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Abstract
Our goal in this paper is to discover near duplicate

patterns in large collections of artworks. This is harder
than standard instance mining due to differences in the
artistic media (oil, pastel, drawing, etc), and imperfec-
tions inherent in the copying process. Our key techni-
cal insight is to adapt a standard deep feature to this
task by fine-tuning it on the specific art collection using
self-supervised learning. More specifically, spatial con-
sistency between neighbouring feature matches is used
as supervisory fine-tuning signal. The adapted feature
leads to more accurate style-invariant matching, and
can be used with a standard discovery approach, based
on geometric verification, to identify duplicate patterns
in the dataset. The approach is evaluated on several
different datasets and shows surprisingly good qualita-
tive discovery results. For quantitative evaluation of
the method, we annotated 273 near duplicate details in
a dataset of 1587 artworks attributed to Jan Brueghel
and his workshop1. Beyond artworks, we also demon-
strate improvement on localization on the Oxford5K
photo dataset as well as on historical photograph lo-
calization on the Large Time Lags Location (LTLL)
dataset.

1. Introduction
Visiting a world-class art museum might leave one

with an impression that each painting is absolutely
unique and unlike any other. In reality, things are
more complicated. While working on a painting, an
artist would typically create a number of preliminary
sketches and studies to experiment with various as-

1Code and data is available at http://imagine.enpc.fr/
~shenx/ArtMiner

(a) common detail (dog) discovered in our new Brueghel
dataset of 1587 artworks

(b) relationship between painting and two studies discovered
from collection of 195 artworks by Dante Gabriel Rossetti
Figure 1: Examples of repeated visual patterns automat-
ically discovered by our algorithm. Sources: (a) left:
Nymphs Sleeping After the Hunt, Spied on by Satyr (oil),
center: Diana’s Nymphs After the Hunt (oil), right: Sev-
enteen Studies of Different Dogs (drawing); (b) The Bower
Meadow (left: chalk, center: oil, right: pastel)

pects of the composition. Many of these studies also
find their way into (usually more provincial) museums.
Some artists enjoy returning time and again to the
same subject matter (e.g. Claude Monet and his series
of 25 paintings of the same haystacks). Moreover, dur-
ing the Renaissance, it was not uncommon for an artist
(or an apprentice in his workshop) to reuse the same
visual elements or motifs (an angel, a cart, a windmill,
etc) in multiple paintings, with little or no variation.
For example, Flemish painter Jan Brueghel is believed
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to have created many paintings that were imitations,
pastiches, or reworkings of his own works, as well as
these of his father, Pieter Breughel the Elder [25]. Art
historians are keenly interested in mapping out such
visual connections between artworks to discover influ-
ences, find provenance, and even establish authorship.
Currently, this is being done entirely by hand, with
researchers spending months or even years in museum
archives hoping to discover common visual patterns.

This paper presents an approach for automatically
discovering repeated visual patterns in art collections,
as shown on Figure 1. We propose to learn a deep vi-
sual feature able to find correspondences between near-
duplicate visual elements across different artworks.
This task is quite challenging, requiring a feature that
is both highly discriminative (i.e. tuned to find copies
of the same object instance rather then samples of an
object category), but also invariant to changes in color,
style, artistic media, geometric deformation, etc. Man-
ually collecting and labelling a large enough artwork
dataset containing enough variability would require
enormous effort by professional art historians, which
is exactly what we are trying to avoid. Therefore, we
propose a method which learns in a self-supervised way,
adapting a deep feature to a given art collection with-
out any human labelling. This is done by leveraging
neighbourhood spatial consistency across matches as
free supervisory signal.

Using our trained feature, we demonstrate that a
simple voting and regression procedure, in line with
classic verification step of instance recognition [33],
lets us discover visual patterns that are repeated across
artworks within the dataset.

We demonstrate our visual pattern discovery ap-
proach on several collections of artwork, including a
new annotated dataset of 1587 works attributed to the
Brueghel family. To further evaluate the generality of
our method, we have also used it to perform localiza-
tion by matching a set of reference photographs to a
test image. We demonstrate that our feature learning
procedure provides a clear improvement on the Ox-
ford5K dataset [33], and results in state-of-the-art per-
formance on the Large Time Gap Location dataset [16]
for localizing historical architecture photographs with
respect to modern ones.

Our main contributions are: 1) a self-supervised ap-
proach to learn a feature for matching artistic visual
content across wide range of styles, media, etc; 2) the
introduction of a large new dataset for evaluating visual
correspondence matching; 3) an approach to discover
automatically repeated elements in artwork collections.

