 
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Defining Anthropology, 
Sustainability, Systems Modeling
Anthropology
◦ The study human culture in all its breadth, depth, and complexity

Sustainability
◦ “…the design of human and industrial systems
◦ to ensure that humankind’s use of natural resources and cycles
◦ do not lead to diminished quality of life due either to 
◦ losses in future economic opportunities or to 
◦ adverse impacts on social conditions, human health, and the environment.”

Mihelcic et al., 2003; Webb, 2018



Defining Anthropology, 
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Purpose
To develop a tool to determine 
effective strategies for increasing the 
adoption and sustainability of
resource recovery (RR) systems

Effective 
Strategies

Adoption

Sustainability
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Decision making about adopting, sustaining RR systems
◦ Occurs at household (or business) level

Existing wastewater regime = septic tanks

Performance Measures
◦ Adopt = install RR system
◦ Sustain = RR system affordably meets water                                                       
quality standards

Adopting & Sustaining RR Systems

8



Mixed
Methods

Surveys, interviews, focus groups

Water quality testing

Participant observation

Literature review
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Structure à Behavior Over Time
Adoption
◦ Sequential process
◦ Limits to the growing stock of 
adopters over time

Sustainability
◦ Binary distinction 
◦ Portion of adopters perform 
behaviors to operate, maintain 
systems

Strategies
◦ Improve adoption and 
sustainability behavior
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Socio-technical strategies
• Increase frequency of multi-media promotions  
• MarketingAdvertising

• Implement regular, formal/informal tutorials
• MarketingSite Demonstrations

• Improve access to gov. planning information
• SocialStakeholder Power

• Broaden system configurations
• TechnicalTank Options

• Expand understanding of wastewater treatment
• SocialEducation

Prouty, C., Koenig, E.S., Wells, E.C., Zarger, R.K., and Zhang, Q., "Rapid Assessment Framework for Modeling Stakeholder Involvement in Infrastructure 
Development." Sustainable Cities and Society (2017): 130-138. DOI 10.1016/j.scs.2016.12.00912
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Socio-technical strategies influence 
INCREMENTAL impacts to adopted and 

sustained systems
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The behavior change strategy influences 
TRANSFORMATIONAL 

change in the sustained systems
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Conclusions
Modeled Performance
◦ RR System adoption and 
sustainability

Developed Strategies
◦ Incremental improvements

Simulated Behavior Change
◦ Transformative impacts

Prouty et al., 2018. Water Research



Uniqueness 
Learned, Exercised Interdisciplinary Skills
◦ Data Collection, Analysis Methods

Bridged Disciplines, Community Discussions

Mentored Students
◦ University of Belize, University of South Florida

Interdisciplinary, Community Publications

Ongoing Community Engagement



Next Steps: Strong Coasts
NSF RESEARCH TRAINEESHIP PROGRAM

Systems Training Research ON Geography-based Coastal Food-Energy-
Water Systems Research

GUIDING RESEARCH QUESTION

What are the leverage points 
(technological, regulatory, 
organizational) in food-energy-
water systems (FEWS) in a specific 
geographic context to improve the 
sustainability of the overall system 
across different scales? 



Potential Case Study:
Wastewater Project 
ENVIRONMENTAL ENGINEERING

Develop systems-based approach to 
recover nutrients from wastewater to 
grow food, reduce fuel consumption 
for transporting food, reduce nutrients 
entering adjacent surface waters

MARINE SCIENCE

Employ in-situ sensors to measure 
nutrient concentrations for pre/post 
implementation of resource recovery 
system

ANTHROPOLOGY

Investigate risks, perceptions, and 
necessary regulatory environments for 
promoting resource recovery and 
markets for food grown on recovered 
resources



Program Deliverables
Train student cohorts with 21st century skills, global competency, 
and technical and methodological flexibility to address the 
complexity within the FEWS nexus

Develop interdisciplinary partnerships among students and 
domestic/international communities that co-create systems-based 
FEWS solutions
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Thanks for your attention!
Additional questions or information? 
Dr. Christine Prouty cprouty@mail.usf.edu or on Twitter @cprout1
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