2. Related Work
Computer vision and art. There is a long stand-
ing and fruitful collaboration between computer vi-
sion and art. On the synthesis side, promising results
have been obtained for transferring artistic style to a
photograph [24, 17, 50], or even trying to create art
[14, 23]. On the analysis side, there are several ef-
forts on collection and annotation of large-scale art
datasets [27, 31, 34, 48, 44, 30], and using them for
genre and authorship classification [27, 45, 44]. Others
focus on applying and generalizing visual correspon-
dence and object detection methods to paintings using
both classical [41, 18, 7, 4], as well as deep [6, 8, 47, 20]
methods. Most closely related to us is work of Yin et
al [49], which used the same Brueghel data [1], annotat-
ing it to train detectors for five object categories (carts,
cows, windmills, rowboats and sailbaots).

Our goal, however, is to go further and focus on the
computational analysis of relationships between indi-
vidual artworks. Seguin et al [40, 39] propose to find
visual relationships in collections of paintings. How-
ever, while they use off-the-shelf CNNs trained in a
supervised manner, we focus on the design of a new
self-supervised feature learning specifically trained for
the task. This allows us to focus on near-exact re-
production of detail, rather than a more generic visual
similarity, which is what most art historians are actu-
ally interested in regards to specific corpora, such as
the works of Brueghel family [25].

Spatial consistency as supervisory signal. Spa-
tial consistency is a widely used signal in many com-
puter vision tasks from geometry to retrieval. The clas-
sic work of Sivic et al. [43] performs instance retrieval
based on the extraction of spatially consistent local fea-
ture matches. This direction has been further devel-
oped with specially adapted features for place recogni-
tion across large visual changes [16, 21, 46, 4]. Beyond
instances, this idea has been extended to discovering
object categories [5] and their segmentations [38]. Our
discovery of repeated patterns through correspondence
consistency is reminiscent of the line of work on mid-
level visual element discovery [42, 9, 10]. These idea
have been used in the context of temporal and spatial
image collection analysis, to discover the elements char-
acteristic of a specific location [12], or the evolution of
these elements over time [26].

Spatial consistency has also been used to learn deep
visual features for object category in a self-supervised
way, either by predicting the spatial configuration of
patches [11] or predicting the patch given its con-
text [32]. In a similar spirit, Rocco et al. [37] re-
cently demonstrated how to learn visual representa-



(a) Candidates from proposal region (b) Selection with verification regions
(c) Training with
positive regions

Figure 2: Feature Learning Strategy. (a) Our approach relies on candidate correspondences obtained by matching the
features of a proposal region (in red) to the full database . (b) The candidate correspondences are then verified by matching
the features of the verification region (in blue) of the query in the candidate images and checking for consistency . (c)
Finally, we extract features from the positive regions (in green) from the verified candidates and use them to improve the
features using a metric learning loss.

tions through geometric consistency to predict object-
category-level correspondences between images. We,
on the other hand, aim at learning features for match-
ing only stylistically different versions of the same in-
stance.

3. Dataset-specific Feature Learning
This section describes our strategy for adapting deep

features to the task of matching artworks across styles
in a specific dataset. Starting with standard ImageNet
pre-trained deep features, our idea is to extract hard-
positive matching regions form the dataset that we
then use in a metric learning approach to improve the
features. Our two key hypothesis are that: (i) our
dataset includes large parts of images that are copied
from each other but are depicted with different styles,
and (ii) the initial feature descriptor is good enough to
extract some positive matches. Our training thus alter-
nates between two steps that we describe bellow: (1)
mining for hard-positive training samples in the dataset
based on the current features using spatial consistency,
and (2) updating the features by performing a single
gradient step on the selected samples.

3.1. Mining for Positive Feature Pairs

For our approach to work, it is crucial to select
positive matching examples that are both accurate
and difficult. Indeed, if the features are trained with
false matches, training will quickly diverge, and if the
matches are too easy, no progress will be made.

To find these hard-positive matching features, we
rely on the procedure visualized in Figure 2.

Candidate sampling. Proposal regions are ran-
domly sampled from each image in the dataset to be
used as query features. These are matched densely at
every scale to all the images in the dataset using cosine
similarity in feature space. This can be done efficiently

P2 P4 P6 P8 P10 P12 P14
Figure 3: Different region configurations. (red: proposal
regions, blue: verification regions, green: positive regions)

and in parallel for many queries using a normalization
and a convolution layer, with the weights of the con-
volution defined by the query features. For each query
we select one of its top K matches as candidate cor-
respondences (Figure 2a). These candidates contain
a high proportion of bad matches, since most of the
queries are likely not repeated K times in the dataset
and since our feature is imperfect.

Candidate verification. To verify the quality of
candidate matches given by the previous step, we rely
on special consistency: a match will be considered valid
if its neighbours agree with it. More precisely, let’s as-
sume we have a candidate match between features from
the proposal region pA in image A and a corresponding
region pB in image B, visualized in red in Figure 2b
and 3. We define a verification region around pA, visu-
alized in blue. Every feature in this region is individ-
ually matched in image B, and votes for the candidate
match if it matched consistently with pB . Summing the
votes of all the features in the verification region allows
us to rank the candidate matches. A fixed percent-
age of the candidates are then considered verified. The
choice of the verification region is, of course, important
to the success of this verification step. The key aspect
is that the features in the verification region should be,
as much as possible, independent of the features in the
proposal region. On the other hand, having them too
far apart would reduce the chances of the region being
completely matched. For our experiments, we used the
10x10 feature square centred around the query region
(Figure 3).



Generating hard positives. Finally, given a set of
verified correspondences, we have to decide which fea-
tures to use as positive training pairs. One possibility
would be to directly use features in the proposal region,
since they have been verified. However, since the pro-
posal region has already been “used” once (to verify the
matches), it does not bring enough independent signal
to make quality hard positives. Instead, we propose to
sample positives from a different positive region. We
evaluated different configurations for the positive re-
gion, as visualized in Figure 3 (in green). We choose
to keep only 4 positive pairs per verified proposal, po-
sitioned at the corners of a square and denote the dif-
ferent setups as P2 to P14, the number corresponding
to the size of the square. We will show in Appendix A
that P12 and P14 perform better than the alternatives.

3.2. Feature Fine­tuning

After each selection of positive feature pairs (Fig-
ure 2b in green), we update of our feature (Figure 2c)
using a single gradient step of the following triplet met-
ric learning loss:

L(P1, P2, {Ni}) = −min(λ, s(P1, P2)) +

1

Nneg

Nneg∑
i=1

max(s(P1, Ni), 1− λ) (1)

where P1 and P2 are corresponding features in the
positive regions, {Ni}{i=1,2...Nneg} are negative sam-
ples, s is the cosine similarity metric and λ is a hyper-
parameter. We select the negatives as the set of top
matches to P1 in P2’s image. This selects hard neg-
atives and avoids any difference in the distribution of
the depiction styles in our positive and negative sam-
ples. We chose a relatively high number of negatives
Nneg to account for the fact that some of them might
in fact correspond to matching regions, for example in
the case of repeated elements, or for location near the
optimal match.

Implementation details. In all of our experiments,
we used conv4 features of the ResNet-18 [22] architec-
ture. We resized all images such that their maximum
spatial dimension in the feature map was 40, leading to
approximately 1k features per image at the maximum
scale. For each image, we used 7 different scales, regu-
larly sampled on two octaves with 3 scales per octave.
For positive sampling, we used square queries of 2× 2
features, K = 10 candidate matches for each query.
From these candidate, the top 10% with the most votes
from neighbours were considered verified. Note that
these parameters might need to be adjusted depending
on the diversity and size of the dataset, but we found
that they performed well both for the Brueghel [1] and

Figure 4: Discovery through geometric consistency.

LTLL [16] datasets. For training on Oxford5K [33]
dataset, the query patches are only sampled inside
the annotaed bounding boxes of the 55 query images,
and we only find candidate matches in 2000 images
randomly sampled in the whole dataset. The hyper-
parameters of the triplet loss, Nneg and λ, are fixed to
20 and 0.8 respectively. Our models were trained with
the Adam [28] optimizer with learning rate 1e-5 and
β = [0.9, 0.99]. Using a single GPU Geforce GTX 1080
Ti, training converged in approximately 10 hours, cor-
responding to 200 iterations of the feature selection and
training. Most of the time is spent extracting and ver-
ifying candidate matches. ImageNet pre-training was
used for initialization in all experiments.

4. Spatially consistent pattern mining
In this section, we describe how our algorithm

discovers repeated patterns in a dataset given style-
invariant features learned in the previous section. We
follow the classic geometric verification approach [33]:
for all pairs of images in the dataset, we first compute
features and match them between the two images, then
select consistent matches, and finally find image regions
that have many consistent feature matches. This allows
us to build a graph between all corresponding image re-
gions, from which we extract clusters of related images
and repeated elements. In the following, we present
briefly each of these steps.

4.1. Identifying region correspondences

Our discovery procedure for a pair of images is visu-
alized in Figure 4. We start by computing dense corre-
spondences between the two images using our learned
feature. These will be quite noisy. We first use Hough
voting to identify potential groups of consistent cor-
respondences. As a first approximation, each corre-
spondence votes for a translation and change in scale.
We then extract the top 10 translation candidates,
and, using a permissive threshold, focus on the corre-
spondences in each group independently. Within each
group, we use RANSAC to recover an affine transfor-
mation and the associated inliers. This allows to ac-



count for some deformation in the copy process, but
also variations in the camera viewpoint with respect to
the artwork.

4.2. Scoring correspondences

After deformations between image regions are iden-
tified, we score the correspondence based both on the
quality of the match between the features and geomet-
ric criteria. We use the following weighted average of
the feature similarity:

S(I) = 1

N

∑
i∈I

e
(−

e2i
2σ2

)
si (2)

where I is the index of the inlier correspondences, ei
is the error between correspondence i and the geometric
model, si the similarity of the associated descriptors
and 1

N
is normalization by the number of features in

the source image.

4.3. Correspondence graph

Using the score S, we can separate our dataset into
clusters of connected images. These clusters are al-
ready interesting and visually appealing, especially for
dataset with few repeated details. However, to avoid
obtaining very large clusters when many details are
repeated in overlapping sets of images, one needs to
individually identify each detail region. To do that we
built a graph from all the connected image pairs. The
nodes are the regions that are mapped between pairs
of images. Each image can contain several overlap-
ping regions. We connect regions that are matched to
each other as well as regions in the same image that
overlap with an Intersection over Union (IoU) score
greater than a given threshold (0.5 in our experiments).
Finally, we extract the connected components in this
graph. Each of them corresponds to a different detail
that is repeated in all images of the group.

5. Experiments
In this section, we analyse and evaluate our ap-

proach. We first present the main datasets we used, in-
cluding our new annotations of the Brueghel dataset [1]
specifically targeted toward the new task we propose.
Second, we provide detailed results and analysis for
the task of one-shot visual pattern detection. Finally,
we present quantitative and qualitative results for our
discovery procedure.

5.1. Datasets

Brueghel. We introduce new annotations for the
Brueghel dataset [1], which are available on our project

webpage. Indeed, to the best of our knowledge, no
other annotation for the task of near duplicate detec-
tion in artwork is currently available.

The Brueghel dataset contains 1,587 artworks done
in different media (e.g. oil, ink, chalk, watercolour)
and on different materials (e.g. paper, panel, copper),
describing a wide variety of scenes (e.g. landscape,
religious, still life) This dataset is especially adapted
for our task since it assembles paintings from artists
related to the same workshop, who thus had many in-
teraction with each other, and includes many copies,
preparatory drawings, and borrowed details. With the
help of our art history collaborators, we selected 10
of the most commonly repeated details in the dataset
and annotated the visual patterns in the full dataset
using the VGG Image Annotator tool [13]. Exemples
of the 10 annotated patterns can be seen in Figure 5
as queries (blue boxes). We were careful to select di-
verse patterns, and for each of them to annotate only
duplicates, and not full object classes. Note for exam-
ple that for the horses and lion classes, we annotated
separately two variants of the details (front and back
facing lion, front and right facing horse). This resulted
in 273 annotated instances, with a minimum of 11 and
a maximum of 57 annotations per pattern.

These annotations allow us to evaluate one-shot du-
plicate detection results. In our evaluation, we use an
IoU threshold of 0.3 for positives, because precise anno-
tations of the bounding boxes in different environment
is difficult and approximate detections would be suffi-
cient for most applications. In practice, our detected
bounding boxes, visualised in Figure 5 (green boxes) of-
ten appear more consistent than the annotations. We
compute the Average Precision for each query, aver-
age them per class and report class level mean Average
Precision (mAP).

Large Time Lags Locations (LTLL). While our
discovery algorithm targets copy detection in art, it
should can detect the same object instances in pho-
tographs. We test our algorithm on the LTLL [16]
dataset. It contains historic and modern photographs
captured from 25 locations over a time interval of more
than 150 years. In total the dataset contains 225 his-
torical and 275 modern photographs of the same loca-
tions. The task proposed in LTLL is to recognize the
location of an old picture using annotated modern pho-
tographs. We use our discovery procedure to find the
images most similar to the query. As in the original
paper [16], we report classification accuracy.

Oxford5K. We also evaluate our approach on Ox-
ford buildings [33] dataset. The dataset contains 5062
images for 11 different landmarks. We follow the stan-



Figure 5: Detection example with our trained features on the Brueghel dataset. We show the top 4 matches (in green) for
one example of query from each of our 10 annotated categories. Notice how the matches style can be different from the one
of the query.

(a)

(b)

(c)

Figure 6: From a single query, shown on the left, we show
the detection results obtained with cosine similarity with
ImageNet feature (a) and our trained features (b) as well
as the ones (c) obtained with our features and the discovery
score presented in section 4.2.

dard evaluation protocol and report retrieval mAP for
the 55 queries.

DocExplore. The DocExplore dataset [15], which
is dedicated to spotting repeated patterns in
manuscripts, is the closest existing dataset related to
our task and provides extensive comparisons. However
the repeated patterns in this dataset are rare and small,
all exactly in the same style, with the same colors, and
most of the data is text. We thus used it to validate
our baseline one-shot detection approach, but could not
use it for feature training. DocExplore contains over

1500 images with 1464 instances of 35 different details.
For our experiments, we only considered the 18 largest
details (the other ones corresponding to small letters).

WikiArt. To show the generality of our approach,
we ran our discovery algorithm on paintings of other
artists (Peter Paul Rubens, Dante Gabriel Rossetti and
Canaletto) that we collected from WikiArt [2, 3] (re-
spectively 387, 195 and 166 artworks).

5.2. One­shot detection
We evaluated our feature learning strategy using

one-shot detection. This was performed simply by com-
puting densely features on the dataset and computing
their cosine similarity with the features corresponding
to the query. The query was resized so its largest di-
mension in the feature map would be 8. Note that
unlike standard deep detection approaches [19, 36], we
do not use region proposals because we want to be able
to match regions which do not correspond to objects.

Examples results using this approach for each of the
10 details we annotated on the Brueghel dataset are
shown in Figure 5. It gives a sense of the difficulty of
the task we target and the quality of the results we
obtain. Note for example how the matches are of dif-
ferent styles, and how the two types of lions (top row)
and the two types of horses (bottom row) are differen-
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Figure 7: Discovery between images during training.

tiated. In the following, we compare these results with
baselines and analyse the differences.
Validation on DocExplore. To validate that our
one-shot detection approach is competitive with clas-
sical methods for finding repeated details, we ran it
on the DocExplore dataset with ResNet-18 features
trained on ImageNet. Our cosine-similarity based
dense approach resulted in mAP of 55% on the 18 cat-
egories we considered, a clear improvement compared
to the best performance of 40% obtained in [15] with
classical approaches.

Feature \ Method Cosine similarity Discovery score
ImageNet pre-taining 58.0 54.8
Context Prediction [11] 58.8 64.29
Ours (trained on Brueghel) 75.3 76.4
Ours (trained on LTLL) 65.2 69.95
Table 1: Experimental results on Brueghel, IoU > 0.3.

Comparison and analysis on Brueghel. Here, we
compare the one shot detection performance with dif-
ferent features using cosine similarity and the score
described in equation 2. In Figure 6, we present the
top 4 matches from the same query using different
approaches. On this example, it can be seen that
while ImageNet feature only gets the matches in simi-
lar styles, our trained feature obtains duplicated horses
in different styles, showing that the learned feature is
more invariant to style. Moreover, the matching can
still be improved with the discovery score. The corre-
sponding quantitative results are presented in Table 1
and confirm these observations. Indeed learning fea-
tures improves the score by 17%. The discovery proce-
dure and score provides a small additional boost, which
is a first validation of our discovery procedure. We also
report results for two baselines that we re-implemented:
the classical Video Google [43] approach and deep fea-
ture learnt with Context Prediction [11]. With the
Video Google [43] baseline, we obtained only 21.53%
as retrieval mAP, showing the difficulty to address our
task with SIFT [29] features. For Context Prediction,
we trained the network using the Brueghel dataset and
the same ResNet18 architecture and ImageNet initial-
ization as for our method. We only obtain an improve-
ment of 0.8% compared to ImageNet feature, much

Method LTLL (%) Oxford (%)
B. Fernando et al.[16] 56.1 -
F. Radenović et al.[35] - 87.8
ResNet18 max-pool, image level 59.8 14.0
ResNet18 + discovery 80.9 85.0
Ours (trained LTLL + discovery) 88.5 83.6
Ours (trained Oxford + discovery) 85.6 85.7

Table 2: Classification accuracy on LTLL and retrieval
mAP on Oxford5K

lower than the 17% provided by our method. Inter-
estingly, training our feature on the LTLL dataset also
gave a boost in performance compared to the Ima-
geNet feature, but is clearly worst than training on
the Brueghel data, showing the dataset specific nature
of our training.

5.3. Visual Pattern Discovery
In this part, we focus more specifically on our dis-

covery procedure, show qualitative results on various
datasets, and evaluate quantitatively for place recogni-
tion on the LTLL dataset.

Training visualization. To visualise the influence
of the feature training for our discovery task, we se-
lected a pairs of matching images and ran discovery on
them with the features at different steps of training.
Figure 7 visualises the results on a pair of images from
the LTLL dataset. During training, larger and larger
parts of the images can be matched in a consistent way,
and be discovered as similar elements by our method.
This shows both the efficiency of our feature training
and its relevance for our task.

Quantitative analysis on one-shot localization.
We evaluate our approach on one-shot localization for
both the LTLL and Oxford5K datasets. The results are
reported in Table 2. We compare our discovery score
to cosine similarity with standard max-pooled features
as well as the state of the art results of [16] on LTLL
and [35] on Oxford5K.

On LTLL, we use the class of the nearest neighbour
in modern photographs to localise the historical im-
ages. Using the discovery score provides a very impor-
tant boost compared to the results of [16] and the max-
pooled features. Using our fine-tuning procedure on the
LTLL dataset improves again the results, demonstrat-
ing again the interest of our proposed dataset specific
fine-tunning procedure.

Similarity, on the Oxford5K dataset, we obtain an
important boost using the discovery score compared
to cosine similarity with max-pooled features. Fine-
tuning the features on Oxford5K improves the mAP
by 0.7%. This improvement is less important than on
LTLL, which is expected since there is no specific do-
main gap between queries and targets in the Oxford5K



Figure 8: Example of image clusters discovered by our method. The three cluster without artist names correspond to data
from the Brueghel dataset [1]

dataset. Our result on Oxford5K is also comparable
to the state-of-the-art result obtained in [35] which
performs fine-tuning on a large image collection with
ResNet101. As expected the retrieval mAP is better
when fine-tuning on the Oxford dataset than on LTLL.
Qualitative results. We show example of our dis-
covery results in Figure 8. More results are available
in our project webpage.

Figure 9: Failure examples in paintings of the Brughel
dataset and from Peter Paul Rubens.

6. Limitations and Discussion
When performing discovery on different datasets, we

observed some interesting failure modes visualized in
Figure 9. In the Brughel dataset, we discovered the
identical circular frame of a set of paintings as a re-
peated pattern, as well as matched the faces in a set
of similar but not identical paintings from portrait col-
lections of Peter Paul Rubens.

More generally our method has several limitations.
First, as discussed in Appendix B, the time to per-
form discovery is important, which limits the size of
the datasets we can handle to a few thousands im-
ages. Second, our discovery procedure relies on an
affine transformation model, which might not always be
rich enough. Finally, our feature learning requires hav-
ing access to a dataset which includes many repeated
patterns and a good feature initialization.

7. Conclusion
We have introduced a new approach to adapt fea-

tures for instance matching on a specific dataset with-
out human supervision. We have demonstrated quan-
titatively the promise of our method both for one-shot
cross-modal detection and for cross-modal instance dis-
covery. Last but not least, we demonstrate diverse near
duplicate discovery results in several artwork datasets.

Acknowledgments This work was partly supported
by ANR project EnHerit ANR-17-CE23-0008, project
Rapid Tabasco, NSF IIS-1633310, Berkeley-France
funding, and gifts from Adobe to Ecole des Ponts.
We thank Shiry Ginosar for her advice and assistance,
and Xiaolong Wang, Shell Hu, Minsu Cho, Pascal
Monasse and Renaud Marlet for fruitful discussions,
and Kenny Oh, Davienne Shields and Elizabeth Alice
Honig for thier help on defining the task and building
the Brueghel dataset.



References
[1] Brueghel family: Jan brueghel the elder.” the brueghel

family database. university of california, berkeley.
http://www.janbrueghel.net/. Accessed: 2018-10-
16. 2, 4, 5, 8

[2] Wikiart. https://www.wikiart.org/. Accessed:
2018-10-16. 6

[3] Wikiart retriever. https://github.com/lucasdavid/
wikiart/. Accessed: 2018-10-16. 6

[4] M. Aubry, B. C. Russell, and J. Sivic. Painting-to-
3d model alignment via discriminative visual elements.
ACM Transactions on Graphics (ToG), 33(2):14, 2014.
2

[5] M. Cho, S. Kwak, C. Schmid, and J. Ponce. Unsu-
pervised object discovery and localization in the wild:
Part-based matching with bottom-up region propos-
als. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1201–
1210, 2015. 2

[6] E. J. Crowley, O. M. Parkhi, and A. Zisserman. Face
painting: querying art with photos. In BMVC, pages
65–1, 2015. 2

[7] E. J. Crowley and A. Zisserman. Of gods and goats:
Weakly supervised learning of figurative art. In British
Machine Vision Conference, 2013. 2

[8] E. J. Crowley and A. Zisserman. The art of detection.
In European Conference on Computer Vision, pages
721–737. Springer, 2016. 2

[9] C. Doersch, A. Gupta, and A. A. Efros. Mid-level vi-
sual element discovery as discriminative mode seeking.
In Advances in neural information processing systems,
pages 494–502, 2013. 2

[10] C. Doersch, A. Gupta, and A. A. Efros. Context as su-
pervisory signal: Discovering objects with predictable
context. In European Conference on Computer Vision,
2014. 2

[11] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised
visual representation learning by context prediction.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 1422–1430, 2015. 2, 7

[12] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros.
What makes paris look like paris? ACM Transactions
on Graphics, 31(4), 2012. 2

[13] A. Dutta, A. Gupta, and A. Zisser-
mann. VGG image annotator (VIA).
http://www.robots.ox.ac.uk/ vgg/software/via/,
2016. 5

[14] A. Elgammal, B. Liu, M. Elhoseiny, and M. Maz-
zone. Can: Creative adversarial networks, generating”
art” by learning about styles and deviating from style
norms. arXiv preprint arXiv:1706.07068, 2017. 2

[15] S. En, S. Nicolas, C. Petitjean, F. Jurie, and L. Heutte.
New public dataset for spotting patterns in medieval
document images. Journal of Electronic Imaging,
26(1):011010, 2016. 6, 7

[16] B. Fernando, T. Tommasi, and T. Tuytelaars. Loca-
tion recognition over large time lags. Computer Vision
and Image Understanding, 139:21–28, 2015. 2, 4, 5, 7

[17] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2414–2423, 2016. 2

[18] S. Ginosar, D. Haas, T. Brown, and J. Malik. Detect-
ing people in cubist art. In Workshop at the Euro-
pean Conference on Computer Vision, pages 101–116.
Springer, 2014. 2

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 580–587, 2014. 6

[20] N. Gonthier, Y. Gousseau, S. Ladjal, and O. Bonfait.
Weakly supervised object detection in artworks. arXiv
preprint arXiv:1810.02569, 2018. 2

[21] D. C. Hauagge and N. Snavely. Image matching us-
ing local symmetry features. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 206–213. IEEE, 2012. 2

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[23] A. Hertzmann. Can computers create art? In Arts,
volume 7, page 18. Multidisciplinary Digital Publish-
ing Institute, 2018. 2

[24] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless,
and D. H. Salesin. Image analogies. In Proceedings of
the 28th annual conference on Computer graphics and
interactive techniques, pages 327–340. ACM, 2001. 2

[25] E. Honig. Jan Brueghel and the Senses of Scale. Penn-
sylvania State University Press, 2016. 2

[26] Y. Jae Lee, A. A. Efros, and M. Hebert. Style-aware
mid-level representation for discovering visual connec-
tions in space and time. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1857–1864, 2013. 2

[27] S. Karayev, M. Trentacoste, H. Han, A. Agarwala,
T. Darrell, A. Hertzmann, and H. Winnemoeller. Rec-
ognizing image style. arXiv preprint arXiv:1311.3715,
2013. 2

[28] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[29] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110, 2004. 7

[30] H. Mao, M. Cheung, and J. She. Deepart: Learning
joint representations of visual arts. In Proceedings of
the 2017 ACM on Multimedia Conference, pages 1183–
1191. ACM, 2017. 2

[31] T. Mensink and J. Van Gemert. The rijksmuseum chal-
lenge: Museum-centered visual recognition. In Pro-

http://www.janbrueghel.net/
https://www.wikiart.org/
https://github.com/lucasdavid/wikiart/
https://github.com/lucasdavid/wikiart/


ceedings of International Conference on Multimedia
Retrieval, page 451. ACM, 2014. 2

[32] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell,
and A. A. Efros. Context encoders: Feature learning
by inpainting. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2536–2544, 2016. 2

[33] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zis-
serman. Object retrieval with large vocabularies and
fast spatial matching. In Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE, 2007. 2, 4, 5

[34] D. Picard, P.-H. Gosselin, and M.-C. Gaspard. Chal-
lenges in content-based image indexing of cultural her-
itage collections. IEEE Signal Processing Magazine,
32(4):95–102, 2015. 2

[35] F. Radenović, G. Tolias, and O. Chum. Fine-tuning
cnn image retrieval with no human annotation. arXiv
preprint arXiv:1711.02512, 2017. 7, 8

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-
cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015. 6

[37] I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pa-
jdla, and J. Sivic. Neighbourhood consensus networks.
arXiv preprint arXiv:1810.10510, 2018. 2

[38] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Un-
supervised joint object discovery and segmentation in
internet images. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1939–1946, 2013. 2

[39] B. Seguin, I. diLenardo, and F. Kaplan. Tracking
transmission of details in paintings. In DH, 2017. 2

[40] B. Seguin, C. Striolo, F. Kaplan, et al. Visual link
retrieval in a database of paintings. In European Con-
ference on Computer Vision, pages 753–767. Springer,
2016. 2

[41] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A.
Efros. Data-driven visual similarity for cross-domain
image matching. ACM Transaction of Graphics (TOG)
(Proceedings of ACM SIGGRAPH ASIA), 30(6), 2011.
2

[42] S. Singh, A. Gupta, and A. A. Efros. Unsuper-
vised discovery of mid-level discriminative patches. In
Computer Vision–ECCV 2012, pages 73–86. Springer,
2012. 2

[43] J. Sivic and A. Zisserman. Video google: A text re-
trieval approach to object matching in videos. In null,
page 1470. IEEE, 2003. 2, 7

[44] G. Strezoski and M. Worring. Omniart: multi-task
deep learning for artistic data analysis. arXiv preprint
arXiv:1708.00684, 2017. 2

[45] W. R. Tan, C. S. Chan, H. E. Aguirre, and K. Tanaka.
Ceci n’est pas une pipe: A deep convolutional network
for fine-art paintings classification. In Image Process-
ing (ICIP), 2016 IEEE International Conference on,
pages 3703–3707. IEEE, 2016. 2

[46] Y. Verdie, K. Yi, P. Fua, and V. Lepetit. Tilde: A
temporally invariant learned detector. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5279–5288, 2015. 2

[47] N. Westlake, H. Cai, and P. Hall. Detecting people in
artwork with cnns. In European Conference on Com-
puter Vision, pages 825–841. Springer, 2016. 2

[48] M. J. Wilber, C. Fang, H. Jin, A. Hertzmann, J. Col-
lomosse, and S. J. Belongie. Bam! the behance artistic
media dataset for recognition beyond photography. In
ICCV, pages 1211–1220, 2017. 2

[49] R. Yin, E. Monson, E. Honig, I. Daubechies, and
M. Maggioni. Object recognition in art drawings:
Transfer of a neural network. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International
Conference on, pages 2299–2303. IEEE, 2016. 2

[50] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks. arXiv preprint, 2017. 2

Appendix
A. Positive region configuration

We now focus on evaluating the different positive
region settings described in Section 3.1 and Figure 3.
For each of them, we analyse the performance of the
features on one-shot learning on the Brueghel dataset
and its evolution during training. The results can be
seen in Figure 10. Interestingly, the performance ini-
tially always improves over ImageNet features. How-
ever, when the positive region is close to the proposal
region, the performance decreases after some iterations
of our training procedure, and ends up with worse per-
formance than the initial features. But if the positive
region is far enough from the query (P12 and P14), the
performance improves much more and does not subse-
quently deteriorate. We thus use P12 for all our exper-
iments.
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Figure 10: Evolution of the mean Average Precision for
one-shot matching on the Brueghel dataset during train-
ing. Performance decreases after a few iterations for set-
tings where we extract positive regions correlated with the
proposal region.



B. Computational cost

We implement an efficient algorithm for the single
shot detection by considering query features as convo-
lutional kernels. We can thus match one query to 53
images/sec on a single GPU (Geforce GTX 1080 Ti).
The discovery step is slower, since it requires match-
ing all the features of one image to another, and takes
approximately 0.2 seconds/pair of images on a single
GPU. It takes about 40 minutes to query one image on
Oxford5K using discovery procedure on one GPU and
the discovery on the whole dataset of Brueghel took
approximately 20 hours using 4 GPUs.


